In Silico Analysis of the Α-Amylase Family GH57: Eventual Subfamilies Reflecting Enzyme Specificities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont. -
Cyclomaltodextrinase 13A, Paenibacillus Sp. Pcda13a (CBM34-GH13)
Cyclomaltodextrinase 13A, Paenibacillus sp. PCda13A (CBM34-GH13) Catalogue number: CZ08721 , 0,25 mg CZ08722 , 3 × 0,25 mg Description Storage temperature PCda13A (CBM34-GH13), E.C. number 3.2.1.54, is a This enzyme should be stored at -20 °C. cyclomaltodextrinase from Paenibacillus sp. Recombinant PCda13A (CBM34-GH13), purified from Escherichia coli , is a modular family 13 Glycoside Hydrolase (GH13) with an N-terminal Substrate specificity family 34 Carbohydrate Binding Module (CBM34) (www.cazy.org). The enzyme is provided in 35 mM NaHepes buffer, pH 7.5, 750 PCda13A (CBM34-GH13) hydrolyses α-, β-, and γ-cyclodextrins (CDs). The enzyme hydrolyze CDs and linear maltooligosaccharides mM NaCl, 200 mM imidazol, 3.5 mM CaCl 2 and 25% (v/v) glycerol, at a 0,25 mg/mL concentration. Bulk quantities of this product are to yield maltose and glucose with less amounts of maltotriose and available on request. maltotetraose. Electrophoretic Purity Temperature and pH optima PCda13A (CBM34-GH13) purity was determined by sodium The pH optimum for enzymatic activity is 7 while temperature dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) optimum is 40 °C. followed by BlueSafe staining (MB15201) (Figure 1). Enzyme activity Substrate specificity and kinetic properties of PCda13A (CBM34- GH13) are described in the reference provided below. Follow the instructions described in the paper for the implementation of enzyme assays and to obtain values of specific activity. To measure catalytic activity of GHs, quantify reducing sugars released from polysaccharides through the method described by Miller (1959; Anal. Chem. 31, 426-428). Reference Kaulpiboon and Pongsawasdi. J Biochem Mol Biol. -
Expression of Cyclomaltodextrinase Gene from Bacillus Halodurans C-125 and Characterization of Its Multisubstrate Specificity
Food Sci. Biotechnol. Vol. 18, No. 3, pp. 776 ~ 781 (2009) ⓒ The Korean Society of Food Science and Technology Expression of Cyclomaltodextrinase Gene from Bacillus halodurans C-125 and Characterization of Its Multisubstrate Specificity Hye-Jeong Kang, Chang-Ku Jeong, Myoung-Uoon Jang, Seung-Ho Choi, Min-Hong Kim1, Jun-Bae Ahn2, Sang-Hwa Lee3, Sook-Ja Jo3, and Tae-Jip Kim* Department of Food Science and Technology, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea 1MH2 Biochemical Co., Ltd., Eumseong, Chungbuk 369-841, Korea 2Department of Food Service Industry, Seowon University, Cheongju, Chungbuk 361-741, Korea 3Department of Food and Nutrition, Seowon University, Cheongju, Chungbuk 361-741, Korea Abstract A putative cyclomaltodextrinase (BHCD) gene was found from the genome of Bacillus halodurans C-125, which encodes 578 amino acids with a predicted molecular mass of 67,279 Da. It shares 42-59% of amino acid sequence identity with common cyclomaltodextrinase (CDase)-family enzymes. The corresponding gene was cloned by polymerase chain reaction (PCR) and the dimeric enzyme with C-terminal 6-histidines was successfully overproduced and purified from recombinant Escherichia coli. BHCD showed the highest activity against β-CD at pH 7.0 and 50oC. Due to its versatile hydrolysis and transglycosylation activities, BHCD has been confirmed as a member of CDases. However, BHCD can be distinguished from other typical CDases on the basis of its novel multisubstrate specificity. While typical CDases have over 10 times higher activity on β-CD than starch or pullulan, the CD-hydrolyzing activity of BHCD is only 2.3 times higher than pullulan. -
Function and Structure Studies of GH Family 31 and 97 \Alpha
110610 (RV-17) Biosci. Biotechnol. Biochem., 75 (12), 110610-1–9, 2011 Award Review Function and Structure Studies of GH Family 31 and 97 -Glycosidases Masayuki OKUYAMA Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan Online Publication, December 7, 2011 [doi:10.1271/bbb.110610] A huge number of glycoside hydrolases are classified an evolutionary relationship of proteins in the family, into the glycoside hydrolase family (GH family) based from which it is often possible to extract information on on their amino-acid sequence similarity. The glycoside function and structure.3) Classification in a GH family hydrolases acting on -glucosidic linkage are in GH has, accordingly, become indispensable for research on family 4, 13, 15, 31, 63, 97, and 122. This review deals glycoside hydrolases. Glycoside hydrolases are also mainly with findings on GH family 31 and 97 enzymes. divided into two mechanistic classes, inverting and Research on two GH family 31 enzymes is described: retaining enzymes: with inversion or net retention of clarification of the substrate recognition of Escherichia anomeric configuration during the catalytic reaction.4) coli -xylosidase, and glycosynthase derived from Schiz- The stereochemical outcome is generally conserved in a osaccharomyces pombe -glucosidase. GH family 97 is GH family. The inverting mechanism proceeds via a an aberrant GH family, containing inverting and simple single displacement. Two functional groups, retainingAdvance glycoside hydrolases. The inverting View enzyme usually carboxyl groups, act as general acid and general in GH family 97 displays significant similarity to base catalysts. The general acid catalyst donates a proton retaining -glycosidases, including GH family 97 retain- to the departure aglycon, and the general base catalyst ing -glycosidase, but the inverting enzyme has no simultaneously deprotonates the incoming water mole- catalytic nucleophile residue. -
Biochemical Characterization of Three Aspergillus Niger Β-Galactosidases
Electronic Journal of Biotechnology 27 (2017) 37–43 Contents lists available at ScienceDirect Electronic Journal of Biotechnology Research article Biochemical characterization of three Aspergillus niger β-galactosidases Dandan Niu a,b,⁎, Xiaojing Tian b, Nokuthula Peace Mchunu c,ChaoJiab, Suren Singh c, Xiaoguang Liu d, Bernard A. Prior e, Fuping Lu b a Fujian Provincial Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China b College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China c Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa d Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China e Department of Microbiology, Stellenbosch University, Matieland, South Africa article info abstract Article history: Background: β-Galactosidases catalyze both hydrolytic and transgalactosylation reactions and therefore have Received 30 October 2016 many applications in food, medical, and biotechnological fields. Aspergillus niger has been a main source of Accepted 3 March 2017 β-galactosidase, but the properties of this enzyme are incompletely studied. Available online 10 March 2017 Results: Three new β-galactosidases belonging to glycosyl hydrolase family 35 from A. niger F0215 were cloned, expressed, and biochemically characterized. In addition to the known activity of LacA encoded by lacA, three Keywords: putative β-galactosidases, designated as LacB, LacC, and LacE encoded by the genes lacB, lacC,andlacE, Biochemical properties Food biotechnology respectively, were successfully cloned, sequenced, and expressed and secreted by Pichia pastoris. These three Fungal β-galactosidases proteins and LacA have N-terminal signal sequences and are therefore predicted to be extracellular enzymes. -
Characterization of Starch Debranching Enzymes of Maize Endosperm Afroza Rahman Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Characterization of starch debranching enzymes of maize endosperm Afroza Rahman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Rahman, Afroza, "Characterization of starch debranching enzymes of maize endosperm " (1998). Retrospective Theses and Dissertations. 12519. https://lib.dr.iastate.edu/rtd/12519 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
(12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol. -
Comparative Characterization of Arabidopsis Subfamily III Β-Galactosidases
Comparative characterization of Arabidopsis Subfamily III β-galactosidases Dashzeveg Gantulga Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirement for the degree of Doctor of Philosophy In Biological Sciences Dr. Brenda S.J. Winkel Committee Chair Dr. David R. Bevan Committee member Dr. Richard A. Walker Committee member Dr. Zhaomin Yang Committee member December 5, 2008 Blacksburg, Virginia Keywords: Arabidopsis, β-galactosidase, cell wall Comparative characterization of Arabidopsis Subfamily III β-galactosidases Dashzeveg Gantulga Abstract The Arabidopsis genome encodes 17 putative β−galactosidases belonging to Glycosyl Hydrolase (GH) family 35, which have been classified into seven subfamilies based on sequence homology. The largest of these, Subfamily III, consists of six genes, Gal-1 (At3g13750), Gal-2 (At3g52840), Gal-3 (At4g36360), Gal-4 (At5g56870), Gal-5 (At1g45130), and Gal-12 (At4g26140) that share 60-81% sequence identity at the amino acid level. All six proteins have a signal peptide that may target them to the cell exterior. We report purification and biochemical characterization of all six members of Subfamily III, each expressed as a recombinant protein in Pichia pastoris and one also in native form, purified from Arabidopsis leaves, with a special emphasis on substrate specificities. Organ specific expression of the six Gal genes was examined by analysis of the microarray databases and by semi-quantitative RT-PCR. The relative abundance and size of the Gal-1, Gal-2, Gal-5, and Gal-12 proteins was studied by immunoblotting using isoform-specific anti-peptide antibodies. The protein expression patterns of the Gal genes were generally consistent with microarray and RT-PCR data, though some discrepancies were observed suggesting distinct mechanisms of regulation for transcription and translation. -
Alteration of Hexosaminidaseisozymesin
ICANCER RESEARCH 39, i 829-i 834, May 1979] 0008-5472/79/0039-0000502.00 Alterationof HexosaminidaseIsozymesin HumanRenalCarcinoma' Toshikazu Okochi,2 Hiromasa Seike, Kazuya Higashino, Toshikazu Hada, Shinichiro Watanabe, Yuichi Yamamura, Fumlo Ito, Minoru Matsuda, Masao Osafune, Toshihiko Kotake, and Takao Sonoda TheThirdDepartmentofInternalMedicine(T.0., H. S., K. H., T.H., S. W.,V. V.)andDepartmentofUrology(M.M., M. 0., T.K.. T.S.],OsakaUniversityMedical School, Fukushima-ku, Osaka 553, and Health Administration Center (T. 0. , F. I.], Osaka University, Toyonaka, Osaka 560. Japan ABSTRACT been well studied to our knowledge. Consequently, the present study was undertaken in order to compare the isozyme patterns The activity and isozyme patterns of hexosaminidase in of hexosaminidase and the enzymatic properties of human human renal carcinoma were studied in comparison with those renal carcinoma with those of normal kidney. of normal kidney. Hexosaminidase in extracts from normal kidney and renal carcinoma tissue could be separated into two MATERIALSAND METHODS major forms [hexosaminidase A (Hex A) and hexosaminidase B (Hex B)] by Ceilogel electrophoresis or by diethylaminoethyl Materials. The renal carcinoma tissues obtained at operation cellulose column chromatography. All of i 0 renal carcinoma from the Department of Urology, Osaka University Hospital, tissues showed a low activity ratio of Hex A to Hex B, as were frozen immediately after removal. Normal human kidneys compared with the ratio in normal kidney; the ratio in renal were postmortem specimens obtained within 8 hr after death carcinoma tissue was between O.6i and 2.2i (mean, 1.30), at the Department of Forensic Pathology, Osaka University while that in normal kidney was between 2.50 and 4.52 (mean, Medical School. -
MICROBIAL BETA-GALACTOSIDASE: a SURVEY for NEUTRAL Ph OPTIMUM ENZYMES
]. Milk Food Technol, Vol. 37, No. 4 (1974) 199 MICROBIAL BETA-GALACTOSIDASE: A SURVEY FOR NEUTRAL pH OPTIMUM ENZYMES L. C. BLANKENsHIP1 AND P. A. WELLS Dairy Foods Nutrition Laboratory, Nutrition Institute Agricultural Research Center, ARS, U. S. Departmant of Agriculture Beltsville, Maryland 20705 (Received for publication November 19, 1973) ABSTRACT MATERIALS AND METHODS Downloaded from http://meridian.allenpress.com/jfp/article-pdf/37/4/199/2399667/0022-2747-37_4_199.pdf by guest on 02 October 2021 Pure cultures of yeast, molds, and bacteria were screened Cultures and media for neutral pH optimum .B-galactosidases ( lactases) that would One hundred twenty-five ·identified yeasts, molds, and bac be suitable in dairy l;lroducts applications. Only 2 of 125 teria were obtained from the culture collection of the North identified and 10 of 250 unidentified cultures warranted fur em Regional Research Center, Peoria, Illinois. Cultures of ther study. These cultures produced high levels of· .a-galacto the following genera were included: Penicillium, Aspergillus, sidase with moderate galactose product inhibition. Character Absidia, Cunninghamella, Mucor, Rhizopus, CircineUa, Blake ization of the partially purified enzymes from unidentified cul slea, Chlamydamucor, Streptomyces, Actinomyces, Actinopyc hwes revealed that all required either Na+, K+ or Mg++ nidium, Debaryomyces, Kluyveromyces, Pichia, Schwanniomy c::ation activation, were inhibited by Cu + +, Mn + +, and ces, Bullera, Brettanomyces, Candida, Cryptococcus, Rhoda Fe+ + +, were most active around pH 6.8, and were unstable torula, Torulopsis, Escherichia, and Bacillus. Additionally, during storage (at either - 196 C or 4 C} . except in the 250 unidentified organisms were isolated by enrichment cul presence of 0.5 M ammonium sulfate. -
Insight Into the Ecology of Vaginal Bacteria Through Integrative Analyses of Metagenomic and Metatranscriptomic Data
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448822; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data M. T. France1, L. Fu1, L. Rutt1, H. Yang1, M. Humphrys1, S. Narina1, P. Gajer1, B. Ma1, L. J. Forney2, J. Ravel1* 1Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA. 2Institute for Bioinformatics and Evolutionary Studies and Department of Biology, University of Idaho, Moscow, ID USA *Corresponding author, address correspondence to [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448822; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Vaginal bacterial communities dominated by Lactobacillus species are associated with a reduced risk to various adverse health outcomes. However, somewhat unexpectedly many healthy women have microbiota that are not dominated by lactobacilli. To determine the factors that drive vaginal community composition we characterized the genetic composition and transcriptional activities of vaginal microbiota in healthy women. We demonstrated that the abundance of a species is not always indicative of its transcriptional activity and that impending changes in community composition can be predicted from metatranscriptomic data. -
Pitfalls in the Use of Artificial Substrates for the Diagnosis of Gaucher's Disease
J Clin Pathol: first published as 10.1136/jcp.31.11.1091 on 1 November 1978. Downloaded from Journal of Clinical Pathology, 1978, 31, 1091-1093 Pitfalls in the use of artificial substrates for the diagnosis of Gaucher's disease YOAV BEN-YOSEPH AND HENRY L. NADLER From the Department of Pediatrics, Northwestern University Medical School, Division of Genetics, Children's Memorial Hospital, Chicago, Ill, USA SUMMARY A patient with Gaucher's disease is described, in whom the disease could not be diagnosed enzymically in liver and leucocytes using artificial substrate 4-methylumbelliferyl P-glucoside. Normal activity was found in the liver, and about 600% of control activity was determined in the patient's leucocytes. In contrast, when [I4C]-N-stearoyl glucocerebroside was employed as a sub- strate, activity as low as 50% of control has been found in all the proband's tissues, and carrier levels were determined in the proband's parents and maternal uncle. Gaucher's disease is an autosomal recessive disorder In the present report a case of Gaucher's disease of glucolipid metabolism characterised clinically by is described in which 4-methylumbelliferyl fl- hepatosplenomegaly, anaemia, and thrombocyto- glucosidase activity in leucocytes and liver was penia (Brady, 1978). It is probably the most com- normal, while deficient glucocerebroside activity monly recognised disorder of sphingolipid meta- using [14C]-N-stearoyl glucocerebroside was docu- copyright. bolism. Accumulation of glucosylceramide (gluco- mented. The purpose of this report is to call to the cerebroside) is found in reticuloendothelial cells of attention of clinicians and pathologists the potential these patients, particularly in cells of the spleen, bone unreliability of artificial substrates to establish the marrow, and liver (Brady, 1978).