Research by Design: Proposition for a Methodological Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jackson: Choosing a Methodology: Philosophical Underpinning
JACKSON: CHOOSING A METHODOLOGY: PHILOSOPHICAL UNDERPINNING Choosing a Methodology: Philosophical Practitioner Research Underpinning In Higher Education Copyright © 2013 University of Cumbria Vol 7 (1) pages 49-62 Elizabeth Jackson University of Cumbria [email protected] Abstract As a university lecturer, I find that a frequent question raised by Masters students concerns the methodology chosen for research and the rationale required in dissertations. This paper unpicks some of the philosophical coherence that can inform choices to be made regarding methodology and a well-thought out rationale that can add to the rigour of a research project. It considers the conceptual framework for research including the ontological and epistemological perspectives that are pertinent in choosing a methodology and subsequently the methods to be used. The discussion is exemplified using a concrete example of a research project in order to contextualise theory within practice. Key words Ontology; epistemology; positionality; relationality; methodology; method. Introduction This paper arises from work with students writing Masters dissertations who frequently express confusion and doubt about how appropriate methodology is chosen for research. It will be argued here that consideration of philosophical underpinning can be crucial for both shaping research design and for explaining approaches taken in order to support credibility of research outcomes. It is beneficial, within the unique context of the research, for the researcher to carefully -
Applications of Systems Engineering to the Research, Design, And
Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5000-52616 December 2011 Contract No. DE -AC36-08GO28308 Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems Authors: K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers Prepared under Task No. WE11.0341 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report NREL/TP-5000-52616 1617 Cole Boulevard Golden, Colorado 80401 December 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
The Sciences of Design: Observations on an Emerging Field Working Paper
The Sciences of Design: Observations on an Emerging Field Sandeep Purao Carliss Y. Baldwin Alan Hevner Veda C. Storey Jan Pries-Heje Brian Smith Ying Zhu Working Paper 09-056 Copyright © 2008 by Sandeep Purao, Carliss Y. Baldwin, Alan Hevner, Veda C. Storey, Jan Pries-Heje, Brian Smith, and Ying Zhu Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. The Sciences of Design: Observations on an Emerging Field Sandeep Purao College of IST, Penn State University, Carliss Baldwin Harvard Business School Alan Hevner University of South Florida Veda C. Storey Georgia State University Jan Pries-Heje Roskilde University Brian Smith Penn State University Ying Zhu Georgia State University Excerpted from The Sciences of Design: Observations on an Emerging Field by Purao, Baldwin, Hevner, Storey, Pries-Heje, Smith and Zhu, (c) 2008. Used with permission from Association for Information Systems, Atlanta, GA; 404-413-7444; www.aisnet.org. All rights reserved. Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the authors. THE SCIENCES OF DESIGN OCTOBER 9, 2008 ABSTRACT The boundaries and contours of design sciences continue to undergo definition and refinement. In many ways, the sciences of design defy disciplinary characterization. They demand multiple epistemologies, theoretical orientations (e.g. construction, analysis or intervention) and value considerations. -
Privacy When Form Doesn't Follow Function
Privacy When Form Doesn’t Follow Function Roger Allan Ford University of New Hampshire [email protected] Privacy When Form Doesn’t Follow Function—discussion draft—3.6.19 Privacy When Form Doesn’t Follow Function Scholars and policy makers have long recognized the key role that design plays in protecting privacy, but efforts to explain why design is important and how it affects privacy have been muddled and inconsistent. Tis article argues that this confusion arises because “design” has many different meanings, with different privacy implications, in a way that hasn’t been fully appreciated by scholars. Design exists along at least three dimensions: process versus result, plan versus creation, and form versus function. While the literature on privacy and design has recognized and grappled (sometimes implicitly) with the frst two dimensions, the third has been unappreciated. Yet this is where the most critical privacy problems arise. Design can refer both to how something looks and is experienced by a user—its form—or how it works and what it does under the surface—its function. In the physical world, though, these two conceptions of design are connected, since an object’s form is inherently limited by its function. Tat’s why a padlock is hard and chunky and made of metal: without that form, it could not accomplish its function of keeping things secure. So people have come, over the centuries, to associate form and function and to infer function from form. Software, however, decouples these two conceptions of design, since a computer can show one thing to a user while doing something else entirely. -
Choosing a Mixed Methods Design
04-Creswell (Designing)-45025.qxd 5/16/2006 8:35 PM Page 58 CHAPTER 4 CHOOSING A MIXED METHODS DESIGN esearch designs are procedures for collecting, analyzing, interpreting, and reporting data in research studies. They represent different mod- R els for doing research, and these models have distinct names and procedures associated with them. Rigorous research designs are important because they guide the methods decisions that researchers must make dur- ing their studies and set the logic by which they make interpretations at the end of studies. Once a researcher has selected a mixed methods approach for a study, the next step is to decide on the specific design that best addresses the research problem. What designs are available, and how do researchers decide which one is appropriate for their studies? Mixed methods researchers need to be acquainted with the major types of mixed methods designs and the common variants among these designs. Important considerations when choosing designs are knowing the intent, the procedures, and the strengths and challenges associated with each design. Researchers also need to be familiar with the timing, weighting, and mixing decisions that are made in each of the different mixed methods designs. This chapter will address • The classifications of designs in the literature • The four major types of mixed methods designs, including their intent, key procedures, common variants, and inherent strengths and challenges 58 04-Creswell (Designing)-45025.qxd 5/16/2006 8:35 PM Page 59 Choosing a Mixed Methods Design–●–59 • Factors such as timing, weighting, and mixing, which influence the choice of an appropriate design CLASSIFICATIONS OF MIXED METHODS DESIGNS Researchers benefit from being familiar with the numerous classifications of mixed methods designs found in the literature. -
Introduction: Design Epistemology
Design Research Society DRS Digital Library DRS Biennial Conference Series DRS2016 - Future Focused Thinking Jun 17th, 12:00 AM Introduction: Design Epistemology Derek Jones The Open University Philip Plowright Lawrence Technological University Leonard Bachman University of Houston Tiiu Poldma Université de Montréal Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers Citation Jones, D., Plowright, P., Bachman, L., and Poldma, T. (2016) Introduction: Design Epistemology, in Lloyd, P. and Bohemia, E. (eds.), Future Focussed Thinking - DRS International Conference 20227, 27 - 30 June, Brighton, United Kingdom. https://doi.org/10.21606/drs.2016.619 This Miscellaneous is brought to you for free and open access by the Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact [email protected]. Introduction: Design Epistemology Derek Jonesa*, Philip Plowrightb, Leonard Bachmanc and Tiiu Poldmad a The Open University b Lawrence Technological University c University of Houston d Université de Montréal * [email protected] DOI: 10.21606/drs.2016.619 “But the world of design has been badly served by its intellectual leaders, who have failed to develop their subject in its own terms.” (Cross, 1982) This quote from Nigel Cross is an important starting point for this theme: great progress has been made since Archer’s call to provide an intellectual foundation for design as a discipline in itself (Archer, 1979), but there are fundamental theoretical and epistemic issues that have remained largely unchallenged since they were first proposed (Cross, 1999, 2007). -
Fashion Design
FASHION DESIGN FAS 112 Fashion Basics (3-0) 3 crs. FAS Fashion Studies Presents fashion merchandise through evaluation of fashion products. Develops awareness of construction, as well as FAS 100 Industrial Sewing Methods (1-4) 3 crs. workmanship and design elements, such as fabric, color, Introduces students to basic principles of apparel construction silhouette and taste. techniques. Course projects require the use of industrial sewing equipment. Presents instruction in basic sewing techniques and FAS 113 Advanced Industrial Sewing Methods (1-4) 3 crs. their application to garment construction. (NOTE: Final project Focuses on application and mastery of basic sewing skills in should be completed to participate in the annual department Little pattern and fabric recognition and problem solving related to Black Dress competition.) individual creative design. Emphasis on technology, technical accuracy and appropriate use of selected materials and supplies. FAS 101 Flat Pattern I (1-4) 3 crs. (NOTE: This course is intended for students with basic sewing Introduces the principles of patternmaking through drafting basic skill and machine proficiency.) block and pattern manipulation. Working from the flat pattern, Prerequisite: FAS 100 with a grade of C or better or placement students will apply these techniques to the creation of a garment as demonstrated through Fashion Design Department testing. design. Accuracy and professional standards stressed. Pattern Contact program coordinator for additional information. tested in muslin for fit. Final garment will go through the annual jury to participate in the annual department fashion show. FAS 116 Fashion Industries Career Practicum and Seminar Prerequisite: Prior or concurrent enrollment in FAS 100 with a (1-10) 3 crs. -
Interaction Design Studio - 711 Instructor: Patrick Thornton Email: [email protected] Thursday 6-8:45 Pm Location: Pac 1815 - Clarice Smith Performing Arts Center
Interaction Design Studio - 711 Instructor: Patrick Thornton Email: [email protected] Thursday 6-8:45 pm Location: Pac 1815 - Clarice Smith Performing Arts Center Course Description Interaction design is the process of defining products and the broad services built around them. When interacting with systems, people build expectations and mental models of how things work. They learn what they can and cannot achieve. This course is about how to design for interactions that will resonate with your audiences: How the features and functions of a product get translated into something people find usable, useful, and desirable. Through a series of lectures, discussions, in-class design practice, and projects, students will explore the role of interaction designers. Students will learn how to prototype interactive products, systems, and services, and how to defend their work through the cycle of brainstorming and shared critique. This is a studio class, focusing on production processes that are required to develop public-facing work. The studio is important both as a working space and a space for collaborative reflection. Studio practice also describes a working method. As such, the INST711 classroom will focus on two activities: ● Externalization: You will put your ideas and conceptualizations into tangible materials. ● Critique: You will both give and receive constructive feedback on your own work and the work of other students in class. Student Learning Outcomes On the successful completion of this course, students will be able to: ● Explain basic concepts, techniques, and knowledge of interaction design. ● Critically discuss common methods in the interaction design process ● Use visual thinking and communication techniques to develop design concepts ● Build prototypes at varying levels of fidelity and can evaluate them using appropriate methods ● Develop critiquing skills to analyze interaction design artifacts and concept design. -
Improving Design Using Autonomous Spatial and Structural Generators
Improving Design using Autonomous Spatial and Structural Generators Herm Hofmeyer, Harry Rutten, Henk Fijneman Structural Design Group, Department of Architecture, Building, and Planning, Technische Universiteit Eindhoven, The Netherlands http://w3.bwk.tue.nl Abstract. During a building design process, a structural designer transforms a spatial design into a structural design and this structural system can be improved by optimisation methods or expert views of other structural designers. The im- proved structural system allows the architect a new spatial design, which can be transformed or altered again by the architect. This design cycle can be repeated several times and is defi ned as interaction of spatial and structural design. Case studies are used to demonstrate that this interaction occurs in practice and is needed to improve building quality. This paper presents a program with more or less autonomous spatial and structural generators. Each generator will facilitate one direction in the interaction process. Then using both consecutively leads to a design method that provides interaction between spatial and structural design. For the spatial generator, named “room positioning with structural constraints” a space allocation technique is used including constraints that handle structural boundary conditions. A zone generator based on pattern recognition and shape grammars handle the structural design. A Prolog-2 program was developed to demonstrate the application of the two proposed generators. “Zone generation” is performed per building storey and thus represents a horizontal two-dimensional procedure. Similarly “room positioning with structural constraints” is a planar vertical operation. In future these procedures can be made three-dimensional. Keywords. Spatial design, structural design, interaction, case study, data model. -
User Interaction Design for Secure Systems
User Interaction Design for Secure Systems Ka-Ping Yee Report No. UCB/CSD-02-1184 May 2002 Computer Science Division (EECS) University of California Berkeley, California 94720 Supported by NSF award #EIA-0122599 ITR/SI: Societal Scale Information Systems: Technologies, Design and Applications User Interaction Design for Secure Systems Ka-Ping Yee [email protected] Computer Science Department University of California, Berkeley Abstract Perhaps the most spectacular class of recent security problems is the e-mail virus, which is a good real-life The security of any computer system that is configured example of a security violation in the absence of software and operated by human beings critically depends on the errors. At no point in the propagation of the virus does information conveyed by the user interface, the decisions any application or system software do anything other of the computer users, and the interpretation of their than exactly what its programmers would expect: the e- actions. We establish some starting points for reasoning mail client correctly displays the message and correctly about security from a user-centred point of view, by decodes the attached virus program; the system correctly modelling a system in terms of actors and actions and executes the virus program. Rather, the problem has introducing the concept of the subjective actor-ability occurred because the expectations of the programmer state. We identify ten key principles for user interaction became inconsistent with what the user would want. design in secure systems and give case studies to Our purpose here is to present a way of thinking about illustrate and justify each principle, describing real-world this type of issue. -
Design Science Research and the Grounded Theory
Association for Information Systems AIS Electronic Library (AISeL) European Conference on Information Systems ECIS 2010 Proceedings (ECIS) 2010 Design Science Research and the Grounded Theory Method: Characteristics, Differences, and Complementary Uses Robert Gregory Goethe University Frankfurt, [email protected] Follow this and additional works at: http://aisel.aisnet.org/ecis2010 Recommended Citation Gregory, Robert, "Design Science Research and the Grounded Theory Method: Characteristics, Differences, and Complementary Uses" (2010). ECIS 2010 Proceedings. 44. http://aisel.aisnet.org/ecis2010/44 This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. 18th European Conference on Information Systems DESIGN SCIENCE RESEARCH AND THE GROUNDED THEORY METHOD: CHARACTERISTICS, DIFFERENCES, AND COMPLEMENTARY USES Journal: 18th European Conference on Information Systems Manuscript ID: ECIS2010-0045.R1 Submission Type: Research Paper Research methods/methodology, Design/design science, Behavioral Keyword: science, IS research methodologies Page 1 of 12 18th European Conference on Information Systems DESIGN SCIENCE RESEARCH AND THE GROUNDED THEORY METHOD: CHARACTERISTICS, DIFFERENCES, AND COMPLEMENTARY USES Gregory, Robert Wayne, Goethe University Frankfurt, Grüneburgplatz 1, 60323 Frankfurt am Main, Germany, [email protected] Abstract Two research strategies that have received increasing scholarly attention recently in IS are design science research (DSR) and the grounded theory method (GTM). In this paper, we conduct a systematic comparison of the most salient characteristics of both research strategies to identify the differences as well as possible complementary uses in a pluralistic research design. -
The Study of Spatial Safety and Social Psychological Health Features Of
International Journal of Environmental Research and Public Health Article The Study of Spatial Safety and Social Psychological Health Features of Deaf Children and Children with an Intellectual Disability in the Public School Environment Based on the Visual Access and Exposure (VAE) Model Ning Ma 1, Sa Ma 2, Shuangjin Li 3, Shuang Ma 4,*, Xinzhi Pan 5 and Guohui Sun 6,* 1 College of Art and Design, Beijing University of Technology, Beijing 100124, China; [email protected] 2 Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, School of Architecture and Urban Planning, Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China; [email protected] 3 Graduate School for International Development and Cooperation, Hiroshima University, Higashi Hiroshima 739-8529, Japan; [email protected] 4 Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan 5 Laguardalow Architect, New York, NY 10041, USA; [email protected] 6 Beijing Key Laboratory of Environment and Viral Oncology, Faculty of Environment and Life, College of Life Science and Chemistry, Beijing University of Technology, Beijing 100124, China * Correspondence: [email protected] (S.M.); [email protected] (G.S.); Tel.: +81-80-5919-9031 (S.M.); +86-10-6739-6139 (G.S.) Citation: Ma, N.; Ma, S.; Li, S.; Ma, S.; Pan, X.; Sun, G. The Study of Spatial Abstract: Nowadays, there is increasing attention towards the safety and feelings of children in Safety and Social Psychological urban or architectural space. In this study, the authors suggest a new approach based on the Visual Health Features of Deaf Children and Access and Exposure (VAE) Model to evaluate the spatial safety and social psychological health Children with an Intellectual features of deaf children and children with an intellectual disability in the public school environment.