And Allied Spathaceous Genera in the Andropogoneae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work. -
Poaceae Phytoliths from the Niassa Rift, Mozambique
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222149229 Poaceae phytoliths from the Niassa Rift, Mozambique Article in Journal of Archaeological Science · August 2010 DOI: 10.1016/j.jas.2010.03.001 CITATIONS READS 44 409 9 authors, including: Fernando Astudillo Mary Barkworth Universidad San Francisco de Quito (USFQ) Utah State University 4 PUBLICATIONS 45 CITATIONS 81 PUBLICATIONS 902 CITATIONS SEE PROFILE SEE PROFILE Tim Aaron Bennett Chris Esselmont 8 PUBLICATIONS 242 CITATIONS The University of Calgary 6 PUBLICATIONS 161 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Stipeae (no longer a major focus) View project Grasses in North America View project All content following this page was uploaded by Rahab N Kinyanjui on 19 March 2018. The user has requested enhancement of the downloaded file. Journal of Archaeological Science 37 (2010) 1953e1967 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Poaceae phytoliths from the Niassa Rift, Mozambique Julio Mercader a,*, Fernando Astudillo a, Mary Barkworth b, Tim Bennett a, Chris Esselmont c, Rahab Kinyanjui d, Dyan Laskin Grossman a, Steven Simpson a, Dale Walde a a Department of Archaeology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada b Intermountain Herbarium, Utah State University, 5305 Old Main Hill, Logan, UH 84322-5305, USA c Environics Research Group, 999 8th Street S.W., Calgary, Alberta T2R 1J5, Canada d National Museum of Kenya, Department of Earth Sciences, Palynology and Paleobotany Section, P.O. -
Phytosociological Surveys and Monitoring of the Bromatological
European Journal of Nutrition & Food Safety 13(3): 54-61, 2021; Article no.EJNFS.68728 ISSN: 2347-5641 Phytosociological Surveys and Monitoring of the Bromatological Parameters According to the Age of Regrowth of Savannah Pastures Perfectly Reconstituted in the Central Zone of Côte d'Ivoire Gouagoua Séverin Kouadja1, Adam Camille Kouamé1*, Kouakou Eugène Kouadio1, Brou Jean Kouao1 and N’Gouan Cyrille Kouassi1 1Program of Animal Production, National Centre for Agricultural Research (CNRA), Bouaké Regional Office, P.O. box 633 Bouaké 01, Bouaké, Côte d’Ivoire. Authors’ contributions This work was carried out in collaboration among all authors. Author GSK is the principal investigator of this research. Author GSK was responsible for the collection of samples and contributed to the chemical analyses. Author Adam Camille KOUAMÉ contributed to the analyses and writing of the Manuscript. Author NCK participated in the design of the study. Author BJK was responsible for the formulation of the research question and reviewed the manuscript. Author KE reviewed the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/EJNFS/2021/v13i330390 Editor(s): (1) Dr. Kristina Mastanjevic, University of Osijek, Croatia. Reviewers: (1) Alsaied Alnaimy Habeeb, Nuclear Research Center, Egypt. (2) basem soudy, Cairo University, Egypt. Complete Peer review History: http://www.sdiarticle4.com/review-history/68728 Received 25 March 2021 Original Research Article Accepted 31 May 2021 Published 08 June 2021 ABSTRACT Although pastures in central (Affouvansou) Côte d'Ivoire are abundant, signs of undernutrition are observed in the animals towards the end of wintering, possibly due to insufficient quality pastures, poor grass quality, or poor herd distribution. -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Some High Value Plant Species and Their Recorded Uses
Some high value plant species and their recorded uses Buffalo Use: Intake Common Name Genus: Species: Subspecies: Variety: Themeda triandra Cynodon dactylon Heteropogon contortus Hyperthelia dissoluta Brachiaria nigropedata Use: Preferred habitat Common Name Genus: Species: Subspecies: Variety: Brachystegia sp. Brachystegia floribunda Brachystegia bakeriana Baikiaea plurijuga Acacia ataxacantha Brachystegia spiciformis kwangensis Use: Preferred intake Common Name Genus: Species: Subspecies: Variety: Panicum coloratum coloratum Panicum repens Panicum maximum Community Use: HVPS Common Name Genus: Species: Subspecies: Variety: Commiphora Commiphora wildii Commiphora Commiphora virgata Baobab Adansonia digitata Quiver tree Aloe dichotoma dichotoma Quiver tree Aloe dichotoma ramosissima Kalahari melon Citrullus lanatus Manketti Schinziophyton rautanenii Large sourplum Ximenia caffra natalensis Large sourplum Ximenia caffra caffra Blue sourplum Ximenia americana microphylla Blue sourplum Ximenia americana americana Purple-pod terminalia Terminalia prunioides Kalahari cluster leaf Terminalia brachystemma brachystemma Mopane Colophospermu mopane Marula Sclerocarya birrea birrea Wild date palm Phoenix reclinata Elephant trunk Pachypodium namaquanum Makalani palm Hyphaene petersiana Hoodia Hoodia gordonii Hoodia Hoodia currorii lugardii Hoodia Hoodia currorii currorii Hoodia Hoodia currorii currorii Devil's claw Harpagophytum procumbens procumbens Marula Sclerocarya birrea caffra Lechwe Use: Intake Common Name Genus: Species: Subspecies: Variety: -
Guidelines for Using the Checklist
Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals. -
(Poaceae: Andropogoneae): a Presumed Extinct Grass from Andhra Pradesh, India
Phytotaxa 497 (2): 147–156 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.497.2.7 Rediscovery of Parahyparrhenia bellariensis (Poaceae: Andropogoneae): A presumed extinct grass from Andhra Pradesh, India SHAHID NAWAZ LANDGE1* & RAJENDRA D. SHINDE2 1 The Blatter Herbarium (BLAT), St. Xavier’s College (Autonomous), Mumbai 400001. �[email protected]; https://orcid.org/0000-0002-6734-6749 2 St. Xavier’s College (Autonomous), Mumbai 400001. �[email protected]; https://orcid.org/0000-0002-9315-9883 *Corresponding author: �[email protected] Abstract Parahyparrhenia bellariensis, an extremely rare and highly narrow endemic grass, has been rediscovered after almost 184 years from Cuddapah [Kadapa] district, Andhra Pradesh. The first description of its complete habit, basal portion and other features of the spikelets are provided along with new locality of its occurrence. In addition, photographs of the habitats, live plants, and a key to distinguish two Indian endemic species, distribution map and illustration are provided. As per the IUCN Red List Criteria this species is assessed here as Critically Endangered (CR). In order to facilitate the prospective conservation of this grass, we have discussed about the peculiarity of its habitat. Keywords: Eastern Ghats, Endemic, Gandikota Fort Hill, Gooty fort hill, Peninsular India, Robert Wight Introduction Parahyparrhenia A. Camus (1950: 404) is a fairly small, Afro-Eurasian genus, belonging to the tribe Andropogoneae Dumortier (1824: 84). It comprises seven species distributed in Africa and Tropical Asia, of which two species, namely, P. bellariensis (Hackel 1885: 123) Clayton (1972: 448) and recently described P. -
Vegetation Survey of Mount Gorongosa
VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions. -
Global Relationships Between Plant Functional Traits and Environment in Grasslands
GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub. -
Grasses of Namibia Contact
Checklist of grasses in Namibia Esmerialda S. Klaassen & Patricia Craven For any enquiries about the grasses of Namibia contact: National Botanical Research Institute Private Bag 13184 Windhoek Namibia Tel. (264) 61 202 2023 Fax: (264) 61 258153 E-mail: [email protected] Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. -
Plant Names in the Tanzanian Bantu Language Vidunda: Structure and (Some) Etymology Karsten Legère University of Gothenburg
Plant Names in the Tanzanian Bantu Language Vidunda: Structure and (Some) Etymology Karsten Legère University of Gothenburg 1. Background Vidunda (autonym: Chividunda) is a small Bantu language which in Guthrie’s referential classification is identified as G38 (Guthrie 1970). This language was selected for a project which dealt with wild plant names and uses. The research project “Vilda växter i bantuspråk – namn och användning: en lingvistisk, kognitiv, folktaxonomisk och etnobotanisk jämförelse” (Wild plants in Bantu languages – names and uses: a linguistic, cognitive, folktaxonomic and ethnobotanial comparison, co-researcher Christina Thornell) was approved and funded for three years (2003-2005) by the Bank of Sweden Tercentenary Foundation.1 Several reasons triggered the decision to work on Vidunda such as a) Vidunda like many other Tanzanian languages was assumed to be potentially endangered given the estimated below 20,000 speaker number (based on the 1967 population census [Tanzania 1971] and tendencies of ethnic growth and contraction).2 b) Prior to the project Vidunda has not been studied by linguists.3 It is almost totally undocumented.4 c) Together with Bernd Heine the author of this paper had earlier worked on Swahili plant names. It turned out that this focus has much to offer for a linguist with regard to e.g. noun structure, noun classes and distribution, etymology and conceptualization. It was felt that the data for the lingua franca Swahili should be supplemented by material from another Bantu language which is spoken up-country in a remote area, thus expecting a rather low impact of Swahili. In the course of the project work a total of approximately 650 plant names and specimens (for botanical identification) was collected. -
Policies and Incentives for Managing the Miombo Woodlands of Southern Africa
MANAGING THE MIOMBO WOODLANDS OF SOUTHERN AFRICA POLICIES, INCENTIVES, AND OPTIONS FOR THE RURAL POOR Disclaimer This work was originally prepared for the World Bank Africa Region’s Environment and Natural Resources Management Unit in 2008 to inform its regional work on forests. Extracts were subsequently published in the Journal of Natural Resources Policy Research (Vol.2, No. 1, 57-73) in January 2010. This volume was subsequently peer reviewed, revised, and has been modestly updated. The technical annexes, available online at http://www. profor.info/profor/content/miombo-annexes, have also been revised and updated, on the basis of peer review. All omissions and inaccuracies in this document are the responsibility of the authors. The views expressed do not necessarily represent those of the institutions involved, nor do they necessarily represent offi cial policies of PROFOR or the World Bank. Suggested citation: Dewees, P., B. Campbell, Y. Katerere, A. Sitoe, A.B. Cunningham, A. Angelsen and S. Wunder. 2011. Managing the Miombo Woodlands of Southern Africa: Policies, incentives, and options for the rural poor. Washington DC: Program on Forests (PROFOR). Published in November 2011 Printed on 100% Recycled paper Material in this book can be copied and quoted freely provided acknowledgement is given For a full list of publications please contact: Program on Forests (PROFOR) 1818 H Street, NW Washington, DC 20433, USA [email protected] www.profor.info/knowledge NOVEMBER 2011 MANAGING THE MIOMBO WOODLANDS OF SOUTHERN AFRICA POLICIES, INCENTIVES, AND OPTIONS FOR THE RURAL POOR Authors: Peter A. Dewees Bruce M. Campbell Yemi Katerere Almeida Sitoe Anthony B.