26. Internal Carotid Artery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurovascular Anatomy (1): Anterior Circulation Anatomy
Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma -
The Ophthalmic Artery Ii
Brit. J. Ophthal. (1962) 46, 165. THE OPHTHALMIC ARTERY II. INTRA-ORBITAL COURSE* BY SOHAN SINGH HAYREHt AND RAMJI DASS Government Medical College, Patiala, India Material THIS study was carried out in 61 human orbits obtained from 38 dissection- room cadavers. In 23 cadavers both the orbits were examined, and in the remaining fifteen only one side was studied. With the exception of three cadavers of children aged 4, 11, and 12 years, the specimens were from old persons. Method Neoprene latex was injected in situ, either through the internal carotid artery or through the most proximal part of the ophthalmic artery, after opening the skull and removing the brain. The artery was first irrigated with water. After injection the part was covered with cotton wool soaked in 10 per cent. formalin for from 24 to 48 hours to coagulate the latex. The roof of the orbit was then opened and the ophthalmic artery was carefully studied within the orbit. Observations COURSE For descriptive purposes the intra-orbital course of the ophthalmic artery has been divided into three parts (Singh and Dass, 1960). (1) The first part extends from the point of entrance of the ophthalmic artery into the orbit to the point where the artery bends to become the second part. This part usually runs along the infero-lateral aspect of the optic nerve. (2) The second part crosses over or under the optic nerve running in a medial direction from the infero-lateral to the supero-medial aspect of the nerve. (3) The thirdpart extends from the point at which the second part bends at the supero-medial aspect of the optic nerve to its termination. -
Head & Neck Muscle Table
Robert Frysztak, PhD. Structure of the Human Body Loyola University Chicago Stritch School of Medicine HEAD‐NECK MUSCLE TABLE PROXIMAL ATTACHMENT DISTAL ATTACHMENT MUSCLE INNERVATION MAIN ACTIONS BLOOD SUPPLY MUSCLE GROUP (ORIGIN) (INSERTION) Anterior floor of orbit lateral to Oculomotor nerve (CN III), inferior Abducts, elevates, and laterally Inferior oblique Lateral sclera deep to lateral rectus Ophthalmic artery Extra‐ocular nasolacrimal canal division rotates eyeball Inferior aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Depresses, adducts, and laterally Inferior rectus Common tendinous ring Ophthalmic artery Extra‐ocular corneoscleral junction division rotates eyeball Lateral aspect of eyeball, posterior to Lateral rectus Common tendinous ring Abducent nerve (CN VI) Abducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction Medial aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Medial rectus Common tendinous ring Adducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction division Passes through trochlea, attaches to Body of sphenoid (above optic foramen), Abducts, depresses, and medially Superior oblique superior sclera between superior and Trochlear nerve (CN IV) Ophthalmic artery Extra‐ocular medial to origin of superior rectus rotates eyeball lateral recti Superior aspect of eyeball, posterior to Oculomotor nerve (CN III), superior Elevates, adducts, and medially Superior rectus Common tendinous ring Ophthalmic artery Extra‐ocular the corneoscleral junction division -
A Review of Central Retinal Artery Occlusion: Clinical Presentation And
Eye (2013) 27, 688–697 & 2013 Macmillan Publishers Limited All rights reserved 0950-222X/13 www.nature.com/eye 1 2 1 2 REVIEW A review of central DD Varma , S Cugati , AW Lee and CS Chen retinal artery occlusion: clinical presentation and management Abstract Central retinal artery occlusion (CRAO) is an that in turn place an individual at risk of future ophthalmic emergency and the ocular ana- cerebral stroke and ischaemic heart disease. logue of cerebral stroke. Best evidence reflects Although analogous to a cerebral stroke, there that over three-quarters of patients suffer is currently no guideline-endorsed evidence for profound acute visual loss with a visual acuity treatment. Current options for therapy include of 20/400 or worse. This results in a reduced the so-called ‘standard’ therapies, such as functional capacity and quality of life. There is sublingual isosorbide dinitrate, systemic also an increased risk of subsequent cerebral pentoxifylline or inhalation of a carbogen, stroke and ischaemic heart disease. There are hyperbaric oxygen, ocular massage, globe no current guideline-endorsed therapies, compression, intravenous acetazolamide and although the use of tissue plasminogen acti- mannitol, anterior chamber paracentesis, and vator (tPA) has been investigated in two methylprednisolone. None of these therapies randomized controlled trials. This review will has been shown to be better than placebo.5 describe the pathophysiology, epidemiology, There has been recent interest in the use of and clinical features of CRAO, and discuss tissue plasminogen activator (tPA) with two current and future treatments, including the recent randomized controlled trials on the 1Flinders Comprehensive use of tPA in further clinical trials. -
Clinico-Radiological Study of Collateralcirculation
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.34.2.163 on 1 April 1971. Downloaded from J. Neurol. Neurosurg. Psychiat., 1971, 34, 163-170 Clinico-radiological study of collateral circulation after internal carotid and middle cerebral occlusion M. GADO AND JOHN MARSHALL From the Institute of Neurology, National Hospitals for Nervous Diseases, Queen Square, London SUMMARY The intracranial collateral channels apart from the circle of Willis have been studied angiographically in 34 patients with internal carotid artery occlusion and 19 with occlusion of the middle cerebral artery. These collaterals are present in a high percentage of cases within a week of the ictus and are more common when the stroke has developed slowly. Their presence in occlusion of the middle cerebral artery seems to offer some protection against infarction but in internal carotid artery occlusion they are less important than the circle of Willis and when present suggest inadequacy of this structure. It is an established fact that the human cerebral deficit after a vascular occlusion and the efficiency Protected by copyright. circulation is provided with collateral pathways and of the collateral arteries in re-establishing the that their efficiency plays an essential role in the circulation in the affected territory. compensatory adjustment of blood flow to the brain The practical value of the radiological demon- in the event of vascular occlusion. The introduction stration of collateral circulation is subject to severe of cerebral angiography made it possible to detect limitations. Theangiogram cannot provide answers vascular occlusions in the living subject and to to such questions as: (1) Was the occlusion sudden demonstrate the collateral pathways which may have or gradual, giving time for the collaterals to adapt developed. -
Middle Meningeal Artery to Middle Cerebral Artery Bypass Using A
Middle Meningeal Artery to Middle Cerebral Artery Bypass Using a Mini-Pterional Craniotomy – A Cadaveric Surgical Simulation Study Sirin Gandhi MD; Halima Tabani MD; Ming Liu; Sonia Yousef; Roberto Rodriguez Rubio MD; Michael T. Lawton MD; Arnau Benet M.D. University of California, San Francisco Introduction Results Conclusions The middle cerebral artery (MCA) is the most The MMA-M4 and MMA-M2 bypasses were This study establishes the technical feasibility and common recipient for cerebral revascularization, completed in all the specimens. The mean caliber of merits of the MMA-MCA bypass. As a donor, MMA with indications ranging from Moya-Moya disease to MMA was 1.6 (SD=0.2) mm, parietal M4 was 1.4 harbors the advantages of an intracranial vessel in complex aneurysms requiring complete trapping. (SD=0.1) mm and that of M2 was 2.2 (SD=0.2) terms of cranial protection from external trauma, There are several native donors available including mm. The required donor artery length from foramen without compromising cerebral circulation. The other the superficial temporal artery, external carotid spinosum for an MMA-M4 bypass was 81.3 advantages of this novel bypass were feasibility with artery, maxillary artery, etc. There is also limited (SD=10.1) mm and for MMA-M2 bypass was 77.1 a mini-pterional approach, good caliber match, no evidence regarding the utilization of middle (SD=12.2) mm. fixed brain retraction and relative technical ease. meningeal artery (MMA) as a donor. MMA is an underutilized and uniquely qualified donor vessel for bypass. In cases of an atrophic/damaged STAs, the Learning Objectives MMA would be an ideal donor as it lies in the same Completed MMA-MCA Bypass 1.Understand the potential role of MMA as a donor surgical field and can be readily harvested from the for revascularization of the MCA territory dural flap. -
Embryology of the Ophthalmic Artery
Editorial Commentary Interventional Neuroradiology 0(00) 1–2 ! The Author(s) 2019 Embryology of the ophthalmic artery Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1591019919845511 journals.sagepub.com/home/ine Masaki Komiyama Alternative routes of intra-arterial chemotherapy for misunderstood as dorsal ophthalmic artery).6 The retinoblastoma are based on the embryological and, superficial recurrent ophthalmic artery may run thus, anatomical variations of the ophthalmic artery. through the lateral portion of the SOF, similar to the Although the embryology of the ophthalmic artery is sphenoidal artery or through the lacrimal foramen briefly discussed in this excellent clinical paper,1 I (Hyrtl canal) similar to the lacrimal artery (meningo- would like to comment on this. lacrimal artery) connecting the anterior branch of the The structure of the eye is well conserved among middle meningeal artery to the orbital artery. vertebrates.2 This implies that the vascular structure The embryological origin of the ILT remains specu- of the eye should also be well conserved among verte- lative. It could be the remnant of the primitive maxil- brates, especially among mammals. The basic vascular lary artery of Sabin,7 but this primitive artery dwindles supply of the eye is composed of two sources: one for much earlier than the primitive ventral and dorsal oph- the bulbar structure (retina and choroid structures) and thalmic arteries.5 Thus, the anastomotic branches of the one for the non-bulbar structure (glandular and mus- ILT are mostly composed of the stapedial artery in cular structures),3,4 For an understanding of the origin.3 The primitive maxillary artery is better called embryological origins of these vessels, the bony canal, the primitive pre-mandibular artery in consideration of foramen, and fissure convey many messages to us. -
Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos. -
Anatomic and Embryologic Analysis of the Dural Branches of the Ophthalmic Artery
Published January 7, 2021 as 10.3174/ajnr.A6939 REVIEW ARTICLE ADULT BRAIN Anatomic and Embryologic Analysis of the Dural Branches of the Ophthalmic Artery S. Bonasia, S. Smajda, G. Ciccio, and T. Robert ABSTRACT SUMMARY: The ophthalmic artery has one of the most fascinating embryologic developments among the craniofacial arteries. Most of the ophthalmic artery orbital branches develop from the formation and regression of the stapedial artery and share their origin with dural branches of the ophthalmic artery. The concomitant embryologic development of the ophthalmic artery and mid- dle meningeal artery explains adequately the important varieties of anastomosis between these 2 arteries. It also explains the pres- ence of many dural branches from the ophthalmic artery. In this review, we focused on dural branches of the ophthalmic artery with the description of rare variations possible, in particular the ophthalmic artery origin of the middle meningeal artery and the ophthalmic artery origin of the marginal tentorial artery. ABBREVIATIONS: dAVF ¼ dural arteriovenous fistula; ECA ¼ external carotid artery; MMA ¼ middle meningeal artery; MTA ¼ marginal tentorial artery; OA ¼ ophthalmic artery; PDOA ¼ primitive dorsal ophthalmic artery; PVOA ¼ primitive ventral ophthalmic artery; SA ¼ stapedial artery he ophthalmic artery (OA) is a very fascinating artery for its Informed consent was obtained from all individual partici- Tcomplex embryologic development and also for numerous vas- pants included in the study. cular anastomoses developed with branches of the external carotid artery (ECA). The role of the OA in supplying the History dura is not well-known, but the understanding of the dural Meyer,1 in 1887, considered a pioneer in the orbital vascular anat- function of the OA and also of its possible variations is a cor- omy, was the first to precisely describe all branches of the oph- nerstone for surgical and endovascular treatment of dural thalmic artery, including its dural territory. -
Vasomotor Reactivity in the Ophthalmic Artery Mehmet Tayfun Kaşıkçı1, Güray Koç2
ORIGINAL ARTICLE 33 DOI: 10.4274/gulhane.galenos.2019.784 Gulhane Med J 2020;62:33-7 Vasomotor reactivity in the ophthalmic artery Mehmet Tayfun Kaşıkçı1, Güray Koç2 1Canakkale City Hospital, Clinic of Neurology, Canakkale, Turkey 2University of Health Sciences Turkey, Gülhane Faculty of Medicine, Department of Neurology, Ankara, Turkey Date submitted: ABSTRACT 31.07.2019 Aim: The aim of this study was to obtain information about reactivity differences in ophthalmic Date accepted: artery (OA) and middle cerebral artery (MCA) presented as a change in blood flow velocity 01.10.2019 (BFV) induced by the breath holding in healthy individuals. Online publication date: 15.03.2020 Methods: Cerebral vasomotor reactivity (VMR) is interpreted indirectly with the increase in the BFV detected in the basal arteries, secondary to a vasodilatory stimulus as breath holding. Bilateral MCA and OA were evaluated by using transcranial Doppler ultrasonography in 15 Corresponding Author: volunteers. Mehmet Tayfun Kaşıkçı MD, Results: The basal velocities obtained from MCAs and from bilateral OA were symmetrical and Canakkale City Hospital, Clinic of did not change according to the side (p>0.05). The ratio of MCA to OA flow velocities had no Neurology, Canakkale, Turkey significant difference between the sides (p>0.05). The OA flow velocities were significantly [email protected] lower than the ipsilateral MCA flow velocities. Breath-holding index (BHI) was used to evaluate the VMR. Although the BHI values were not symmetrical and statistically different between ORCID: orcid.org/0000-0001-7256-6191 the sides (p>0.05), the difference between the ipsilateral MCA BHI and OA BHI was significant (p<0.05). -
Middle Cerebral Artery Territory Infarction Sparing the Precentral Gyrus: Report of Three Cases C Portera-Cailliau, C P Doherty, F S Buonanno, S K Feske
510 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.4.510 on 1 April 2003. Downloaded from SHORT REPORT Middle cerebral artery territory infarction sparing the precentral gyrus: report of three cases C Portera-Cailliau, C P Doherty, F S Buonanno, S K Feske ............................................................................................................................. J Neurol Neurosurg Psychiatry 2003;74:510–512 We report three patients with large middle cerebral artery infarctions in the non-dominant hemisphere, with striking recovery of motor function. In each case this excellent func- tional outcome correlated with selective sparing of the motor cortex in the precentral gyrus. We discuss some of the possible circulatory variants that might underlie this pattern of infarction. nfarctions in the middle cerebral artery (MCA) territory may present with different clinical features depending on Iwhich divisions or branches are occluded and on the extent of the infarct. If the anterior (superior) division is involved, the most common consequences are contralateral hemiparesis and hemisensory loss. In addition, aphasia usually accompa- nies lesions in the left hemisphere, whereas sensory neglect phenomena and anosognosia accompany right hemispheric lesions.12Here we provide clinical descriptions of three cases of large MCA infarctions in the non-dominant hemisphere that spare the motor strip (precentral gyrus; PCG) resulting in surprisingly little or no weakness within a few days after the initial onset of symptoms. CASE 1 A 54 year old right-handed smoker with hypertension and http://jnnp.bmj.com/ diabetes presented with acute onset of right gaze deviation, lethargy, and left hemiparesis. He had prominent visual neglect and sensory loss over the left side and could not move his left arm or leg on command (NIHSS=22). -
Clinical Consequences of Stroke
EBRSR [Evidence-Based Review of Stroke Rehabilitation] 2 Clinical Consequences of Stroke Robert Teasell MD, Norhayati Hussein MBBS Last updated: March 2018 Abstract Cerebrovascular disorders represent the third leading cause of mortality and the second major cause of long-term disability in North America (Delaney and Potter 1993). The impairments associated with a stroke exhibit a wide diversity of clinical signs and symptoms. Disability, which is multifactorial in its determination, varies according to the degree of neurological recovery, the site of the lesion, the patient's premorbid status and the environmental support systems. Clinical evidence is reviewed as it pertains to stroke lesion location (cerebral, right & left hemispheres; lacunar and brain stem), related disorders (emotional, visual spatial perceptual, communication, fatigue, etc.) and artery(s) affected. 2. Clinical Consequences of Stroke pg. 1 of 29 www.ebrsr.com Table of Contents Abstract .............................................................................................................................................1 Table of Contents ...............................................................................................................................2 Introduction ......................................................................................................................................3 2.1 Localization of the Stroke ...........................................................................................................3 2.2 Cerebral