Wind Powering America's Regional Stakeholder Meetings and Priority
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Economic Benefits of Kansas Wind Energy
THE ECONOMIC BENEFITS OF KANSAS WIND ENERGY NOVEMBER 19, 2012 Prepared By: Alan Claus Anderson Britton Gibson Polsinelli Shughart, Vice Chair, Polsinelli Shughart, Shareholder, Energy Practice Group Energy Practice Group Scott W. White, Ph.D. Luke Hagedorn Founder, Polsinelli Shughart, Associate, Kansas Energy Information Network Energy Practice Group ABOUT THE AUTHORS Alan Claus Anderson Alan Claus Anderson is a shareholder attorney and the Vice Chair of Polsinelli Shughart's Energy Practice Group. He has extensive experience representing and serving as lead counsel and outside general counsel to public and private domestic and international companies in the energy industry. He was selected for membership in the Association of International Petroleum Negotiators and has led numerous successful oil and gas acquisitions and joint development projects domestically and internationally. Mr. Anderson also represents developers, lenders, investors and suppliers in renewable energy projects throughout the country that represent more than 3,500 MW in wind and solar projects under development and more than $2 billion in wind and solar projects in operation. Mr. Anderson is actively involved in numerous economic development initiatives in the region including serving as the Chair of the Kansas City Area Development Council's Advanced Energy and Manufacturing Advisory Council. He received his undergraduate degree from Washington State University and his law degree from the University of Oklahoma. Mr. Anderson can be reached at (913) 234-7464 or by email at [email protected]. Britton Gibson Britton Gibson is a shareholder attorney in Polsinelli Shughart’s Energy Practice Group and has been responsible for more than $6 billion in energy-related transactions. -
Wind Energy Production: Legal Issues and Related Liability Concerns for Landowners
Wind Energy Production: Legal Issues and Related Liability Concerns for Landowners 2321 N. Loop Drive, Ste 200 Ames, Iowa 50010 www.calt.iastate.edu Updated June 20, 2011 ‐ by Roger A. McEowen* Overview Current Emphasis On Wind-Generated Electricity Farmers have long used the wind. Beginning in the 1800’s, farmers in the United States installed In large part, the current push for wind- several million windmills across the Midwest generated electricity (and other forms of and Plains to pump water and (later) generate “renewable” energy) is based in power for lights and radios. Those windmills fit environmentalism.4 Concerns over the nicely into the existing landscape and generally environment began to be raised in the U.S. did not create problems for others. Today, during the 1960s and the 1970s. These concerns however, the wind energy industry is using the have had a profound impact on the political wind in a different manner by virtue of large- debate surrounding the belief by some in “global scale aerogenerators1 that have a tremendous climate change.”5 Proponents of wind energy impact on the visual landscape and the rural claim that wind generated electricity reduces culture.2 In some communities, wind energy emissions of carbon dioxide, which they claim development has raised issues between (contrary to a scientific study by the U.S. neighbors, between private landowners and wind National Academy of Sciences) is a significant energy development companies, and between contributor to “global warming.”6 local officials and development companies.3 Note: The National Research Council of Some farmers and other rural landowners have the National Academies concluded in a 2007 entered into long-term agreements with wind study that even under the most optimistic energy companies for the placement and conditions, the U.S. -
WHERE IS ELECTRIC GENERATION HEADED? Rodney Andrews, Phd
WHERE IS ELECTRIC GENERATION HEADED? Rodney Andrews, PhD PE Director UK Center for Applied Energy Research The Annual Energy Outlook 2020 (January 29, 2020) 2 Key Takeaways from U.S. Energy Information Administration’s Annual Energy Outlook 2020 • The electricity generation mix continues to experience a rapid rate of change, with renewables the fastest‐growing source of electricity generation through 2050 because of continuing declines in the capital costs for solar and wind that are supported by federal tax credits and higher state‐level renewables targets. With slow load growth and increasing electricity production from renewables, U.S. coal‐fired and nuclear electricity generation declines; most of the decline occurs by the mid‐2020s. • The United States continues to produce historically high levels of crude oil and natural gas. Slow growth in domestic consumption of these fuels leads to increasing exports of crude oil, petroleum products, and liquefied natural gas. 3 Production grows faster than consumption with shift toward electrification Energy production (AEO2020 Reference case) Energy consumption by sector (AEO2020 Reference case) quadrillion British thermal units quadrillion British thermal units 2019 2019 50 50 history projections history projections dry natural gas 45 45 electric power 40 40 35 35 industrial 30 30 25 crude oil and lease 25 condensate transportation 20 other renewable energy 20 15 15 coal residential 10 natural gas plant 10 commercial liquids 5 nuclear 5 hydro 0 0 1990 2000 2010 2020 2030 2040 2050 1990 2000 2010 2020 2030 2040 2050 4 What is driving the energy markets nationally? • Future oil prices are highly uncertain and are subject to international market. -
Another Record Year for Energy Mergers and Acquisitions
February 15, 2016 TO: CLIENTS AND OTHER FRIENDS OF THE FIRM 2015 – Another Record Year for Energy Mergers and Acquisitions Each year around this time we take the opportunity to review the transactions and other significant industry developments over the past year and offer our views on what they may mean for the coming year. Mergers and acquisitions activity in the energy industry during 2015 was, to Contributors: say the least, robust. The low interest rate environment and favorable James H. Barkley economic conditions that contributed to record deal volume in 2014 persisted Brooksany Barrowes into 2015. With the tailwind of economic conditions and interest rates, total Emil Barth transaction volume exceeded the all-time high watermark of $184 billion established in 2014 by almost $20 billion.1 By the end of 2015, approximately Megan Berge $202 billion of transactions had been announced. 2016 also is off to a fast start William M. Bumpers with roughly $20 billion of transactions announced in the first 6 weeks of the Michael Didriksen year. Jessica Fore More than half the 2015 activity involved pipelines, midstream companies and Jerrod Harrison MLPs. In that sector, deal volume maintained its robust activity, increasing Hillary H. Holmes slightly in 2015 to $133.3 billion as compared to 130.8 billion for 2014. Transactions among regulated electric utilities notched a similarly modest William S. Lamb increase, from roughly $30 billion in 2014 to almost $34 billion in 2015. Luckey McDowell Among LDCs, volume shot up from $3.4 billion to over $18 billion, driven by Steven R. Miles transactions involving AGL Resources and Piedmont Natural Gas Company. -
Clean Energy Economy
JUNE 2009 The Pew Charitable Trusts applies the power of knowledge to solve today’s most challenging problems. Our Pew Center on the States identifies and advances effective policy approaches to critical issues facing states, and our Pew Environment Group promotes practical, meaningful solutions to some of the world’s most pressing environmental problems. PEW CENTER ON THE STATES PEW ENVIRONMENT GROUP Susan Urahn, managing director Joshua Reichert, managing director Project Team Kevin Curtis Kil Huh Brendan Hill Phyllis Cuttino Lori Grange Jeannette Lam Laura Lightbody E. Brooks Riley Michele Mariani Vaughn Shannon Heyck-Williams Jill Antonishak Melissa Maynard Jane Breakell Carla Uriona, design Sean Greene Research Consultants: Collaborative Economics, Inc. ACKNOWLEDGMENTS This report benefited tremendously from the insights and expertise of an advisory panel and two additional external reviewers. These experts provided feedback and guidance at critical stages in the project. While they have screened the report for accuracy, neither they nor their organizations necessarily endorse its findings or conclusions. Advisory Panel: Marilyn Brown, professor, School of Public Policy, Georgia Institute of Technology; Doug Cameron, managing director and chief science advisor, Piper Jaffray; Joe Cortright, vice president and principal, Impresa; Jeff Finkle, CEcD, president and CEO, International Economic Development Council; Tim Woodward, managing director, Nth Power; and Joel S. Yudken, PhD, principal, High Road Strategies, LLC. External Reviewers: Mark Z. Jacobson, professor of Civil and Environmental Engineering and director, Atmosphere/Energy Program, Stanford University; and Joe Fargione, Lead Scientist, North America Region, The Nature Conservancy. We would like to thank our Pew colleagues—Andrew McDonald, Brandon MacGillis, Kymberly Escobar, Lisa Cutler, Janet Lane, Alyson Freedman and Jessica Riordan—for their assistance with communications and dissemination. -
Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected]
The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-19-2017 Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Takata, Erin, "Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals" (2017). Master's Projects and Capstones. 544. https://repository.usfca.edu/capstone/544 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master's Project Analysis of Solar Community Energy Storage for Supporting Hawaii’s 100% Renewable Energy Goals by Erin Takata is submitted in partial fulfillment of the requirements for the degree of: Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ...................................……….. ................................…………. -
Wind Powering America Fy08 Activities Summary
WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category). -
A Feasibility Study for Transitioning Louisville, Kentucky's
a Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Darst, Timothy. 2016. a Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797349 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources Timothy J. Darst A Thesis in the Field of Sustainability and Environmental Management for the Degree of Liberal Arts in Extension Studies Harvard University May 2016 © 2016 Timothy J. Darst. Abstract Climate change is caused mainly by humans and there is a great risk of “severe, pervasive and irreversible impacts for people and ecosystems” (IPCC, 2014). It has been proposed by many that America can address climate change by simply buying electric cars and then obtaining all electricity from renewable sources (Deutch, & Moniz, 2010; Freeman & Parks, 2016). This “silver bullet” is appealing; however, without detailed study it is not known whether this is a viable solution in many communities across the United States. Louisville, Kentucky was chosen as a case study to determine if it is feasible for conversion to a 100%-renewably-sourced electricity grid and all-electric transportation model. -
Application for a Large Wind Energy Conversion System Site Permit
Application for A Large Wind Energy Conversion System Site Permit Walleye Wind, LLC Rock County, Minnesota MN PUC Docket Number: IP7026/WS-20-384 Amendment Submittal November 3, 2020 CONTENTS TABLES ....................................................................................................................................... vii FIGURES ...................................................................................................................................... ix MAPS x APPENDICES .............................................................................................................................. xi ACRONYM/TERM DEFINITIONS ......................................................................................... xii MINNESOTA RULE COMPLIANCE .................................................................................. xviii 1.0 APPLICANT INFORMATION ...................................................................................... 1 1.1 Letter of transmittal signed by an authorized representative or agent of the applicant. .... 2 1.2 Complete name, address, and telephone number of the applicant and any authorized representative. The authorized representatives for the Applicant are: ....................................... 2 1.3 Signature of the preparer of the application if prepared by an agent or consultant of the applicant. .................................................................................................................................... 2 1.4 Role of the applicant in the construction -
Public Attitudes About Renewable Energy in Hawai'i (2014)
RENEWABLE ENERGY REPORT 2014 PUBLIC ATTITUDES ABOUT RENEWABLE ENERGY IN HAWAI‘I ABSTRACT — A representative BACKGROUND AND survey of 1,214 Hawai‘i residents PURPOSE — Increasing the pro- was conducted for the purpose of portion of energy provided by renewable assessing public attitudes about sources is a key goal of regional, national, different technologies for generating and international energy policies. Multiple electricity. Renewable energy pressures on conventional energy sys- (RE) technologies were very highly tems include increasing levels of energy favored: 97% of the public supported consumption, the cost of fossil fuels, the increased development of at least specter of peak oil, potential international some forms of RE in our state. conflict related to control of energy re- This support for RE was motivated sources, and the urgent need to reverse by concerns for environmental global warming and stem environmental protection, sustainability, and energy degradation. independence and by frustration with local energy prices. Solar and Energy concerns are particularly striking wind power were the most widely for the state of Hawai‘i, which faces accepted forms of RE (with 92% and energy-related issues that distinguish 86% favorable opinion, respectively), it from the rest of the nation. With no followed by hydroelectric (76%) internal sources of fossil fuel, our state and geothermal power (75%). is dependent on imported petroleum Municipal waste (58%) and biomass (primarily of foreign origin) for both combustion (53%) were less widely transportation and electricity generation. endorsed but were still acceptable In 2011, Hawai‘i imported 93% of its total to the majority of residents. Only a energy needs (U.S. -
Wind Power Manufacturing Opportunities in Kentucky
Wind Power Manufacturing Opportunities in Kentucky May 1, 2012 Jeff Anthony American Wind Energy Association American Wind Energy Association AWEA is the non-profit, national trade association for the U.S. wind energy industry » AWEA was established in 1974 » Over 2,000 companies are business members » AWEA represents the entire industry from small component manufacturers to developers to transportation companies to service firms to electric utilities » Industry employees 75,000 » Convenes conferences and workshops to educate the public and bring industry members together, including one of the fastest growing Conference & Exhibitions in the U.S., WINDPOWER www.awea.org www.windpowerexpo.org 2 Market Overview Global Growth In Wind Power » 238,351 MW of wind installed globally » The global industry grew 21% in 2011 » The U.S. represented 15.5% of the total 2011 market for new wind. Data Sources: AWEA, GWEC U.S. Annual and Cumulative Wind Power Capacity (in MW) Wind Projects Installations » There were 6,816 MW of wind projects installed in the U.S. through the fourth quarter of 2011, a 30% increase over new installations in 2010. » Total U.S. wind installations stand at 46,916 MW, with annual growth of 17% in 2011. » 5-year average annual growth of 35% for the U.S. wind industry. » Invested up to $20 billion annually Source: AWEA U.S. Wind Industry Annual Market Report Year Ending 2011 Wind Power has captured 35% of all new generating capacity in America since 2007 • New wind capacity represented Percent of New Installed Capacity (in MW), 31% of all new capacity installed in 2007-2011 2011. -
Hawaii Renewable Hydrogen Program Plan 2010–2020
Hawaii Renewable Hydrogen Program: 2010-2020 Hawaii Renewable Hydrogen Program Plan 2010–2020 August 2011 Hawaii Renewable Hydrogen Program: 2010-2020 Project Title: Hawaii Renewable Hydrogen Program: 2010-2020 – Final Report Recipient: University at Manoa - School of Ocean and Earth Science and Technology – Hawaii Natural Energy Institute Award Number: Contract No. 57598 Working Partner: Author: Mr. James M. Ewan – University at Manoa - School of Ocean and Earth Science and Technology – Hawaii Natural Energy Institute – Hydrogen Systems Program Manager Acknowledgments: The Hawaii Natural Energy Institute’s contributions to this report were funded by the Hawaii Renewable Hydrogen Program Contract No. 57598. The author is solely responsible for any omissions or errors contained herein. This report was prepared as an account of work sponsored by an agency of the State of Hawaii government. Neither the State of Hawaii government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Hawaii State government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Hawaii State government or any agency thereof. 1 Hawaii Renewable Hydrogen Program: 2010-2020 Executive Summary HCEI and the Renewable Hydrogen Program The Hawaii Clean Energy Initiative (HCEI) is a partnership between the state of Hawaii and the US DOE launched in 2008.