A Patkósdenevérek Rendszertana

Total Page:16

File Type:pdf, Size:1020Kb

A Patkósdenevérek Rendszertana A PATKÓSDENEVÉREK RENDSZERTANA TAXONOMY OF THE HORSESHOE BATS OF THE WORLD (CHIROPTERA: RHINOLOPHIDAE) Doktori (PhD) értekezés Csorba Gábor Debreceni Egyetem Természettudományi és Technológiai Kar Debrecen, 2008 ii Ezen értekezést a Debreceni Egyetem TTK Biológia Doktori Iskola Biodiverzitás programja keretében készítettem a Debreceni Egyetem TTK doktori (PhD) fokozatának elnyerése céljából. Debrecen, 2008 ....................................................... Tanúsítom, hogy Csorba Gábor doktorjelölt 2005-2008 között a fent megnevezett Doktori Iskola Biodiverzitás programjának keretében irányításommal végezte munkáját. Az értekezésben foglalt eredményekhez a jelölt önálló alkotó tevékenységével meghatározóan hozzájárult. Az értekezés elfogadását javasolom. Debrecen, 2008 .................................................... Dr. Varga Zoltán témavezet ı iii iv CONTENTS 1. Introduction ........................................................................................................ 1 2. Literature overview ............................................................................................ 2 3. Materials and methods ....................................................................................... 5 3.1. The family Rhinolophidae .................................................................... 5 3.2. Material investigated ............................................................................ 6 3.3. Definitions of measurements and technical terms ................................ 7 4. Results ................................................................................................................ 11 4.1. Evaluation of taxonomic characters ...................................................... 11 4.2. Taxonomic changes .............................................................................. 15 4.3. Key to the groups and species of genus Rhinolophus .......................... 16 4.4. Species accounts ................................................................................... 22 5. Összefoglaló ..................................................................................................... 154 1. Appendix: Acknowledgements ......................................................................... 157 2. Appendix: References ....................................................................................... 158 3. Appendix: Figures ............................................................................................ 168 4. Appendix: Scientific publications on the subject of the dissertation ................ 169 v vi 1. INTRODUCTION The extension and improvement of our taxonomic knowledge is rendered urgent by the biodiversity crisis which threatens to destroy much of the evidence of evolutionary history before it could be documented. This is especially emphasized in the case of mammals, a flagship group of the animal kingdom in the fields of conservation biology, phylogenetic classification, ecological and behavioural studies. The second most numerous order of mammals is that of the bats (Chiroptera), with over 1200 known living species. Due to the high number of taxa and their cryptic life-style bats are relatively poorly know. This might explain the fact that new species are described regularly from the tropical and even the temperate areas of the globe (the number of species has increased by approximately 20 per cent in the last decade) and a significant part of the bat literature is focused on their faunistics and taxonomy. The family of horseshoe bats (Rhinolophidae) is well-defined taxonomic unit with exclusively insectivorous species. The highest number of co-existing species can be found in mature tropical forests and extensive limestone cave systems of the Old World, in biotops, which are among the most threatened ones on the Earth. Specimens of many species are rarities in the collections and scattered in many countries. Our ability to differentiate the species is complicated by their uniform appearance, where differences between the species are mainly found in the complex anatomical parts, which are difficult to describe verbally (the shape of the noseleaf and the nasal swellings), and in differences in size. Moreover, in the last 100 years no serious attempt was made to provide a thorough revision and an overview of relevant literature. Neither the old species descriptions nor the new identification keys and comprehensive works give enough anatomical details or adequate quantity of measurements. Hence, the knowledge regarding the identification of these species - that forms the basis for all the other research such as ecological, physiological or conservation-oriented studies - was fairly difficult to gather. The aim of this work was therefore twofold: 1) Careful examination of specimens available in collections, information recorded as exact and repeatable measures and comparable illustrations (drawings and digital images). 2) re-organising and evaluating existing publications on various morphological characters (including external, cranial and dental features), taxonomy and systematics. By producing this database with the knowledge gained by the processes described in 1), my goal was to write a practical monography on taxonomy of this beautiful family of bats. Due to this principal task my dissertation is focusing exclusively on taxonomy , although, during the data collecting period huge amount of information were gathered on aspects of horseshoe bat biology in general, including distribution, habits, feeding, breeding, echolocation, conservation status, phylogeny and biogeography. These fields are out of the scope of this work but presented in the book of Csorba et al. (2003). 1 2. LITERATURE OVERVIEW The overview presented here is based on the compilation of Guillen et al (2003) published in the book of Csorba et al. (2003) and deals only with the systematics of the family above the species-level. The overview of the species-level taxonomy can be found in the ’species accounts’ section under the heading ’Taxonomic remarks’. These historical parts are based on, according to my best knowledge, all the information published between 1903-2002 and different taxonomic opinions related to each species are provided. This is supplemented by my critical comments and by the interpretation of taxonomic actions applied in the dissertation including lectotype designations and revisions. Beginning with the introduction of the genus name Rhinolophus by Lacépède (1799), most authors have included all extant horseshoe bats in a single genus, although some alternatives have been proposed. Leach (1816) proposed the genus name Phyllorhina for Vespertilio minutus Montagu, 1808 (now called R. hipposideros minutus ; see Hill 1963). Initially, the genus Rhinolophus also included the species of Hipposideros known at that time. Gray (1847, 1866), based on differences in the noseleaves, proposed the genus Aquias for the Indomalayan species R. trifoliatus and R. luctus and Phyllotis for the indomalayan-australasian species R. philippinensis , while keeping all other species of horseshoe bats in the genus Rhinolophus , from which he excluded the hipposiderid bats. Peters (1867) proposed the genus Coelophyllus for Rhinolophus coelophyllus . Dobson (1876) returned all Asiatic horseshoe bats to Rhinolophus and ignored generic and subgeneric partitions proposed previously. He also separated rhinolophid and hipposiderid bats in two different subfamilies, Rhinolophinae and Phyllorhininae. Matschie (1901) described Rhinolophus mehelyi under the subgenus Euryalus , together with R. euryale . Miller (1907) elevated the subfamilies erected by Dobson (1876) to family rank. Iredale and Troughton (1934) introduced Rhinophyllotis with the type being R. megaphyllus . These additional genera were obviated by subsequent authors, and Rhinolophus was kept as the only genus. Bourret (1951) described the highly characteristic R. paradoxolophus as belonging to the genus Rhinomegalophus . But Hill (1972) brought it back into Rhinolophus , noting the close similarity of this species with R. rex and other species previously included in the genus. Besides describing many new species and forms of Rhinolophus , Andersen (1905a, 1905b, 1905c, 1905d, 1905e, 1905f, 1918) reviewed the family in a classical fashion and advanced the first phylogenetic hypotheses on the evolution and biogeography of the group. Because horseshoe bats vary little in major skeletal structures, Andersen (works cited above) used few characters for establishing his systematic arrangement. Many of these characters are probably plesiomorphic or prone to homoplastic change. They included the size and degree of displacement from the toothrow of minor teeth (variable even within the same species), size and shape of noseleaves and ears, length of palate (characters involved in echolocation and prone to adaptive evolution), and relative length of finger bones of the wing (involved in adaptive flight morphology). According to the custom at the time, he also used non-objective methods of phylogenetic reconstruction and models of character evolution, regarding without clear justification some features (long palate, three mental grooves, subequal metacarpals) as primitive Andersen (1905a). In his 1905 papers, Andersen arranged the species of Rhinolophus into six groups, named after the species: R. simplex , R. lepidus , R. midas, R. philippinensis, R. macrotis and R. arcuatus , some containing a number of sections. He also sketched the 2 putative
Recommended publications
  • Rhinolophus Hipposideros) Animals of the World: Lesser Horseshoe Bat (Rhinolophus Hipposideros)
    the National Bank of Poland ● The National Bank of Poland is putting into circulation coins of the Animals of the World series holds the exclusive right to issue the currency depicting the lesser horseshoe bat: in the Republic of Poland. 2 zł – struck in standard finish in Nordic Gold, In addition to coins and notes for general circulation, on 19 April 2010; the NBP issues collector coins and notes. Issuing collector items is an occasion to commemorate c o i n s 20 zł – struck in proof finish in silver, important historic figures and anniversaries, as well on 21 April 2010. as to develop the interest of the public in Polish culture, science and tradition. Since 1996, the NBP has also been issuing occasional 2 złoty coins, struck in Nordic Gold, for general circulation. All coins and notes issued by the NBP are legal tender in Poland. coins Issued in 2010 coins Issued in 2010 Since 1993, the NBP has been issuing coins of the „Animals of the World” series. the „Lesser horseshoe bat” is the seventeenth theme in the series information on the issue schedule can be found at the www.nbp.pl/monety website. Collector coins issued by the National Bank of Poland are sold exclusively at the internet auctions held in the Kolekcjoner service at the following website: A N i mals O f t h e W O r ld www.kolekcjoner.nbp.pl Lesser horseshoe bat the coins were struck at the Mint of Poland in Warsaw. edited and printed: NBP Printing Office (Rhinolophus hipposideros) Animals of the World: Lesser horseshoe bat (Rhinolophus hipposideros) ● The lesser horseshoe bat (Rhinolophus hipposideros) belongs to the of a frequency of 108-114 kHz through their nostrils, and the flap of skin hunting activity is in the early hours of the night.
    [Show full text]
  • Four Species in One: Multigene Analyses Reveal Phylogenetic
    Published by Associazione Teriologica Italiana Volume 29 (1): 111–121, 2018 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00017-2017 Research Article Four species in one: multigene analyses reveal phylogenetic patterns within Hardwicke’s woolly bat, Kerivoula hardwickii-complex (Chiroptera, Vespertilionidae) in Asia Vuong Tan Tu1,2,3,4,∗, Alexandre Hassanin1,2,∗, Neil M. Furey5, Nguyen Truong Son3,4, Gábor Csorba6 1Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN CNRS UPMC, Muséum national d’Histoire naturelle, Case postale N°51–55, rue Buffon, 75005 Paris, France 2Service de Systématique Moléculaire, UMS 2700, Muséum national d’Histoire naturelle, Case postale N°26–43, rue Cuvier, 75005 Paris, France 3Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam 4Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam 5Fauna & Flora International, Cambodia Programme, 19 Street 360, Boeng Keng Kang 1, Chamkarmorn, Phnom Penh, Cambodia 6Department of Zoology, Hungarian Natural History Museum, Baross u. 13., H-1088, Budapest, Hungary Keywords: Abstract Kerivoulinae Asia We undertook a comparative phylogeographic study using molecular, morphological and morpho- phylogeography metric approaches to address systematic issues in bats of the Kerivoula hardwickii complex in Asia. taxonomy Our phylogenetic reconstructions using DNA sequences of two mitochondrial and seven nuclear cryptic species genes reveal a distinct clade containing four small-sized species (K. hardwickii sensu stricto, K. depressa, K. furva and Kerivoula sp.
    [Show full text]
  • Supplementary Information
    Supplementary Information This text file includes: Supplementary Methods Supplementary Figure 1-13, 15-30 Supplementary Table 1-8, 16, 20-21, 23, 25-37, 40-41 1 1. Samples, DNA extraction and genome sequencing 1.1 Ethical statements and sample storage The ethical statements of collecting and processing tissue samples for each species are listed as follows: Myotis myotis: All procedures were carried out in accordance with the ethical guidelines and permits (AREC-13-38-Teeling) delivered by the University College Dublin and the Préfet du Morbihan, awarded to Emma Teeling and Sébastien Puechmaille respectively. A single M. myotis individual was humanely sacrificed given that she had lethal injuries, and dissected. Rhinolophus ferrumequinum: All the procedures were conducted under the license (Natural England 2016-25216-SCI-SCI) issued to Gareth Jones. The individual bat died unexpectedly and suddenly during sampling and was dissected immediately. Pipistrellus kuhlii: The sampling procedure was carried out following all the applicable national guidelines for the care and use of animals. Sampling was done in accordance with all the relevant wildlife legislation and approved by the Ministry of Environment (Ministero della Tutela del Territorio e del Mare, Aut.Prot. N˚: 13040, 26/03/2014). Molossus molossus: All sampling methods were approved by the Ministerio de Ambiente de Panamá (SE/A-29-18) and by the Institutional Animal Care and Use Committee of the Smithsonian Tropical Research Institute (2017-0815-2020). Phyllostomus discolor: P. discolor bats originated from a breeding colony in the Department Biology II of the Ludwig-Maximilians-University in Munich. Approval to keep and breed the bats was issued by the Munich district veterinary office.
    [Show full text]
  • A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape As A
    A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape as a Chiropteran Diversity Hotspot in Sumatra Author(s): Joe Chun-Chia Huang, Elly Lestari Jazdzyk, Meyner Nusalawo, Ibnu Maryanto, Maharadatunkamsi, Sigit Wiantoro, and Tigga Kingston Source: Acta Chiropterologica, 16(2):413-449. Published By: Museum and Institute of Zoology, Polish Academy of Sciences DOI: http://dx.doi.org/10.3161/150811014X687369 URL: http://www.bioone.org/doi/full/10.3161/150811014X687369 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Acta Chiropterologica, 16(2): 413–449, 2014 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/150811014X687369 A recent
    [Show full text]
  • Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam
    viruses Article Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam Satoru Arai 1, Fuka Kikuchi 1,2, Saw Bawm 3 , Nguyễn Trường Sơn 4,5, Kyaw San Lin 6, Vương Tân Tú 4,5, Keita Aoki 1,7, Kimiyuki Tsuchiya 8, Keiko Tanaka-Taya 1, Shigeru Morikawa 9, Kazunori Oishi 1 and Richard Yanagihara 10,* 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] (S.A.); [email protected] (F.K.); [email protected] (K.A.); [email protected] (K.T.-T.); [email protected] (K.O.) 2 Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 3 Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 4 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam; [email protected] (N.T.S.); [email protected] (V.T.T.) 5 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam 6 Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 7 Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 8 Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan; [email protected] 9 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 10 Pacific Center for Emerging Infectious Diseases Research, John A.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Bat Mitigation Guidelines for Ireland
    Bat Mitigation Guidelines for Ireland Irish Wildlife Manuals No. 25 Bat Mitigation Guidelines for Ireland Conor Kelleher and Ferdia Marnell Citation: Kelleher, C. & Marnell, F. (2006) Bat Mitigation Guidelines for Ireland. Irish Wildlife Manuals , No. 25. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photo : Brown long-eared bat (© Austin Hopkirk) Irish Wildlife Manuals Series Editor: F. Marnell © National Parks and Wildlife Service 2006 ISSN 1393 - 6670 Key messages for developers • Bats and their roosts are protected by Irish and EU law because all species have declined and some are threatened or endangered. • There are 10 known species of bats in Ireland, each with its own lifestyle and habitat requirements. They use a wide variety of roosts, including buildings of all sorts, trees and underground places. • Many bat roosts are used only seasonally as bats have different roosting requirements at different times of the year. During the summer, females of all species gather in colonies to give birth and rear their young; these maternity roosts are often in places warmed by the sun. During the winter bats hibernate, often in places that are sheltered from extremes of temperature. • When planning a development it is advisable to check for the presence of bats as early as possible so that any planning and licensing issues can be addressed before resources are committed. Bat surveys require specialist knowledge and equipment. • Planning authorities are required to take account of the presence of protected species, including bats, when considering applications for planning permission and may refuse applications on the grounds of adverse effects on these species or if an assessment of the impact of the development on protected species is inadequate.
    [Show full text]
  • Fasanbi SHOWCASE
    Threatened Species Monitoring PROGRAMME Threatened Species in South Africa: A review of the South African National Biodiversity Institutes’ Threatened Species Programme: 2004–2009 Acronyms ADU – Animal Demography Unit ARC – Agricultural Research Council BASH – Big Atlassing Summer Holiday BIRP – Birds in Reserves Project BMP – Biodiversity Management Plan BMP-S – Biodiversity Management Plans for Species CFR – Cape Floristic Region CITES – Convention on International Trade in Endangered Species CoCT – City of Cape Town CREW – Custodians of Rare and Endangered Wildflowers CWAC – Co-ordinated Waterbird Counts DEA – Department of Environmental Affairs DeJaVU – December January Atlassing Vacation Unlimited EIA – Environmental Impact Assessment EMI – Environmental Management Inspector GBIF – Global Biodiversity Information Facility GIS – Geographic Information Systems IAIA – International Association for Impact Assessment IAIAsa – International Association for Impact Assessment South Africa IUCN – International Union for Conservation of Nature LAMP – Long Autumn Migration Project LepSoc – Lepidopterists’ Society of Africa MCM – Marine and Coastal Management MOA – memorandum of agreement MOU – memorandum of understanding NBI – National Botanical Institute NEMA – National Environmental Management Act NEMBA – National Environmental Management Biodiversity Act NGO – non-governmental organization NORAD – Norwegian Agency for Development Co–operation QDGS – quarter-degree grid square SABAP – Southern African Bird Atlas Project SABCA – Southern African
    [Show full text]
  • Inferring the Ecological Niche of Bat Viruses Closely Related to SARS-Cov-2 Using Phylogeographic Analyses of Rhinolophus Specie
    www.nature.com/scientificreports OPEN Inferring the ecological niche of bat viruses closely related to SARS‑CoV‑2 using phylogeographic analyses of Rhinolophus species Alexandre Hassanin1,4*, Vuong Tan Tu2,4, Manon Curaudeau1 & Gabor Csorba3 The Severe Acute Respiratory Syndrome coronavirus 2 (SARS‑CoV‑2) is the causal agent of the coronavirus disease 2019 (COVID‑19) pandemic. To date, viruses closely related to SARS‑CoV‑2 have been reported in four bat species: Rhinolophus acuminatus, Rhinolophus afnis, Rhinolophus malayanus, and Rhinolophus shameli. Here, we analysed 343 sequences of the mitochondrial cytochrome c oxidase subunit 1 gene (CO1) from georeferenced bats of the four Rhinolophus species identifed as reservoirs of viruses closely related to SARS‑CoV‑2. Haplotype networks were constructed in order to investigate patterns of genetic diversity among bat populations of Southeast Asia and China. No strong geographic structure was found for the four Rhinolophus species, suggesting high dispersal capacity. The ecological niche of bat viruses closely related to SARS‑CoV‑2 was predicted using the four localities in which bat viruses were recently discovered and the localities where bats showed the same CO1 haplotypes than virus‑positive bats. The ecological niche of bat viruses related to SARS‑CoV was deduced from the localities where bat viruses were previously detected. The results show that the ecological niche of bat viruses related to SARS‑CoV2 includes several regions of mainland Southeast Asia whereas the ecological niche of bat viruses related to SARS‑CoV is mainly restricted to China. In agreement with these results, human populations in Laos, Vietnam, Cambodia, and Thailand appear to be much less afected by the COVID‑19 pandemic than other countries of Southeast Asia.
    [Show full text]
  • Karyotype Evolution in the Horseshoe Bat Rhinolophus Sedulus by Whole-Arm Reciprocal Translocation (WART)
    Original Article Cytogenet Genome Res 2014;143:241–250 Accepted: May 5, 2014 DOI: 10.1159/000365824 by M. Schmid Published online: August 16, 2014 Karyotype Evolution in the Horseshoe Bat Rhinolophus sedulus by Whole-Arm Reciprocal Translocation (WART) a b d c Marianne Volleth Klaus-Gerhard Heller Hoi-Sen Yong Stefan Müller a b Department of Human Genetics, Otto von Guericke University, Magdeburg , Department of Biology, Humboldt c University, Berlin , and Institute of Human Genetics, University Hospital, Ludwig Maximilian University, Munich , d Germany; Institute of Biological Sciences, University of Malaya, Kuala Lumpur , Malaysia Key Words tence of a hybrid zone at the sampling locality is thought to Chiroptera · FISH · Karyotype evolution · Mammalia · be rather improbable, the WART may indicate ongoing Rhinolophidae · WART karyotype evolution in this taxon. © 2014 S. Karger AG, Basel Abstract Robertsonian (centric) fusion or fission is one of the predom- Karyotypes may be shaped by different kinds of rear- inant modes of chromosomal rearrangement in karyotype rangements, such as inversions, translocations, and Rob- evolution among mammals. However, in karyotypes com- ertsonian (centric) fissions and fusions. The last type is posed of only bi-armed chromosomes, creation of new chro- thought to be the most common mode within Mammalia, mosomal arm combinations in one step is possible only via at least among rearrangements detected by conventional whole-arm reciprocal translocation (WART). Although this cytogenetic techniques in the past. A relatively rarely re- type of rearrangement has often been proposed to play an ported type of rearrangement is whole-arm reciprocal important role in chromosomal evolution, direct observa- translocation (WART) by which entire chromosomal tions of WARTs remained rare, and, in most cases, were found arms are reciprocally exchanged between 2 chromo- in hybrids of chromosomal races in the genera Mus and somes.
    [Show full text]
  • Grade 10 Life Sciences Study Guide
    Grade 10 Grade 10 Via Afrika Teacher’s Guide Teacher’s Life Sciences Some of my greatest rewards are simple ones. For instance, when a learner exits my class and says, “Thank you, Ma’am, for a wonderful lesson.” Grade 10 Study Guide — Suzanne Paulsen, Teacher M. Bowie, A. Johannes, R. Mhlongo, E. Pretorius Via Afrika Life Sciences Life Afrika Via Via Afrika understands, values and supports your role as a teacher. You have the most important job in education, and we realise that your responsibilities involve far more than just teaching. We have done our utmost to save you time and make your life easier, and we are very proud to be able to help you teach this subject successfully. Here are just some of the things we have done to assist you in this brand-new course: 1. The series was written to be aligned with CAPS. See page 4-7 to see how CAPS requirements are met. 2. A possible work schedule has been included. See page 4-5 to see how much time this could save you. 3. Each topic starts with an overview of what is taught, and the resources you need. See page 34 to find out how this will help with your planning. 4. There is advice on pace-setting to assist you in completing all the work for the year on time. Page 38 shows you how this is done. 5. Advice on how to introduce concepts and scaffold learning is given for every topic. See page 39 for an example. 6.
    [Show full text]
  • Geographic Variation in the Acoustic Traits of Greater Horseshoe Bats: Testing the Importance of Drift and Ecological Selection in Evolutionary Processes
    Geographic Variation in the Acoustic Traits of Greater Horseshoe Bats: Testing the Importance of Drift and Ecological Selection in Evolutionary Processes Keping Sun1,2,3, Li Luo1, Rebecca T. Kimball3, Xuewen Wei1, Longru Jin1, Tinglei Jiang1, Guohong Li1,4, Jiang Feng1,2* 1 Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China, 2 Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China, 3 Department of Biology, University of Florida, Gainesville, Florida, United States of America, 4 School of Life Science, Guizhou Normal University, Guiyang, China Abstract Patterns of intraspecific geographic variation of signaling systems provide insight into the microevolutionary processes driving phenotypic divergence. The acoustic calls of bats are sensitive to diverse evolutionary forces, but processes that shape call variation are largely unexplored. In China, Rhinolophus ferrumequinum displays a diverse call frequency and inhabits a heterogeneous landscape, presenting an excellent opportunity for this kind of research. We quantified geographic variation in resting frequency (RF) of echolocation calls, estimated genetic structure and phylogeny of R. ferrumequinum populations, and combined this with climatic factors to test three hypotheses to explain acoustic variation: genetic drift, cultural drift, and local adaptation. Our results demonstrated significant regional divergence in frequency and phylogeny among the bat populations in China’s northeast (NE), central-east (CE) and southwest (SW) regions. The CE region had higher frequencies than the NE and SW regions. Drivers of RF divergence were estimated in the entire range and just the CE/NE region (since these two regions form a clade).
    [Show full text]