Three-Stage Origin of Life As a Result of Directional Darwinian Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Three-Stage Origin of Life As a Result of Directional Darwinian Evolution Three-stage Origin of Life as a Result of Directional Darwinian Evolution Victor P. Novikov Nalichnaya 36, 199226 Saint-Petersburg, Russian Federation [email protected] Abstract The original hypothesis about Three-stage origin of life (TOL) on the Earth is developed and discussed. The role of the temperature factor in life origin is considered. It is supposed, that three stages of abiogenesis (DNA world, RNA world and the Protein world) consistently followed each other during Darwinian evolution. At the same time, the natural directional selection of the most stable macromolecules and effective catalytic reactions took place. The direction of this selection is related to action of the principle of «Increasing Independence from the Environment» (IIE) and is caused by temperature evolution of the atmosphere of the Earth. The direction of Anagenesis and inevitability of occurrence of genetic mechanisms is discussed. Key words: Origin of Life, Darwinian evolution, Directional selection, Abiogenesis, RNA world, DNA world, IIE principle, TOL hypothesis Introduction It is known, that there are two counteracting selection processes deferred in Darwinian evolution – stabilizing and directional! The stabilizing selection conserves adaptive properties of organisms, and the directional selection promotes the occurrence of new properties. Eventually the directional selection promotes the progressive evolution of organisms; as a result of this e volution organisms become more complex and improved! However, the directional selection means also some directional force, and thus, the direction, where the evolution moves to. Only an environment, in which the evolution takes place, can be such directio nal force, or, more precisely, certain natural changes of environment, that cause corresponding evolutionary changes of organisms. Therefore, of course, when hypotheses about life origin on the Earth is considered, it is necessary to understand, first of all, what evolutionary changes of environment on the Earth promoted progressive biological evolution. Thus, it is important to find out not only a direction of evolution of the environment, but also how it correlated to progressive evolution of organisms. It is necessary to notice, that the «progressive evolution» term has a little emotional shade and has to be specified. What changes of properties of biological organisms are to be named as progressive? Complexity increase, increase in sizes, new adaptive properties ….? Lot of criteria can be selected; however, the most important character of progressive biological evolution is increasing independence of organisms from the environment! So, for example, at life origin on the Earth the metabolism of organisms was very much depended on environmental conditions, its temperature, pressure, рН and humidity, but afterwards organisms were changing and could already function in various ecological niches. Gradually live beings left water, have mastered a land, have lea rnt to fly and were settled from equator to poles of the Earth, have become to huge degree independent of conditions they live in. Therefore, it is possible to assert about organism, that the more independent of the environment it is, the higher step of progressive evolution it takes! The same cardinal principle, undoubtedly, operated at abiogenesis of the first macromolecules on the prebiotic Earth. 1 But if life origin is not considered as a miracle or unique event, it is necessary to agree that this process is natural. Therefore, of course, similar laws acted throughout all history of the Earth and have caused abiogenesis and biogenesis progressed at the same direction towards progressive evolution. Thus, the IIE principle (Increasing Independence from the Environment) is a cardinal principle of progressive evolution and its direction. Undoubtedly, IIE should become the basic criterion at studying of the process of life origin on the Earth. And, certainly, it is very important in this regard to understand the relation of the cardinal principle to the direction of evolution of the atmosphere of the Earth and its stages! Life origin on the Earth and stages of evolution of the atmosphere of the Earth. The Earth was formed about 4.5 Ga (billion years ago) and life began on its surface within one billion years. The first live beings on the Earth are thought to be single cell prokaryotes, perhaps evolved from protobionts (organic molecules surrounded by a membrane-like structure) [1]. The oldest ancient fossil microbe-like objects are dated 3.5 Ga (billion) years old, approximately one billion years after the formation of the Earth itself [2] [3], with reliable fossil evidence of the first life found in rocks 3.4 Ga old [4]. Thus, first live beings have arisen most probably at the beginning of the Archean, when the temperature of Earth’s crust has decreased and water steam condensed into water. When the Archean began, the Earth's heat flow was much higher than today, and it was still twice the current level at the transition from the Archean to the Proterozoic (2.5 Ga). The extra heat was the result of a mix of remnant heat from planetary accretion, heat from the formation of the Earth's core, and heat produced by radioactive elements. Cyanobacterial community and archaea [5] were the dominated form of life at the beginning of the Archean eon. However, they, undoubtedly, were the product of long evolution of some earlier elementary organisms. And, certainly, abiogenesis (formation of organic compounds outside of an organism without participation of enzymes) has begun much earlier, than first live organisms have risen! Most likely, it had occurred before the Archean, during Hadean, hundred millions years before the first cells have risen. The Hadean started with the formation of the Earth about 4.7 Ga ago and ended roughly 3.8 Ga ago. As it is believed, the Earth passed the stage of melting of its external layer at the beginning of its history. The external layer of the planet has been melted to the depth of several tens of kilometers. At that time there was neither hydrosphere, nor oxygen in the atmosphere. An intensive volcanic activity took place on the planet’s territory at that time. At the initial stage of history of the Earth thermodynamic conditions on the Earth’s surface reached extreme values: temperature - to 10000 °С and pressure - to 109 Pа. At the middle of the Hadean the temperature of the surface of our planet has decreased to 1000 °С, and in the Proterozoic has decreased to 40 °С. In the Cretaceous period (about 100 Ma ago) the temperature of the surface in average was 22 °С, and at present is about 15 °С [6]. Billions years of temperature evolution have caused occurrence of conditions for life origin on our planet. Then further biological evolution of live beings to their higher, more improved organization to huge degree correlated to temperature evolution of the Earth. Thus, the temperature factor, undoubtedly, was the main directing force of Anagenesis. Figure 1. Conjugation of Anagenesis with temperature evolution of the surface of the Earth. 1 — synthesis of simple organic molecules, 2 — optimum of non-enzymatic DNA synthesis, 3 — optimum of non-enzymatic RNA synthesis, 4 — optimum of synthesis of polypeptides, 5 — formation of oceans, 6 — occurrence of Prokaryotes, 7 — first aerobes, 8 — Eukaryote, 9 — occurrence of multi- cells, 10 — occurrence of vertebral, 11 — first reptiles, 12 — occurrence of mammals, 13 — beginning of hominization of primates. 2 According to the presented Figure 1, unidirectional change of temperature of the environment has provided action of natural selection towards reduction of temperature dependence of organisms from thermodynamic conditions of the environment [7]. Thus, the cardinal IIE principle operated during both abiogenesis and biogenesis. It is necessary to notice, that the conditions could be different throughout all history of the Earth. Very warm periods have happened; they were followed by freezing periods. However, a singular tendency of change of average temperature for millions years took place. It was gradual cooling of the surface of the planet. Freezing periods are recognized by corresponding burst of speciation, and warm epochs — by static periods, when the intensity of Anagenesis decreased. Consecutive decrease in temperature of the surface of the planet from extreme to present values promoted selection of such molecular mechanisms, and then species, which, to some degree, by this way or another, could support their independence from the temperature of the environment. Synthesis and primary selection of the most stable biopolymers were going on at that stage of history of the Earth, when the temperature of its surface was still considerably above the water boiling point; it means, that abiogenesis took place in waterless (dehydration) conditions. Heat energy had the prior role as the energy source in chemical evolution on the Earth, when the first simple organic compounds have risen [8]. Apparently, increase of independence of metabolism from the temperature of environment during abiogenesis is the main exponent of IIE. Hence, the numerical value of IIE can be characterized by the formula , where Tout — the temperature of environment, Tin —the optimum temperature for the metabolism, R — the indicator showing the numerical value of the IIE. It is possible to allocate three stages of abiogenesis, closely related to temperature evolution of the Earth’s surface (Fig. 2). Figure 2. Stages of abiogenesis and temperature evolution of the Earth Tout — ambient temperature, Tin — temperature of metabolism, R — shows the numerical value of IIE As it is shown in the fig. 3, DNA world takes almost the entire Hadean. RNA world arises in the second half of the Hadean (rather, as DNA+RNA world) and is the evolutionary bridge between waterless DNA world and water Protein world. Chemical abiogenous evolution took place in waterless conditions in the range of temperatures from 6000°С (a temperature limit of stability of the elementary diatomic compounds ОН, Н2, etc.) to 100°С (temperature of condensation of steams of water).
Recommended publications
  • Biomolecules
    CHAPTER 3 Biomolecules 3.1 Carbohydrates In the previous chapter you have learnt about the cell and 3.2 Fatty Acids and its organelles. Each organelle has distinct structure and Lipids therefore performs different function. For example, cell membrane is made up of lipids and proteins. Cell wall is 3.3 Amino Acids made up of carbohydrates. Chromosomes are made up of 3.4 Protein Structure protein and nucleic acid, i.e., DNA and ribosomes are made 3.5 Nucleic Acids up of protein and nucleic acids, i.e., RNA. These ingredients of cellular organelles are also called macromolecules or biomolecules. There are four major types of biomolecules— carbohydrates, proteins, lipids and nucleic acids. Apart from being structural entities of the cell, these biomolecules play important functions in cellular processes. In this chapter you will study the structure and functions of these biomolecules. 3.1 CARBOHYDRATES Carbohydrates are one of the most abundant classes of biomolecules in nature and found widely distributed in all life forms. Chemically, they are aldehyde and ketone derivatives of the polyhydric alcohols. Major role of carbohydrates in living organisms is to function as a primary source of energy. These molecules also serve as energy stores, 2021-22 Chapter 3 Carbohydrade Final 30.018.2018.indd 50 11/14/2019 10:11:16 AM 51 BIOMOLECULES metabolic intermediates, and one of the major components of bacterial and plant cell wall. Also, these are part of DNA and RNA, which you will study later in this chapter. The cell walls of bacteria and plants are made up of polymers of carbohydrates.
    [Show full text]
  • AP Biology Planner
    COURSE PLANNER Please note that not all activities for the course are listed, and many activities will be supplemented with additional activities such as diagram analysis, practice essays, etc. Intro to AP Biology/Scientific Method This course begins with introducing students to the seven science practices, in addition to the Big Ideas that unify the course. Students complete the lab exercises that emphasize the need for controls in experiments as well as to identify and explain potential sources of error as part of the normal scientific process. Reading in Campbell and Reece: Topics: • Intro to AP biology, the test and how to study. ♣ Activity: Theme-teams: Students research and present scientist who represent each Big Idea in AP Biology. ♣ Activity: Analyzing the AP multiple choice questions with diagrams. • Scientific Method: Steps and controlled experiments ♣ Activity: What is Science? Discussion/Poster Creation. ♣ Activity: Lab Safety activity: NIH’s Student Lab Safety Introduction Course. https://www.safetytraining.nih.gov/introcourse/labsafetyIntro.aspx ♣ Activity: Identify risks in procedures and materials (MSDS analysis) ♣ Activity: Guide to good graphing. ♣ Activity: Examining bias in science. ♣ Lab: Student Designed inquiry. The effect of environmental factors on the metabolic rate of yeast. In this student designed inquiry, students investigate environmental factors as they relate to CO2 production or O2 consumption in yeast. Students must select an independent variable and dependent variable, as well as design an experimental procedure based on an existing lab protocol. ECOLOGY The ecology unit introduces the ideas of energy processes and interactions, which are the focus of Big Idea 2 and 4. Ecology introduces students to creating, analyzing, and evaluating mathematical models in biology and prepares students to tackle evolution, the central unit in AP Biology.
    [Show full text]
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • The Great Oxidation Event: an Expert Discussion on the Causes, the Processes, and the Still Unknowns
    ASTROBIOLOGY Volume 12, Number 12, 2012 The Astrobiology Society Roundtable ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.1110 The Great Oxidation Event: An Expert Discussion on the Causes, the Processes, and the Still Unknowns Moderator: Frances Westall1 Participants: Ariel Anbar,2 Woody Fischer,3 and Lee Kump4 Dr. Frances Westall (FW): Let’s begin with each of you seeming to get honed in on the Archean-Proterozoic tran- giving an overview as to the importance of biogenic pro- sition, I have always looked for a change in the solid cesses in the rise of oxygen—oxygenic photosynthesis. Lee, Earth dynamics that is linked to that, because the Archean- would you like to begin? Proterozoic boundary was defined based on geological evi- Dr. Lee Kump (LK): What is really interesting about the dence for the stabilization of continental cratons. history of atmospheric oxygenation is that there is this event That is what ultimately led Mark Barley and me to look at or interval of change from an anoxic Archean atmosphere to that issue of changes in style of tectonics at the Archean- an oxygenated post-Archean atmosphere (Holland, 1994). Proterozoic boundary, and ultimately focus on the style of When we think about the causes of the rise of oxygen and we volcanism (Kump and Barley, 2007). This was, again, the think about the Great Oxidation Event, it is really a funda- result of Holland pointing out that in modern volcanic sys- mental change in the way the Earth system functioned. It is a tems, the oxygen demand from the release of fluids, gases of new state; it is the oxygenated state that is distinct from the subaerial volcanoes was significantly less than that from the anoxic state, and it is nonreversible.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • Evolutionary Trends
    Evo Edu Outreach (2008) 1:259–273 DOI 10.1007/s12052-008-0055-6 ORIGINAL SCIENTIFIC ARTICLE Evolutionary Trends T. Ryan Gregory Published online: 25 June 2008 # Springer Science + Business Media, LLC 2008 Abstract The occurrence, generality, and causes of large- a pattern alone, to extrapolate from individual cases to scale evolutionary trends—directional changes over long entire systems, and to focus on extremes rather than periods of time—have been the subject of intensive study recognizing diversity. This is especially true in the study and debate in evolutionary science. Large-scale patterns in the of historically contingent processes such as evolution, history of life have also been of considerable interest to which spans nearly four billion years and encompasses nonspecialists, although misinterpretations and misunder- the rise and disappearance of hundreds of millions, if not standings of this important issue are common and can have billions, of species and the struggles of an unimaginably significant implications for an overall understanding of large number of individual organisms. evolution. This paper provides an overview of how trends This is not to say that no patterns exist in the history of are identified, categorized, and explained in evolutionary life, only that the situation is often far more complex than is biology. Rather than reviewing any particular trend in detail, acknowledged. Notably, the most common portrayals of the intent is to provide a framework for understanding large- evolution in nonacademic settings include not just change, scale evolutionary patterns in general and to highlight the fact but directional, adaptive change—if not outright notions of that both the patterns and their underlying causes are usually “advancement”—and it is fair to say that such a view has in quite complex.
    [Show full text]
  • Lecture 2 Our Place in the Universe (Cont'd)
    Astronomy 110 –1 Lecture 2 Our Place in the Universe (Cont’d) 14/01/09 1 Copyright © 2009 Pearson Education, Inc. A few useful mathematical skills 14/01/09 2 Copyright © 2009 Pearson Education, Inc. Powers of ten 103 = 10 x 10 x 10 = 1000 102 = 10 x 10 = 100 101 = 10 100 = 1 10-1 = 1/10 = 0.1 10-2 = 1/10 x 1/10 = 0.01 10-3 = 1/10 x 1/10 x 1/10 = 0.001 Then: 300 = 3 x 100 = 3 x 102 2,500 = 2.5 x 1000 = 2.5 x 103 14/01/09 3 Copyright © 2009 Pearson Education, Inc. Multiplying & dividing 101 x 101 = 100 = 102 101 x 102 = 10 x 100 = 1000 = 103 102 x 102 = 100 x 100 = 10000 = 104 When multiplying two powers of ten, add the exponents 1000 ÷ 100 = 103 ÷ 102 = 10 = 101 10 ÷ 10 = 101 ÷ 101 = 1 = 100 10 ÷ 100 = 101 ÷ 102 = 1/10 = 10-1 When dividing, subtract exponent of divisor from exponent of numerator 14/01/09 4 Copyright © 2009 Pearson Education, Inc. Powers and roots (104)3 = 104 x 104 x 104 = 1012 Rule of thumb: when raising to a power, multiply exponents What about √(104)? √(104) = 102 taking roots is the same as raising to a fractional power, in this case 1/2 power: √(104) = (104)1/2 = 102 √ is the same as raising to 1/2 power 3√ is the same as raising to 1/3 power 4√ is the same as raising to 1/4 power 14/01/09 5 Copyright © 2009 Pearson Education, Inc.
    [Show full text]
  • 2010 Hyundai Genesis
    2010 HYUNDAI_GENESIS If you’re reading this brochure, chances are you’re the kind of automotive enthusiast who, instead of simply opening your wallet and adding a status trophy to your garage, prefers to open something else: Your mind. It’s a refreshing attitude that often leads you to discover truly rewarding experiences, from new and unexpected sources. Like Genesis, from Hyundai. Nobody was looking for Hyundai to build a luxury car that would challenge the automotive elite. But we did. Nobody expected us to benchmark the industry’s best, then apply the art and science needed to meet those marks. But we did. Nobody thought we’d charm the pants off a jury of North America’s most esteemed automotive journalists, or be named "The Most Appealing Midsize Premium Car" in 2009 by J.D. Power and Associates.1 But we did. And by doing what few people expected of us, we now find ourselves as a car company that a lot of people are starting to think about in a whole new way. It’s 2010. Welcome to Hyundai. 1 The Hyundai Genesis received the highest numerical score among midsize premium cars in the proprietary J.D. Power and Associates 2009 Automotive Performance Execution and Layout Study.SM Study based on responses from 80,930 new-vehicle owners, measuring 245 models and measures opinions after 90 days of ownership. Proprietary study results are based on experiences and perceptions of owners surveyed in February-May 2009. Your experiences may vary. Visit jdpower.com. geNesIS 3.8 IN TItaNIUM GRay metallIC MEASURE GENESIS AGAINST OTHER LUXURY SEDANS.
    [Show full text]
  • Sugars As the Source of Energized Carbon for Abiogenesis
    Astrobiology Science Conference 2010 (2010) 5095.pdf SUGARS AS THE SOURCE OF ENERGIZED CARBON FOR ABIOGENESIS. A. L. Weber, SETI Institute, NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA, 94035-1000, [email protected] Abstract: As shown in Figure 1, abiogenesis has sev- eral requirements: (A) a source of organic substrates and chemical energy that drives the synthesis of (B) useful small molecules (ammonia, monomers, metabo- lites, energy molecules), and (C) a second synthetic processs that yields large replicating and catalytic polymers that control (D) the growth and maintenance of a primitive protocell. Furthermore, the required chemical energy must be sustained and effectively coupled to individual reactions to drive biosynthesis at a rate that counters chemical degradation. Energy coupling would have been especially difficult during the origin of life before the development of powerful enzyme catalysts with 3-D active sites. To solve this energy coupling problem we have investigated abio- genesis using sugar substrates whose energized carbon groups drive spontaneous synthetic self-transformation reactions that yield: biometabolites, catalytic mole- cules, energy-rich thioesters, amino acids, plausible alternative nucleobases and cell-like microstructures [1-8]. Recently, we demonstrated that sugars drive the synthesis of ammonia from nitrite [9]. The ability of sugars to drive ammonia synthesis provides a way to generate ammonia at microscopic sites of sugar-based origins processes, thereby eliminating the need for a planet-wide source of photochemically unstable am- monia. Figure 1. Major Synthetic Processes of Abiogenesis. [1] Weber A. L. (1998) Orig. Life Evol. Biosph., 28, 259-270. [2] Weber A.
    [Show full text]
  • Evolution by Natural Selection, Formulated Independently by Charles Darwin and Alfred Russel Wallace
    UNIT 4 EVOLUTIONARY PATT EVOLUTIONARY E RNS AND PROC E SS E Evolution by Natural S 22 Selection Natural selection In this chapter you will learn that explains how Evolution is one of the most populations become important ideas in modern biology well suited to their environments over time. The shape and by reviewing by asking by applying coloration of leafy sea The rise of What is the evidence for evolution? Evolution in action: dragons (a fish closely evolutionary thought two case studies related to seahorses) 22.1 22.4 are heritable traits that with regard to help them to hide from predators. The pattern of evolution: The process of species have changed evolution by natural and are related 22.2 selection 22.3 keeping in mind Common myths about natural selection and adaptation 22.5 his chapter is about one of the great ideas in science: the theory of evolution by natural selection, formulated independently by Charles Darwin and Alfred Russel Wallace. The theory explains how T populations—individuals of the same species that live in the same area at the same time—have come to be adapted to environments ranging from arctic tundra to tropical wet forest. It revealed one of the five key attributes of life: Populations of organisms evolve. In other words, the heritable characteris- This chapter is part of the tics of populations change over time (Chapter 1). Big Picture. See how on Evolution by natural selection is one of the best supported and most important theories in the history pages 516–517. of scientific research.
    [Show full text]
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]
  • Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
    1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years.
    [Show full text]