Brassica Information Kit (2004)

Total Page:16

File Type:pdf, Size:1020Kb

Brassica Information Kit (2004) Brassica information kit Reprint – information current in 2004 REPRINT INFORMATION – PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au This publication has been reprinted as a digital book without any changes to the content published in 2004. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: • Chemical recommendations—check with an agronomist or Infopest www.infopest.qld.gov.au • Financial information—costs and returns listed in this publication are out of date. Please contact an adviser or industry body to assist with identifying more current figures. • Varieties—new varieties are likely to be available and some older varieties may no longer be recommended. Check with an agronomist, call the Business Information Centre on 13 25 23, visit our website www.deedi.qld.gov.au or contact the industry body. • Contacts—many of the contact details may have changed and there could be several new contacts available. The industry organisation may be able to assist you to find the information or services you require. • Organisation names—most government agencies referred to in this publication have had name changes. Contact the Business Information Centre on 13 25 23 or the industry organisation to find out the current name and contact details for these agencies. • Additional information—many other sources of information are now available for each crop. Contact an agronomist, Business Information Centre on 13 25 23 or the industry organisation for other suggested reading. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2004. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in brassica production. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication. 311 INDEXINDEXINDEX A Australian Insecticide Resistance Action Committee 216 acid soils 160 AUSVEG 113 action threshold 194 Avcare 258 agricultural booksellers 287 Agrotis spp. 210 B Agsafe 25 B. juncea 263 air-blast sprayer 52 B. napus 263 Albugo candida 230, 271 B. oleracea 263 ALGA 258 B. rapa 263 alternaria Babylon 16 thiram treatment 235 Bacillus thuringiensis Alternaria brassicicola 20, 148, 230 19, 52, 57, 198, 206, 298 alternaria seedling blight centre grub control 210 hot water treatment 233 control of cabbage white butterfly 211 alternaria spot 19, 20, 230 DBM resistance to 216 amaranthus 48, 242 Chapter 7 bacterial diseases Apanteles 219 monitoring for 191 Aphanomyces raphani 271 bacterial head rot 19, 55 aphids 17, 52, 55, 150, 189, 220 control 231 control of 214 problems 64 guidelines for spraying 196 bacterial head rots 57, 189, 231 monitoring for 191, 214 bacterial leaf diseases 57 natural enemies 198 bacterial leaf scald 136, 149, 227 parasitised 219 hot water treatment 233 turnip mosaic virus 232 bait stations 58 apple of Peru 238 ballhead cabbage 127 Approved Supplier Program 30, 107 packaging 66 AQIS 32, 73 bana grass 41 AQIS Certification Assurance 109 barley 44 AQIS offices 284 bed forming 46 AS2507-1998 standard 25 Bemisia tabaci 212 assassin bugs 198 beneficial insects 218 Atomic 16 suppliers 280 Australian Centre for Agricultural Health Bidens pilosa 239 and Safety 115, 149 GROWING GUIDE: Brassica grower’s handbook 312 Chapter 7 biological control 197 water requirements 173 control of silverleaf whitefly diamondback moth 205 yield/prices 8 213 heliothis 208 brown bead 58 carpet grass 42 biological insecticides 198, 206 brussels sprouts 120, 264 cartons birds 53 buttoning 122 in pallets 69 control of heliothis 208 labelling 68 bitter cress 119 C waxed fibreboard vegetable 66 black leg 19, 148, 226 cabbage caterpillar 17, 55, 188, 220 hot water treatment 233, 235 average yield 63 at planting 34 black rot 19, 20, 52, 55, calculating spacing 40 Cauldron 16 133–137, 139, 141, 149, control of aphids 214 cauliflower 150, 174, 188, 227 control of thrips 212 alternaria spot 230 hot water treatment 233 cooling and storage 65 average yield 64 monitoring for 191 ethylene damage 65 bacterial head rots 231 blackberry nightshade 238 grading 66 calculating spacing 40 bolt tolerant 135 green varieties 133 cooling and storage 65 boom sprayers 245 growth cycle 126 disease handy guide 303 boron 51, 156 harvesting 61, 63 downy mildew 229 deficiency 158 heliothis control 207 grading, packing 66 foliar fertiliser rates 165 hot water treatment 233 gross margin 90 Botrytis 230 marketing 71 growth cycle 126 brassica monitoring nutrients 166 handy guide 302 pest handy guide 304 packaging 66 harvesting 61, 63 Brassica oleracea planting/harvesting times 35 hot water treatment 233 var. botrytis 120 quarantine 72 marketing 71 var. capitata 120 red varieties 137 monitoring nutrients 166 var. italica 120 savoy varieties 136 peppery leaf spot 228 Brassica tournefortii 238 seedlings 151 planting/harvesting times 35 Brassicaceae family 119 sugarloaf varieties 135 quarantine 72 brassicas, weed management 239 tensiometer irrigating 59 tensiometer irrigating 59 Brevicoryne brassicae 214 time to maturity 39, 129 time to maturity 39, 130 broad-spectrum insecticides 19 transport 69 transport 69 broadleaf weeds 54, 238 turnip mosaic virus 232 turnip mosaic virus 232 management of 242 varieties 38, 127 varieties 38, 128, 138 broccoli water requirements 173 water requirements 174 average yield 63 yield/prices 4 yield/prices 6 bacterial head rots 231 zonate leaf spot 228 cauliflower mosaic virus 231 calculating spacing 40 cabbage cluster caterpillar 17 CDA sprayers 246 cooling and storage 64 control 208 centre grub 17, 52, 205 ethylene damage 65 guidelines for spraying 196 control of 209 grading 66 cabbage white butterfly 17, 55 monitoring for 192 gross margin 10 control of 211 ChemCert 24, 279 growth cycle 126 guidelines for spraying 196 ChemClear 258 harvesting 61, 63 monitoring for 191 chemical control 199 hot water treatment 233 calabrese 128 diamondback moth 207 ice pack 68 calcium 45 of heliothis 208 marketing 71 deficiency 157 chemicals monitoring nutrients 166 fertigation amounts 164 application 52 packaging 66 management 154 safe storage 25 pest handy guide 298 calculate the number of plants 41 spray failure 23 planting/harvesting times 35 calibrating sprayers 252 suppliers 278 producing/marketing costs 10 capacitance probes 179 Chenopodium album 238 quarantine 72 Cape Horn 38 Chinese broccoli 264 seedlings 151 capital costs 83 Chinese cabbage 230, 264 tensiometer irrigating 59 Capsella bursa-pastoris 238 chloride 44 time to maturity 39, 131 carbamate 19, 57, 207, 216 Chlorthal-dimethyl 48, 241 transport 69 choy sum 264 varieties 38, 128, 142 clay soils 45 GROWING GUIDE: Brassica grower’s handbook Index 313 climate 11 damping off 19, 52, 148, 223 Enviroveg 31, 113 club root 19, 20, 37, 52, 55, damsel bugs equipment costs 12 153, 174, 187, 225 control of aphids 214 equity 84 controlling 225 Dangerous Goods Safety Manage- Eretmocerus 219 prevent spread of 20 ment Act 116 Erwinia 20, 231 cluster caterpillar 17, 55 Datura spp. 238 Escale 16 control 208 deadnettle 238 establishment fertiliser 162 guidelines for spraying 196 degree days 130 ethylene 65 monitoring for 191 Diadegma 198, 219 EurepGAP 31, 112 cobbler’s peg 239 centre grub control 210 excessive cultivation 43 codes of practice 112 Diadegma semiclausum 205 export 32 ‘coffin’ ice pack 28, 66 Diadegma wasps 206 export associations 284 common sowthistle 239 Diadromus collaris 219 container-grown transplants 146 diagnostic services 279 F contour drain 42 diamond back moth F.O.R.M. 87, 90, 93 controlled droplet applicator 52 monitoring for 191 F1 hybrid varieties 121 copper deficiency 161 pheromone trap 192 farm hygiene 187 copper foliar fertiliser rates 165 diamondback moth farm safety 31, 115 corkiness 158 3, 17, 23, 52, 55, 56, 203, 219 Farmcare Code of Practice 113 corn earworm 207 at planting 34 Farmsafe Queensland 115 Coronopus didymus 238 guidelines for spraying 196 FarmsafeAustralia 118 costs insecticide resistance 215 fat hen 22, 48 example of total 84 life cycle 204 fertigation 164 typical production costs 79 management 205 fertiliser 25, 59, 161 Cotesia 198, 219 monitoring 195, 204 establishing the crop 50 control of heliothis 208 direct seeding 16, 38, 48, 146 establishment 26, 47, 162 Cotesia glomerata 211 direct suppliers 105 foliar 164 couch 42 discolouration 159 rates for NPK mix 162 cover crops 44, 154 Discovery 16 requirements for various soils Crocidolomia pavonana 208 disease management 55, 223 51 crop checklist 232 side dressing 163 cover 44 diseases 17, 57 suitable for fertigation 164 direct seeded 48 broccoli handy guide 299 time of application 163 establishing 50 foliar 227 fertilising seedlings 149 monitoring 56 soil-borne 223 field layout 46 rotation 36, 37, 42 virus 231 fixed costs 83 scheduling 39 dolomite 43, 45, 162 fluorescent dye 249 scout 56 downy mildew foliar diseases 189, 227 time to maturity 39 19, 52, 148, 150, 229 foliar fertilisers 164 crop monitoring 189 hot water treatment 235 Food Marketing Institute 108 action threshold 194 monitoring for 191 food safety 102 chemical control 199 drip irrigation Food Safety Standards 105 how to 191 maintenance of 180 forage sorghum 41, 44 insect traps 192 drumhead 127 forced-air cooling 28, 64 what is involved? 190 drumMUSTER 258 Frankliniella occidentalis 211 crop scheduling 128 ducks 17 freezing injury 65 curd E Fremont 16 discolouration 133 Freshcare 29, 30, 107, 113 initiation 122 egg parasitoids 219 frosts 35 cutworm 17, 52 electric fence 53 Fumaria spp.
Recommended publications
  • Final Report
    FINAL REPORT Integrated spatial models of non-native plant invasion, fire risk, and wildlife habitat to support conservation of military and adjacent lands in the arid Southwest SERDP Project RC-1722 DECEMBER 2015 Brett G. Dickson, PhD Thomas D. Sisk, PhD Steven E. Sesnie, PhD Bethany A. Bradley, PhD Northern Arizona University Landscape Conservation Initiative School of Earth Sciences and Environmental Sustainability Distribution Statement A This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]
  • Brassica Tournefortii
    Orange County Chapter occnps.org California Native Plant Society ! HAVE YOU SEEN THIS PLANT? It is an Emergent Invasive in Orange County SAHARA MUSTARD Brassica tournefortii Known OC sites & Status Updates Distribution map & info: • calflora.org/cgi-bin/species_query.cgi? where-calrecnum=1146 • cal-ipc.org/ip/management/plant_profiles/ Brassica_tournefortii.php Can be confused with: Sahara Mustard is a fast-germinating, • Shortpod (aka Summer) Mustard, fast-growing annual, flowering and fruiting Hirschfeldia incana from January to June. Petals are small, • London Rocket, Sisymbrium irio Flowering stems grow up to 2.5 ft. from a basal pale yellow; sepals often purplish. • Field Mustard, Brassica nigra rosette. The plants can flower & set seed when just a few inches high. Basal leave are rough to the touch, pinnately lobed, each lobe with many teeth. Orange County Chapter occnps.org California Native Plant Society ! SAHARA MUSTARD, P. 2 Short-pod Mustard, London Rocket & Seeds are produced in pod-like fruits (siliques) Field Mustard (not shown) are also that, when ripe & dry, explosively open invasives, but much more widespread lengthwise & scatter the seeds. Seed is in OC than is Sahara Mustard. viable for about 4 years. Stems & fruits often form into an intertwined, rounded mass. • Sahara Mustard (left): fruits are long & narrow with long, distinct pedicels & beaks, held out from the stem IF YOU SEE THIS PLANT AT A SITE THAT’S NOT ON THE LIST: below the flowers. • Record the plant’s location as exactly as you can (GPS coordinates if possible), the • Shortpod Mustard, (center): fruits date you saw it, and an estimate of how many there were.
    [Show full text]
  • Identification of Insects, Spiders and Mites in Vegetable Crops: Workshop Manual Loopers Chrysodeixis Spp
    Important pests in vegetable crops This section gives descriptions of common pests found in Australian vegetable crops. They are listed according to the insect order they belong to. Moths and butterflies (Lepidoptera) Heliothis (corn earworm, tomato budworm, native budworm) Helicoverpa spp. Heliothis larvae feed as leaf eaters and bud and fruit borers on a wide range of plants, including many weeds. Adults lay round, domed, ribbed eggs that are cream when newly laid, turning brownish (‘brown ring’ stage) as they mature. Larvae grow up to 40 mm long and vary in colour from green through yellow and brown to almost black, with a pale stripe down each side. The moths have a wing span of 35–45 mm. Heliothis moth at rest These are some examples of heliothis damage to vegetable crops: • On lettuce and brassicas, larvae feed on the outer leaves or tunnel into the heart of the plant. • In tomato crops, eggs are laid on the leaves, flowers and fruit. Young larvae burrow into flowers causing them to fall and they cause pinhole damage to very young tomato fruit. Older larvae burrow into the fruit, creating holes and encouraging rots to develop. • In capsicum, larvae feed on the fruit and the seed inside the fruit. Eggs are laid mainly on leaves, but also on flowers and buds. Heliothis eggs on tomato shoot • In sweet corn, eggs are laid on the silks and leaves. Larvae feed on the developing grains on the cob, sometimes on the leaves and often inside the tip of the corn cob. • In green beans and peas, the larvae feed on the flowers, pods and developing seed inside the pods.
    [Show full text]
  • Brassica Tournefortii H M L Brassicaceae Impact Risk Level African / Sahara Mustard BRTO
    Brassica tournefortii H M L Brassicaceae impact risk level African / Sahara mustard BRTO K EY CHARA C TERISTI C S growth Annual herb with stem 10-100 cm fruit Fruiting pedicels widely diverging high. from stem, lower pedicels 6-22 mm long. flower Flowers light yellow, 4 petals, 6mm wide, racemes with 6-20 flowers. Capsule, linear, rounded, slightly Will flower and fruit as early as De- constricted between seeds; 3-7cm cember or January, setting seed by long, 2-3 mm wide, glabrous; beaks February. In fruit or dead by April. stout, 1.0-1.5 cm long, cylindrical, Inflorescence subtended by only confluent with capsule, apex as wide small bracts. as stigma; seeds uniseriate. Branching stems +/- from base, stems TNC more so above. Hairs on lower stem are stiff and white. fireflyforest.com leaves Usually in basal rosette. Stem leaves decrease in size from base upwards. Basal leaves 7.5-30 cm long, deeply lobed with serrate edges. Lobes also toothed, margins prickly hairy. seeds Rounded, finely reticulate, brown to brown-purple; approximately 1 mm diameter; sticky when wet. ©J. Randall TNC SODN Elevation: Ecotypes Invaded: Up to 7200 feet Dunes, desertlands & riparian areas. EC OLOGY & SUITABLE HABITAT D ISTRIBUTION Note: basal rosette of leaves with deep Found in diverse natural and lobing; profusely disturbed habitats at low eleva- branched stems above; flowers in tions in S Arizona, NW Sonora, racemes. and SE California. Common in disturbed sites, roadsides and abandoned fields fireflyforest.com and southwestern deserts. Also found in sandy soils, gravelly washes, low dunes, sandy alka- line troughs and rocky slopes.
    [Show full text]
  • Auto-Taxonomy of Brassica Tournefortii Gouan
    Bangladesh J. Plant Taxon. 27(2): 233-250, 2020 (December) © 2020 Bangladesh Association of Plant Taxonomists AUTO-TAXONOMY OF BRASSICA TOURNEFORTII GOUAN. (BRASSICACEAE) IN EGYPT 1 ASMAA ABDELHAMEED, WAFAA AMER , WALAA HASSAN* AND AYMAN ABOELLIL Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt Keywords: Brassicaceae; Forms; ISSR; Pollen grains; SEM. Abstract Brassica tournefortii Gouan. (family Brassicaceae) is one of the five species in the Egyptian flora. Its populations showed notable morpho-plasticity with taxonomic debates, which were not yet resolved. The current study was carried out to assess the species morpho-plasticity and its molecular identity based on ISSR. The study was applied to 27 herbarium and fresh populations, representing all the species distribution ranges in Egypt. The taxonomic revision included 70 morphological characters, revealed five distinct Forms (1-5), radical leaf, and fruit provided the major distinguishable traits among the studied 70 morphological characters based on them the morphologic key is provided to delimit these forms. The pollen grain features using SEM are a pioneer at the infra-specific level, two shapes observed the subprolate (Forms 1& 3) and prolate (Forms 2, 4 & 5). Furthermore, the exine micro-features possess taxonomic value at the infra- specific level. The cluster analysis based on ISSR data revealed two clusters congruent to those developed by morphological and pollen traits. The ISSR results indicated that the species morpho-plasticity is genetically controlled. The study highlights the importance of the multidisciplinary approach to assess the taxonomic identity at the infra-specific level, for the auto-taxonomy of morpho-plastic species.
    [Show full text]
  • London Rocket Tech Bulletin – ND
    4/6/2020 London Rocket London Rocket Sisymbrium irio L. Family: Brassicaceae. Names: Sisymbrium was the Greek name of a fragrant herb. London Rocket. Summary: An erect, annual, many branched plant, with deeply lobed leaves that does not form a rosette. It has clusters of small, 4-petalled, yellow flowers in late winter to spring on the tops of stems that form long (25-110 mm), narrow seed pods that may be slightly curved. Description: Cotyledons: Two. Club shaped, Tip rounded. Sides convex. Base tapered. Surface hairless. Petiole longer than the blade. First Leaves: Club shaped, paired. The first pair have rounded tips and smooth edges. The second pair have pointed tips and toothed edges. Hairless or a few hairs. Leaves: Alternate. Does not form a rosette. Stipules - None. Petiole - On lower leaves. Blade - 30-160 mm long x 13-70 mm wide, triangular in outline, deeply lobed or serrated or toothed (usually 2-6 pairs), lobes are usually toothed, end lobe is pointed and larger than the side lobes. The side lobes usually point towards the base of the leaf. Tip pointed. Smooth and hairless or a few scattered hairs. Stem leaves - Alternate. Similar to rosette leaves but not as lobed or unlobed, sometimes arrow shaped. Hairless or small hairs. Stems: Slender, erect, round, up to 1000 mm tall. Often with slender, curved, simple hairs near the base, usually hairless near the top. Usually much branched from the base with spreading stems. Flower head: www.herbiguide.com.au/Descriptions/hg_London_Rocket.htm 1/8 4/6/2020 London Rocket Flowers are in clusters at the top of the stem which then elongates as the fruits mature underneath.
    [Show full text]
  • Floristic Composition and Vegetation Analysis and Species Diversity of Some Brassica Species Associates in North of Nile Delta Region, Egypt
    CATRINA (2015), 14(1): 45-52 © 2015 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES Floristic Composition and Vegetation Analysis and Species Diversity of Some Brassica Species Associates in North of Nile Delta Region, Egypt Ibrahim A. Mashaly*, Mohamed Abd El-Aal and Nazzar K. Dawood Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt ABSTRACT The present study was carried out to provide insight on the floristic composition, vegetation analysis and species diversity of associated flora of three common Brassica spp (Brassica rapa L., Brassica nigra (L.) Koch and Brassica tournefortii Gouan) communities in the North of Nile Delta of Egypt. In 60 surveyed stands, a total of 150 species belonging to 122 genera and related to 34 taxonomic families were recorded. Annual/therophytes-biregional taxa were the predomninates. Vegetation classification distinguished four vegetation groups named after the first and second dominant species. Group A: Cichorium endivia-Brassica nigra and represents the vegetation type of old field crops cultivated with clover and wheat, while group B: Polypogon monspeliensis- Rumex dentatus and represents winter field crops in old cultivated lands, edges of cultivation (canal banks) and roadsides. Group C: Brassica tournefortii- Cynodon dactylon and was characteristic for newly reclaimed lands, while group D: Echinops spinosus-Brassica tournefortii was found in the roadsides and sand formations habitat along the Deltaic Mediterranean coast of Egypt. The highest species diversity was mainly in groups D and C from roadsides and sand formations habitat and in the newly reclaimed lands. Edaphic factors especially sulphates, bicarbonates, maximum water-holding capacity, total phosphorus, silt, magnesium, potassium, potassium adsorption ratio, sand fraction and chlorides affect the distribution and abundance of the characteristic weeds species.
    [Show full text]
  • Remarks on Brassica
    International Journal of AgriScience Vol. 3(6): 453-480, June 2013 www.inacj.com ISSN: 2228-6322© International Academic Journals The wild and the grown – remarks on Brassica Hammer K.¹*, Gladis Th.¹ , Laghetti G.² , Pignone D.² ¹Former Institute of Crop Science, University of Kassel, Witzenhausen, Germany. * Author for correspondence (email: [email protected]) ²CNR – Institute of Plant Genetics, Bari, Italy. Received mmmm yyyy; accepted in revised form mmmmm yyyy ABSTRACT Brassica is a genus of the Cruciferae (Brassicaceae). The wild races are concentrated in the Mediterranean area with one species in CE Africa (Brassica somaliensis Hedge et A. Miller) and several weedy races reaching E Asia. Amphidiploid evolution is characteristic for the genus. The diploid species Brassica nigra (L.) Koch (n = 8), Brassica rapa L. emend. Metzg. (n = 10, syn.: B. campestris L.) and Brassica oleracea L. (n = 9) all show a rich variation under domestication. From the naturally occurring amphidiploids Brassica juncea (L.) Czern. (n = 18), Brassica napus L. emend. Metzg. (n = 19) and the rare Brassica carinata A. Braun (n = 17) also some vegetable races have developed. The man-made Brassica ×harmsiana O.E. Schulz (Brassica oleracea × Brassica rapa, n = 29, n = 39), or similar hybrids, serve also for the development of new vegetables. Brassica tournefortii Gouan (n = 10) from another Brassica- cytodeme, different from the Brassica rapa group, is occasionally grown as a vegetable in India. Brassica has developed two hotspots under cultivation, in the Mediterranean area and in E Asia. Cultivation by man has changed the different Brassica species in a characteristic way. The large amount of morphologic variation, which exceeded in many cases variations occurring in distinct wild species, has been observed by the classical botanists by adding these variations to their natural species by using Greek letters.
    [Show full text]
  • Brassica Tournefortii Gouan
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Brassica tournefortii Gouan. Saharan mustard Family: Brassicaceae Range: Throughout the southwestern United States, including California, Nevada, Arizona, New Mexico and Texas. Habitat: Roadsides, washes, open fields, annual grasslands, coastal sage scrub, and desert shrubland. Typically grows in arid climate areas on sandy soil and where competing vegetation is sparse. Inhabits coastal and inland dunes in its native range. Origin: Native to the Mediterranean region. Impacts: Saharan mustard is especially problematic in the Sonoran Desert, including the Imperial Valley. It readily spreads from roadsides and other disturbed places into washes, drainages, desert shrubland, and sensitive dune areas. Saharan mustard stands contribute to increased fuel load and fire frequency. Increasing the fire frequency can lead to the type conversion of desert scrub to grassland. Because desert systems often contain rare and endangered species, Saharan mustard can be a significant threat to these species. Like other mustards, Saharan mustard can also harbor diseases and pests that attack closely related crops in the mustard family. The foliage, roots, and especially seeds of Brassica and many related species contain glucosinolates, which are sulfur- containing compounds that can irritate the digestive tract and cause thyroid dysfunction when consumed in large quantities over time.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Brassica Tournefortii
    UNIVERSITY OF CALIFORNIA RIVERSIDE Brassica tournefortii: Phenology, Interactions and Management of an Invasive Mustard A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Plant Biology by Robin Gene Marushia June 2009 Dissertation Committee: Dr. Jodie S. Holt, Chairperson Dr. Edith B. Allen Dr. Matthew L. Brooks Copyright by Robin Gene Marushia 2009 The Dissertation of Robin Gene Marushia is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS “The earth never tires… The earth is rude, silent, incomprehensible at first – …Nature is rude and incomprehensible at first; …Be not discouraged – keep on – …There are divine things; …well envelop’d; …I swear to you there are divine things more beautiful than words can tell.” From Walt Whitman, ‘Song of the Open Road’ My dissertation has been a long road of discovery, and although I was often discouraged, I end it with a deep appreciation of having found beautiful, “divine things.” I truly believe that science is the worthiest of pursuits, both professionally and personally. I could not have become a PhD without immeasurable support and inspiration from a great many people, and I would like to thank and acknowledge a few. First and foremost, I thank Dr. Jodie S. Holt, my advisor and mentor of many years. Jodie truly is my academic ‘parent,’ and inspires loyalty, respect, admiration and affection. I am honored to call myself her student and grateful to call her my friend. I hope I someday parallel her excellent example. I also thank my dissertation committee: Dr. Edith Allen always offered unwavering support, encouragement, and a welcome sense of humor.
    [Show full text]
  • Spinosad Controls a Range of Lepidopteran Pests in Crucifers in Australia
    The management of diamondback moth and other crucifer pests Spinosad controls a range of lepidopteran pests in crucifers in Australia Paul Downard Dow AgroSciences (Australia) Ltd, Locked Bag 502 Frenchs Forest NSW 1640, Australia [email protected] Abstract Spinosad is one of the most widely used products for control of diamondback moth (Plutella xylostella) in Australia. Since the launch of Success* Naturalyte* in 1999, it has rapidly gained wide acceptance in all crucifer growing areas of the country. This has occurred, not only because spinosad is highly effective against diamondback moth, but because it also controls several other important lepidopteran pests such as heliothis (Helicoverpa spp.), cabbage white butterfly (Pieris rapae), cabbage centre grub (Hellula hydralis) and cabbage cluster caterpillar (Crocidolomia pavonana) at rates which provide growers with excellent value for money. Spinosad is highly active against loopers (Chrysodeixis spp.) and affords some control of cluster caterpillar (Spodoptera litura) and onion thrips (Thrips tabaci). There is no diamondback moth resistance to spinosad in Australia, the product has a favourable toxicological profile and it is selective to a range of beneficial predators and parasitoids. The value of insect control is best gauged by assessing the quality of produce at harvest of the crop. In a small scale trial, a crop of broccoli infested with P. rapae, P. xylostella, S. litura and C. pavonana received a programme of six applications of spinosad at 7-10 day intervals. Spinosad at 48 g ai/ha resulted in 97.2% marketable heads, not significantly different (P>0.05) from the standard, prothiophos, at 750 g/ha which gave 100% marketable heads.
    [Show full text]
  • Potential of Parasitoids for the Control of Cabbage Moth in Augmentative Releases
    OF t5- ll-ö POTENTIAL OF PARASITOIDS FOR THE CONTROL OF CABBAGE MOTH IN AUGMENTATIVE RELEASES Herminanto M.S. (The University of Jenderal Soedirman, Purwokerto, Indonesia) A thesis submitted for the degree of Master of Agricultural Science in the Department of Applied and Molecular Ecology, Faculty of Agricultural and Natural Resource Sciences, Adelaide University November 1995 Revised September 2001 ll TABLE OF CONTENTS Page DECLARATION v ABSTRACT vi ACKNOWLEDMENTS vii 1.0 INTRODUCTION 1 2.0 REVIEW OF LITERÄTTJRE .... 8 2.L Introduction 8 2.2 The cabbage moth (Plutelln xylostelaL.) 10 2.2.I Introduction 10 2.2.2 Biology t2 2.2.3 Control measures 2t 2.3 Role of parasitoids in insect pest management 4I 2.3.I Introduction ....... 4L 2.3.2 Utilisation of parasitoids ..... 42 2.3.3 Classical biological control 43 2.3.4 Augmentation 47 2.3.5 Conservation 55 2.4 The parasitoid Cotesìn plutellae Kurdjumov 60 2.4.I Introduction 60 2.4.2 Morphology and life history 6I 2.4.3 Host range 6t 2.4.4 Hyperparasitoids ...... 63 2.5 The parasitoid Díadegma semiclausun Helen 63 2.5.1 Introduction 63 2.5.2 Morphology and life history 63 2.5.3 Host range 65 i 2.5.4 Hyperparasitoids 65 I lll 3.0 EFFBCTIVEI{ESS OF PARASITOIDS AT VARIOUS PARASITOID DENSITIES AGAINST DIFFERENT HOST INSTARS 67 3.1 Introduction 67 3.2 Materials and Methods 68 3.2.1 Insect source 68 3.2.2 Parasitoid effectiveness 68 3.3 Results and Discussion 72 3.3.1 Rate of parasitism 72 3.3.2 Killing capacity 75 3.3.3 Searching efficiency 79 3.3.4 Number of encounters 80 4.0 EFFECT OF CONSTANT TEMPERATLTRES PARASITISATION, DEVELOPMENT, SLZE AND FECITNDITY OF PARASITOIDS 83 4.1 Introduction 83 4.2 Materials and Methods ......
    [Show full text]