aerospace Article Design and Performance of Modular 3-D Printed Solid-Propellant Rocket Airframes Rachel N. Hernandez 1, Harpreet Singh 1, Sherri L. Messimer 2 and Albert E. Patterson 2,* 1 Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, OKT N274, 301 Sparkman Drive, Huntsville, AL 35899, USA;
[email protected] (R.N.H.);
[email protected] (H.S.) 2 Department of Industrial & Systems Engineering and Engineering Management, University of Alabama in Huntsville, OKT N143, 301 Sparkman Drive, Huntsville, AL 35899, USA;
[email protected] * Correspondence:
[email protected] or
[email protected] Academic Editor: Konstantinos Kontis Received: 23 February 2017; Accepted: 20 March 2017; Published: 23 March 2017 Abstract: Solid-propellant rockets are used for many applications, including military technology, scientific research, entertainment, and aerospace education. This study explores a novel method for design modularization of the rocket airframes, utilizing additive manufacturing (AM) technology. The new method replaces the use of standard part subsystems with complex multi-function parts to improve customization, design flexibility, performance, and reliability. To test the effectiveness of the process, two experiments were performed on several unique designs: (1) ANSYS CFX® simulation to measure the drag coefficients, the pressure fields, and the streamlines during representative flights and (2) fabrication and launch of the developed designs to test their flight performance and consistency. Altitude and 3-axis stability was measured during the eight flights via an onboard instrument package. Data from both experiments demonstrated that the designs were effective, but varied widely in their performance; the sources of the performance differences and errors were documented and analyzed.