Experiences in Delta Mission Planning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Name Spacecraft / 1958 “Pioneer” Mass[Luna] No
Deep Space Chronicle: Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Spacecraft / Mass Launch Date / Launch Place / Launch Vehicle / Nation / Design & Objective Outcome* Name No. Time Pad No. Organization Operation 1958 “Pioneer” Able 1 38 kg 08-17-58 / 12:18 ETR / 17A Thor-Able I / 127 U.S. AFBMD lunar orbit U [Luna] Ye-1 / 1 c. 360 kg 09-23-58 / 09:03:23 NIIP-5 / 1 Luna / B1-3 USSR OKB-1 lunar impact U Pioneer Able 2 38.3 kg 10-11-58 / 08:42:13 ETR / 17A Thor-Able I / 130 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 2 c. 360 kg 10-11-58 / 23:41:58 NIIP-5 / 1 Luna / B1-4 USSR OKB-1 lunar impact U Pioneer 2 Able 3 39.6 kg 11-08-58 / 07:30 ETR / 17A Thor-Able I / 129 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 3 c. 360 kg 12-04-58 / 18:18:44 NIIP-5 / 1 Luna / B1-5 USSR OKB-1 lunar impact U Pioneer 3 - 5.87 kg 12-06-58 / 05:44:52 ETR / 5 Juno II / AM-11 U.S. NASA / ABMA lunar flyby U 1959 Luna 1 Ye-1 / 4 361.3 kg 01-02-59 / 16:41:21 NIIP-5 / 1 Luna / B1-6 USSR OKB-1 lunar impact P Master Table of All Deep Space, Lunar, andPlanetary Probes1958–2000 ofAllDeepSpace,Lunar, Master Table Pioneer 4 - 6.1 kg 03-03-59 / 05:10:45 ETR / 5 Juno II / AM-14 U.S. -
Collezione Per Genova
1958-1978: 20 anni di sperimentazioni spaziali in Occidente La collezione copre il ventennio 1958-1978 che è stato particolarmente importante nella storia della esplorazio- ne spaziale, in quanto ha posto le basi delle conoscenze tecnico-scientifiche necessarie per andare nello spa- zio in sicurezza e per imparare ad utilizzare le grandi potenzialità offerte dallo spazio per varie esigenze civili e militari. Nel clima di guerra fredda, lo spazio è stato fin dai primi tempi, utilizzato dagli Americani per tenere sotto con- trollo l’avversario e le sue dotazioni militari, in risposta ad analoghe misure adottate dai Sovietici. Per preparare le missioni umane nello spazio, era indispensabile raccogliere dati e conoscenze sull’alta atmo- sfera e sulle radiazioni che si incontrano nello spazio che circonda la Terra. Dopo la sfida lanciata da Kennedy, gli Americani dovettero anche prepararsi allo sbarco dell’uomo sulla Luna ed intensificarono gli sforzi per conoscere l’ambiente lunare. Fin dai primi anni, le sonde automatiche fecero compiere progressi giganteschi alla conoscenza del sistema solare. Ben presto si imparò ad utilizzare i satelliti per la comunicazione intercontinentale e il supporto alla navigazio- ne, per le previsioni meteorologiche, per l’osservazione della Terra. La Collezione testimonia anche i primi tentativi delle nuove “potenze spaziali” che si avvicinano al nuovo mon- do dei satelliti, che inizialmente erano monopolio delle due Superpotenze URSS e USA. L’Italia, con San Mar- co, diventò il terzo Paese al mondo a lanciare un proprio satellite e allestì a Malindi la prima base equatoriale, che fu largamente utilizzata dalla NASA. Alla fine degli anni ’60 anche l’Europa entrò attivamente nell’arena spaziale, lanciando i propri satelliti scientifici e di telecomunicazione dalla propria base equatoriale di Kourou. -
Douglas Missile & Space Systems Division
·, THE THOR HISTORY. MAY 1963 DOUGLAS REPORT SM-41860 APPROVED BY: W.H.. HOOPER CHIEF, THOR SYSTEMS ENGINEERING AEROSPACE SYSTEMS ENGINEERING DOUGLAS MISSILE & SPACE SYSTEMS DIVISION ABSTRACT This history is intended as a quick orientation source and as n ready-reference for review of the Thor and its sys tems. The report briefly states the development of Thor, sur'lli-:arizes and chronicles Thor missile and booster launch inGs, provides illustrations and descriptions of the vehicle systcn1s, relates their genealogy, explains sane of the per fon:iance capabilities of the Thor and Thor-based vehicles used, and focuses attention to the exploration of space by Douelas Aircraf't Company, Inc. (DAC). iii PREFACE The purpose of The Thor History is to survey the launch record of the Thor Weapon, Special Weapon, and Space Systems; give a systematic account of the major events; and review Thor's participation in the military and space programs of this nation. The period covered is from December 27, 1955, the date of the first contract award, through May, 1963. V �LE OF CONTENTS Page Contract'Award . • • • • • • • • • • • • • • • • • • • • • • • • • 1 Background • • • • • • • • • • • • • • • • • • • • • • • • • • • • l Basic Or�anization and Objectives • • • • • • • • • • • • • • • • 1 Basic Developmenta� Philosophy . • • • • • • • • • • • • • • • • • 2 Early Research and Development Launches • • • ·• • • • • • • • • • 4 Transition to ICBM with Space Capabilities--Multi-Stage Vehicles . 6 Initial Lunar and Space Probes ••••••• • • • • • • • -
University of Montana Report of the President 1927-1928 University of Montana (Missoula, Mont.)
University of Montana ScholarWorks at University of Montana University of Montana Report of the President, University of Montana Publications 1895-1968 1-1-1928 University of Montana Report of the President 1927-1928 University of Montana (Missoula, Mont.). Office of ther P esident Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/presidentsreports_asc Recommended Citation University of Montana (Missoula, Mont.). Office of the President, "University of Montana Report of the President 1927-1928" (1928). University of Montana Report of the President, 1895-1968. 33. https://scholarworks.umt.edu/presidentsreports_asc/33 This Report is brought to you for free and open access by the University of Montana Publications at ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Report of the President, 1895-1968 by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. t O f f III STATE UNIVERSITY of MONTANA * * * PRESIDENT’ S ANNUAL REPORT 1927 - 1928 ********* ******* ***** * * * * TABLE OF CONTENTS FOR PRESIDENT’ S RE -ORT 1927-1928 A. President’ s Report ------------------------------------------------------------------------------ Page 1 B . Reports of Administrative Officers I. Dean of the Faculty ----------------------------------------------------------------------- " 9 I I. (a) Dean of Men (Not Reported) (b) Dean of Yvomen — " 10 III.(a) Registrar -
Photo Release -- Space Systems/Loral-Built Telstar 11N Satellite on Track with Post Launch Maneuvers
Photo Release -- Space Systems/Loral-Built Telstar 11N Satellite On Track With Post Launch Maneuvers Solar Arrays Deployed On Schedule Following Successful Launch PALO ALTO, Calif., Feb 27, 2009 (GlobeNewswire via COMTEX News Network) -- Space Systems/Loral (SS/L), a subsidiary of Loral Space & Communications (Nasdaq:LORL) and the leading provider of commercial satellites, today announced that the Telstar 11N satellite built for Telesat, one of the world's leading fixed satellite services operators, is performing post launch maneuvers according to plan. The satellite's solar arrays deployed on schedule several hours after separation, following yesterday's successful launch aboard a Zenit-3SLB rocket from the Baikonur Space Center in Kazakhstan. Tomorrow the satellite will begin firing its thrusters to maneuver into its final geosynchronous orbit. A photo accompanying this release is available at http://www.globenewswire.com/newsroom/prs/?pkgid=5941 "We are proud to know that this high-power satellite will help make information and entertainment more accessible around the world," said John Celli, President and Chief Operating Officer of Space Systems/Loral. "Telstar 11N demonstrates the flexibility of our standard 1300 satellite platform, which in this case was engineered to accommodate a smaller launch vehicle. It is this flexibility together with long term proven reliability that have helped SS/L achieve more than 40 percent market share over the past five years." When it reaches its final geosynchronous orbit, Telstar 11N will support video and data applications in North America, Western Europe, and Africa. Space Systems/Loral designed the satellite with a unique Atlantic Ocean beam, which will help Telesat meet growing demand for mobile broadband from both commercial and government customers in shipping and aviation. -
Aerospace Facts and Figures 1983/84
Aerospace Facts and Figures 1983/84 AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA, INC. 1725 DeSales Street, N.W., Washington, D.C. 20036 Published by Aviation Week & Space Technology A MCGRAW-HILL PUBLICATION 1221 Avenue of the Americas New York, N.Y. 10020 (212) 997-3289 $9.95 Per Copy Copyright, July 1983 by Aerospace Industries Association o' \merica, Inc. · Library of Congress Catalog No. 46-25007 2 Compiled by Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. 1725 DeSales Street, N.W., Washington, D.C. 20036 (202) 429-4600 Director Research Center Virginia C. Lopez Manager Economic Data Service Janet Martinusen Editorial Consultant James J. Haggerty 3 ,- Acknowledgments Air Transport Association of America Battelle Memorial Institute Civil Aeronautics Board Council of Economic Advisers Export-Import Bank of the United States Exxon International Company Federal Trade Commission General Aviation Manufacturers Association International Civil Aviation Organization McGraw-Hill Publications Company National Aer~mautics and Space Administration National Science Foundation Office of Management and Budget U.S. Departments of Commerce (Bureau of the Census, Bureau of Economic Analysis, Bureau of Industrial Economics) Defense (Comptroller; Directorate for Information, Operations and Reports; Army, Navy, Air Force) Labor (Bureau of Labor Statistics) Transportation (Federal Aviation Administration The cover and chapter art throughout this edition of Aerospace Facts and Figures feature computer-inspired graphics-hot an original theme in the contemporary business environment, but one particularly relevant to the aerospace industry, which spawned the large-scale development and application of computers, and conti.nues to incorpora~e computer advances in all aspects of its design and manufacture of aircraft, mis siles, and space products. -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
The Unique Evolutionary Dynamics of the SARS-Cov-2 Delta Variant
medRxiv preprint doi: https://doi.org/10.1101/2021.08.05.21261642; this version posted August 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . The unique evolutionary dynamics of the SARS-CoV-2 Delta variant Adi Stern*†1,2, Shay Fleishon*3, Talia Kustin1,2, Michal Mandelboim3,4, Oran Erster3, Israel Consortium of SARS-CoV-2 sequencingY, Ella Mendelson3,4, Orna Mor3,4, Neta S. Zuckerman†3 1 The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. 2 Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel 3 Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel. 4 School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel- Aviv, Israel. * Co-equal authorship † Corresponding authors Y Israel Consortium of SARS-CoV-2 sequencing: Neta S. Zuckerman, Orna Mor, Efrat Dahan Bucris, Michal Mandelboim, Danit Sofer, Dana Bar-Ilan, Miranda Geva, Omer Asraf, Oran Erster, Gideon Rechavi, Efrat Glick-Saar, Nir Rainy, Chen Weiner, Reut Sorek-Abramovich, Yevgeni Yegorov, Anna Vishnevsky, Patricia Benveniste-Lekovitz, Abu Hamad Ramzia, Adina Bar Chaim, Ella Mendelson. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.08.05.21261642; this version posted August 7, 2021. -
Comparing Futures for the Sacramento-San Joaquin Delta
comparing futures for the sacramento–san joaquin delta jay lund | ellen hanak | william fleenor william bennett | richard howitt jeffrey mount | peter moyle 2008 Public Policy Institute of California Supported with funding from Stephen D. Bechtel Jr. and the David and Lucile Packard Foundation ISBN: 978-1-58213-130-6 Copyright © 2008 by Public Policy Institute of California All rights reserved San Francisco, CA Short sections of text, not to exceed three paragraphs, may be quoted without written permission provided that full attribution is given to the source and the above copyright notice is included. PPIC does not take or support positions on any ballot measure or on any local, state, or federal legislation, nor does it endorse, support, or oppose any political parties or candidates for public office. Research publications reflect the views of the authors and do not necessarily reflect the views of the staff, officers, or Board of Directors of the Public Policy Institute of California. Summary “Once a landscape has been established, its origins are repressed from memory. It takes on the appearance of an ‘object’ which has been there, outside us, from the start.” Karatani Kojin (1993), Origins of Japanese Literature The Sacramento–San Joaquin Delta is the hub of California’s water supply system and the home of numerous native fish species, five of which already are listed as threatened or endangered. The recent rapid decline of populations of many of these fish species has been followed by court rulings restricting water exports from the Delta, focusing public and political attention on one of California’s most important and iconic water controversies. -
F, I3/ M EARTH VIEW: a Business Guide to Orbital Remote Sensing
_Ot-//JJ J zJ v - _'-.'3 7 F, i3/ m EARTH VIEW: A Business Guide to Orbital Remote Sensing NgI-Z4&71 (_!ASA-C_-ISB23_) EAsT VIEW: A 3USINESS GUI_E TO ORBITAL REMOTE SENSING (Houston Univ.) 13I p CSCL OBB Unclos G3/_3 001_137 Peter C. Bishop July 1990 Cooperative Agreement NCC 9-16 Research Activity No. IM.1 NASA Johnson Space Center Office of Commercial Programs Space Station Utilization Office "=.,. © Research Institute for Computing and Information Systems University of Houston - Clear Lake - T.E.C.H.N.I.C.A.L R.E.P.O.R.T Iml i I Jg. I k . U I i .... 7X7 iml The university of Houston-Clear Lake established the Research Institute for Computing and Information systems in 1986 to encourage NASA Johnson Space Center and local industry to actively support research in the computing and r' The information sciences. As part of this endeavor, UH-Clear Lake proposed a _._ partnership with JSC to jointly define and manage an integrated program of research in advanced data processing technology needed for JSC's main missions, including RICIS administrative, engineering and science responsibilities. JSC agreed and entered itffo : " a three-year cooperatlveagreement with UH-Clear _ke beginning in May, 1986, to ii jointly plan and execute such research through RICIS. Additionally, under Concept Cooperative Agreement NCC 9-16, computing and educational facilities are shared by the two institutions to conduct the research. The mission of RICIS is to conduct, coordinate and disseminate research on _-.. -- : computing and information systems among researchers, sponsors and users from UH-Clear Lake, NASA/JSC, and other research organizations. -
2017 – 2018 Recruitment Dates DISCLAIMER: Dates Subject to Change
2017 – 2018 Recruitment Dates DISCLAIMER: Dates subject to change. Information is listed in alphabetical by chapter name. Bid Day dates are included as available. Recommendations when mailed should be labeled ATTN: Membership Coordinator. Recruitment Recommendations from alumna members in good standing must be received prior to the second round of Primary Recruitment, recommendations from collegiate members need to be received prior to the first round of Primary Recruitment. Recommendations may also be sent to any chapter participating in Continuous Open Bidding. Please email our Membership Growth Specialists at [email protected] with any questions. Designation University Name Dates Mailing Address Alpha Beta University of Michigan September 15, 17, 24, 25, 27, 1322 Hill Street 28, October 2, Ann Arbor, MI 48104 October 3 Bid Day Alpha Eta Dalhousie University September 11, 13, 15, 17, 34 Jarrett Lane, C/O Catherine Savoie Hammonds September 22 Bid Day Plains, NS B4B1M9, CAN Alpha Iota Baldwin Wallace University September 22-24, Constitution South East, 144 Tressel September 24 Bid Day Berea, OH 44017 Alpha Pi Wayne State University September 13-14, 17, Box 4 Student Center Building- Wayne State September 17 Bid Day University Detroit, MI 48202 Alpha Tau Edinboro University September 5, 12, 19, 26, 5255 Lake View Drive September 28 Bid Day Edinboro, PA 16412 Alpha Upsilon Central Michigan University September 8-10, 15 607 South Main Street September 16 Bid Day Mt. Pleasant, MI 48858 Beta Alpha Nebraska Wesleyan University -
To Delta-Based Bidirectional Model Transformations: the Symmetric Case
From State- to Delta-based Bidirectional Model Transformations: the Symmetric Case Zinovy Diskin1, Yingfei Xiong1, Krzysztof Czarnecki1, Hartmut Ehrig2, Frank Hermann2;3, and Fernando Orejas4 1 Generative Software Development Lab, University of Waterloo, Canada fzdiskin,yingfei,[email protected] 2 Institut f¨urSoftwaretechnik und Theoretische Informatik, Technische Universit¨atBerlin, Germany, [email protected] 3 Interdisciplinary Center for Security, Reliability and Trust, Universit´edu Luxembourg, [email protected] 4 Departament de Llenguatges i Sistemes Inform`atics, Universitat Polit`ecnicade Catalunya, Barcelona, Spain, [email protected] Abstract. A bidirectional transformation (BX) keeps a pair of interre- lated models synchronized. Symmetric BX are those for which neither model in the pair fully determines the other. We build two algebraic frameworks for symmetric BXs, with one correctly implementing the other, and both being delta-based generalizations of known state-based frameworks. We identify two new algebraic laws|weak undoability and weak invertibility, which capture important semantics of BX and are use- ful for both state- and delta-based settings. Our approach also provides a flexible tool architecture adaptable to different user's needs. 1 Introduction Keeping a system of models mutually consistent (model synchronization) is vital for model-driven engineering. In a typical scenario, given a pair of inter-related models, changes in either of them are to be propagated to the other to restore consistency. This setting is often referred to as bidirectional model transforma- tion (BX) [3]. As noted by Stevens [15], despite early availability of several BX tools on the market, they did not gain much user appreciation because of semantic issues.