Quick viewing(Text Mode)

Fossils and Monophyly of Afrotheria: a Review of the Current Data A.O

Fossils and Monophyly of Afrotheria: a Review of the Current Data A.O

146 A.O. Averianov, A.V. Lopatin

Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова Archives of Zoological Museum of Lomonosov Moscow State University Том / Vol. 54 Cтр. / Pр. 146–160

FOSSILS AND OF : A REVIEW OF THE CURRENT DATA A.O. Averianov1, A.V. Lopatin 1Zoological Institute, Russian Academy of Sciences; [email protected]

Two groups of “afrotherians”, Macroscelidea and (Hy- racoidea, , ) are related to archaic (“con- dylarthrs”) Apheliscidae and , respectively. In such a case, however, the including Apheliscidae, Macroscelidea, Phe- nacodontidae, and Paenungulata should also include Perissodactyla, which makes Afrotheria paraphyletic. Tenrecoidea are likely related to an insectivorous grade , which may belong to a pre-zhelestid radiation of the stem placental . This hypothesis, if correct, im- plies an enormous phylogenetic gap between Tenrecoidea and the clade in cluding Macroscelidea and Paenungulata having originated from a more advanced group of archaic ungulates. The latter treatment invalidates the concept of Afrotheria as a group of closely related mammals originated in . The origin of Tubulidentata is still obscure.

ПАЛЕОНТОЛОГИЧЕСКАЯ ЛЕТОПИСЬ И МОНОФИЛИЯ AFROTHERIA: ОБЗОР СОВРЕМЕННЫХ ДАННЫХ А.О. Аверьянов1, А.В. Лопатин 1Зоологический институт РАН; [email protected]

Две группы «афротериев», Macroscelidea и Paenungulata (Hyracoidea, Proboscidea, Sirenia), связаны происхождением с архаичными копыт- ными («кондиляртрами») Apheliscidae и Phenacodontidae, соответст- венно. В таком случае, однако, клада, включающая Apheliscidae, Mac- roscelidea, Phenacodontidae и Paenungulata, должна также включать Perissodactyla, что делает Afrotheria парафилетической группой. Ten- recoidea наиболее вероятно происходят от млекопитающих насеко- моядного уровня организации, Adapisoriculidae, которые могут при- надлежать к преджелестидной радиации стволовых плацентарных. Если эта гипотеза верна, то между Tenrecoidea и кладой, содержащей Macroscelidea и Paenungulata и происходящей от более продвинутых архаичных копытных, существует огромный филогенетический раз-

© A.O. Averianov, A.V. Lopatin, 2016. and monophyly of Afrotheria 147

рыв. Эта трактовка делает концепцию Afrotheria, как группы возник- ших в Африке близкородственных млекопитающих, невалидной. Про- исхождение Tubulidentata пока не ясно.

1. Introduction Seiffert (2007) provided another com- The has been bined analysis based on genomic data (nu- reshaped signifi cantly during past decades cleotide data, chromosomal associations, and by the molecular data (for review, see Ave- retroposons) and 400 morphological charac- rianov, Lopatin, 2014). The biggest surprise ters scored across 16 extant and 35 extinct came from the clade of endemic African afrotherians. A NONA analysis of his mor- mammals that included Recent groups Ten- phological data matrix with 10,000 ratchet recoidea ( and golden moles), Macro- replications (Goloboff, 1999) produced 38 scelidea ( , or sengis), Tubu- most parsimonious trees with their consist- lidentata (), Hyracoidea (), ency index of 0.28 and retention index of Sirenia (sea cows), and Proboscidea (probos- 0.62. On the strict consensus tree, there were cideans) (Springer et al., 1997, 1999, 2004; no monophyletic Afrotheria, with Tenreco- Stanhope et al., 1998a,b; Madsen et al., 2001; idea (= ) being nested within Murphy et al., 2001; van Dijk et al., 2001; the . Malia et al., 2002). Tabuce et al. (2007) described new Ter- Several morphological characters has tiary mammals from North Africa they tho- been proposed as the afrotherian synapo- ught to “reinforce the molecular Afrotheria morphies, including high count of dorsal clade”. However, no any tenrecoid was vertebrae (Sánchez-Villagra et al., 2007), included in their data matrix and the clade characters of placenta (Mess, Carter, 2006), being “reinforced” was actually just Macro- shape of ankle bones (Seiffert, 2007; Tabuce scelidea + Paeningulata (Tabuce et al., 2007, et al., 2007), and late eruption of permanent fi g. 4). There and in a previous analysis (Zack teeth (Asher, Lehmann, 2008). However, all et al., 2005), macroscelideans and/or hyraxes these characters are either retention of plesio- are linked to the North American and Euro- morphic eutherian condition or parallelisms. pean apheliscid which disrupt However, “afrotherians” appeared to be the concept of Afrotheria as a monophyletic non-monophyletic on a morphology-based clade of the endemic African mammals. tree of Asher et al. (2003, fi g. 3), in which In the most recent morphological analysis Tubulidentata were shown to link to Xenar- utilizing an enormous number of phenotypic thra, Paenungulata to Ungulata, Afrosoricida characters (4541), a morphological consen- to Lipotyphla, and Macroscelidea to Glires. sus tree implies no monophyletic Afrotheria Few morphological phylogenetic analy- (O’Leary et al., 2013, supplementary fi g. ses that include all afrotherian groups do not S2). Golden moles are linked to the true support monophyletic status of the Afroth- moles, tenrecs to the , and ele- eria. According to a combined analysis of phant shrews to the extinct North American morphological and molecular data by Asher leptictids adapted to ricocheted locomotion. et al. (2003), the Afrotheria in- Evidently, both molecular sequence and cludes embrithopods, Plesiorycteropus, des- parsimony morphological analyses have their mostylians, the “condylarths” Hyopsodus, own limitations. The lack of the intermediate , and possibly . taxa which would fi ll the gaps between the 148 A.O. Averianov, A.V. Lopatin

Recent is critical for the both analyses. and fully developed lower talonids, In such a situation, the only possible way to while Qatranilestes, known from the lower solve the afrotherian problem seems to be the only, has reduced molar talonids. tracing the possible ancestors of the modern Widanelfarasia is similar with Protenrec and clades in the record. In this article, we some modern tenrecids in such derived char- review the known fossil record of the groups acters as ectocrista and ectofossa on P4, distal included in Afrotheria by the molecular data. root of P3 placed mesial to the P4 protocone, and “stepped” transition between P4 and an- 2. Review of the taxa terior premolars (Seiffert et al., 2007). Thus phylogenetic position of Widanelfarasia as 2.1. Tenrecoidea a stem tenrecid is a more preferable hypoth- The suprafamiliar nomenclature of this esis (Seiffert et al., 2007; Seiffert, 2010). clade is confusing. We follow Asher (2005), Dilambdogale was found to be a sister taxon Asher (2010), and Asher and Helgen (2010) to Widanelfarasia and it also shows incipient in using Tenrecoidea (=Afrosoricida, = Ten- ectorista and ectofossa on P4 (Seiffert, 2010). recomorpha) for the clade including Tenreci- dae + Chrysochloridae. The adapisoriculids 2.1.2. Chrysochloridae Todralestes variabilis and chleuhi There are 21 modern of golden- from the late of (Gheer- moles (Chrysochloridae) distributed in sub- brant, 1994, 1995) have been placed as stem Saharan Africa (Asher et al., 2010). The tenrecoids in the phylogenetic analysis by modern species, or distinct species very close Seiffert (2010). to the modern ones, are known from the Plio- Pleistocene of South Africa (Broom, 1941, 2.1.1. Tenrecidae 1948; de Graaff, 1957; Asher, 2010; Asher, There are 30 modern species of this clade Avery, 2010). The generically distinct extinct distributed in Africa (Potamogalinae) and golden Prochrysochloris miocaenicus Madagascar () (Asher, Hofreiter, is known from the early of Kenya 2006; Asher, 2010). Three extinct taxa from and possibly (Butler, Hopwood, the early Miocene of Kenya and Uganda, 1957; Butler, 1984; Mein, Pickford, 2003; Protenrec tricuspis, Erythrozootes chamer- Asher, 2010). It differs from the modern pes, and Parageogale aletris, are members chrysochlorids by unreduced posterior mo- of the crown-group Tenrecidae (Butler, 1984; lars (a normal M3 is present, M2 is widest Poduschka, Poduschka, 1985; Asher, 2010). upper molar), smaller and less molariform Another species, Protenrec butleri, is known anterior upper premolars, and less reduced from the early Miocene of Namibia (Mein, talonids on lower molars. Pickford, 2003). Jawharia tenrecoides and All these traits are plesiomorphic rela- Qatranilestes oligocaenus from the early tive to the modern taxa, which have M3 lost of and Widanelfarasia or very reduced, M2 reduced, and lower bowni, W. rasmusseni, and Dilambdogale molar talonids small single cusped or lack- gheerbranti from the late of Egypt ing altogether. Modern chrysochlorids and are either stem tenrecids or stem tenrecoids Prochrysochloris have zalambdodont den- (Seiffert, Simons, 2000; Seiffert et al., 2007; tition with reduced metaconid and talonid Seiffert, 2010). Widanelfarasia and Dilamb- basin (McDowell, 1958; Asher, Sánchez-Vil- dogale both have dilambdodont upper molars lagra, 2005). The phylogenetic position of Fossils and monophyly of Afrotheria 149

Prochrysochloris is likely outside the crown Herodotius pattersoni from the late Eocene group Chrysochloridae (Asher, 2010). of Egypt, Nementchatherium senarhense The oldest named stem taxon of Chrys- from the middle-late Eocene of Algeria, N. ochloridae is a poorly known Eochrysochlo- rathbuni and Eotmantsoius perseverans from ris tribosphenus from the early Oligocene of the middle-late Eocene of Libya, and Cham- Egypt (Seiffert et al., 2007). Eochrysochlo- bius kasserinensis from the early Eocene of ris has a single rooted p3, molariform p4, (Hartenberger, 1986; Simons et al., and lower molars with reduced but basined 1991; Tabuce et al., 2001, 2007, 2012). These talonid. As it was discussed by Seiffert et al. taxa are known from dental and gnathic re- (2007), the oldest stem chrysochlorid in Af- mains, except for the Chambius for which rica might be represented by an isolated upper two petrosals have been described (Benoit molar (M2?) with greatly reduced metacone et al., 2013b). Its petrosal lacks the anterior from the late Paleocene of Morocco, attrib- pneumatic fossa and well-developed fos- uted to ?Proteutheria or ?Lipotyphla indet. sula cochleae which correlated in modern (Gheerbrant, 1995, fi g. 22a–c, pl. 1, fi gs. 1–3). macroscelideans with the middle ear pneu- matization necessary for adaptation to low 2.2. Macroscelidea frequency hearing (Benoit et al., 2013b). The Macroscelidea includes a sin- Apheliscid “condylarths” Apheliscus gle family Macroscelididae with two extant and Haplomylus from the late Paleocene to and four extinct subfamilies (Corbet, Hanks, early Eocene of North America and louisinid 1968; Holroyd, Mussell, 2005; Holroyd, “ from the late 2010a). This classifi cation is not phylogenet- Paleocene to early Eocene of Europe share ic, as two extinct subfamilies (Myohyracinae with macroscelideans a unique combination and Mylomygalinae) are within the crown- of tarsal characters associated with their cur- group and two other subfamilies (Metoldo- sorial and saltatorial adaptations and are also botinae and Herodotiinae) are outside the similar to them in dental characters. These crown-group (Holroyd, 2010a, fi g. 8.3). The taxa were placed as stem macroscelideans name Macroscelididae should be restricted in the analysis by Zack et al. (2005); see to the crown group of elephant shrews, while also Penkrot et al. (2008). In the analysis by other taxa should be considered as the stem Tabuce et al. (2007), Haplomylus is a stem macroscelideans. The 17 to 19 modern spe- macroscelidean, while Paschatherium is a cies of Macroscelididae are distributed in stem paenungulate, and Apheliscus is a sis- Africa either North (“” rozeti) ter taxon to the clade Macroscelidea + Pae- or South to (other species) (Douady et nungulata. In the analysis by Hooker and al., 2003; Smit et al., 2011). The Miocene and Russell (2012), Chambius was nested within younger extinct elephant shrews are known Apheliscidae if postcranial characters were South to Sahara, while the records included, but within the Louisinidae if these came from North Africa and Namibia (Pat- characters were excluded. terson, 1965; Novacek, 1984; Butler, 1995; Holroyd, 2010a). 2.3. Ptolemaiida The Eocene Macroscelidea are united The Ptolemaiida is a small group of ex- in the subfamily Herodotiinae (Holroyd, tinct African mammals known from the ear- 2010a), although monophyly of this group ly Oligocene of Egypt (Qarunavus meyeri, has not been demonstrated. These taxa are lyonsi, P. grangeri, Cleopatrodon 150 A.O. Averianov, A.V. Lopatin ayeshae, and C. robusta), late Oligocene of was thought to be convergent (MacPhee, Kenya (Ptolemaia cf. grangeri), and early 1994). The collagen sequence data suggest to middle Miocene of Kenya and Uganda Plesiorycteropus affi nities to Tenrecoidea (Kelba quadeemae) (Osborn, 1908; Bown, (Buckley, 2013). Results of the study of its Simons, 1987; Simons, Bown, 1995; Cote bony labyrinth supported its ordinal distinc- et al., 2007; Gunnell et al., 2010; Miller et tiveness (Benoit et al., 2015). al., 2015). There are also remains of uni- 2.6. Paenungulata dentifi ed ptolemaiids from the late Eocene of Egypt (Gunnell et al., 2010). In the latest The Paenungulata includes Hyracoidea phylogenetic analyses, Kelba was placed as a and (Simpson, 1945; Novacek, sister taxon to Tubulidentata (Seiffert, 2007; Wyss, 1986; Novacek et al., 1988; Gheer- Gheerbrant et al., 2014). brant et al., 2005a). In a recent phylogenetic analysis, the “condylarths” Phenacodontidae 2.4. Tubulidentata are considered as a sister taxon to the Pae- There is a single Recent species of aard- nungulata (Rose et al., 2014). varks, afer, distributed in Africa The authors just cited called the latter south to Sahara (Shoshani et al., 1988; Hol- clade “Afrotheria”, but not a single tenrecoid royd, 2010b). This species is known since the was included in their analysis. The recently in Africa (Lehmann, 2008; Holroyd, discovered stem paenugulate Ocepeia with 2010b). There are at least two extinct species two species from the middle Paleocene of of Orycteropus from the Plio-Pleistocene of Morocco was found to be a sister taxon to Africa, and fi ve to seven extinct species of the clade Phenacodontidae + Paenungulata the closely related Amphiorycteropus from (Gheerbrant et al., 2014). the Mio-Pliocene of Africa, Europe, and Asia 2.6.1. Hyracoidea (Patterson, 1975; Lehmann et al., 2004, 2005, 2006; Lehmann, 2006, 2008, 2009; Holroyd, The four Recent species of hyraxes clas- 2010b). There are two other extinct genera of sifi ed within three genera (Dendrohyrax, , Myorycteropus with one to Heterohyrax, and Procavia) of the family three species from the early–middle Miocene Procaviidae represent actually an insignifi - of Kenya and Uganda and Leptorycteropus cant remnants of the past vast diversity of with a single species, L. guilielmi, from the the Hyracoidea which were among dominant upper Miocene of Kenya (Patterson, 1975; herbivorous mammals in Afro- con- Pickford, 1975; Lehmann, 2009; Holroyd, tinent during the Paleogene and expanded 2010b). These extinct taxa are already very their range to Eastern Asia in the Neogene specialized and do not offer clues for the ori- (Rasmussen, 1989; Schwartz et al., 1995; gin of Tubulidentata. Gheerbrant et al., 2005a; Rasmussen, Gutié- rrez, 2010). The oldest known representa- 2.5. Bibymalagasia tives of the crown Procaviidae from the late This order was erected for the Ple- Miocene of Namibia and Kenya are Hetero- siorycteropus known from the Pleistocene auricampensis and Dendrohyrax sp. of Madagascar (MacPhee, 1994; Werde- (Rasmussen et al., 1996; Pickford, Hlusko, lin, 2010). The rostral part of its and 2007). Other extinct taxa of Procaviidae in- its dentition are unknown, its similarity clude two species of Procavia and Gigan- in the postcranial skeleton to Orycteropus tohyrax maguirei from the Pleistocene of Fossils and monophyly of Afrotheria 151

South Africa (Kitching, 1965; Rasmussen, um sp. came from Angola, Libya, Tunisia, Gutiérrez, 2010). Kenya, and Oman (Al-Sayigh et al., 2008; In the latest proposed classifi cation of Sanders et al., 2010b; Vialle et al., 2013). Hyracoidea, distinguished are four families The Eocene Palaeomasiidaeare are known of the extinct stem hyracoids (Geniohyidae, only outside of Africa and include Criva- Saghatheriidae, Titanohyracidae, and Plio- diatherium mackennai and C. iliescuifrom hyracidae), with Geniohyidae uniting these fro, Romania and Palaeoamasia kansui and taxa by their most plesiomorphic traits of Hypsamasia seni from Anatolia (Radulesco bunodont artiodactyl-like dentition (Rasmus- et al., 1976; Sen, Heintz, 1979; Radulesco, sen, Gutiérrez, 2010). However, according to Sudre, 1985; Kaya, 1995; Maas et al., 1998; the phylogenetic analysis by Barrow et al. Sanders et al., 2014). Phenacolophus phalax (2010), the most basal clade of Hyracoidea from the late Paleocene of Mongolia was is a group consisting of amou- considered a basal embrithopod by McKen- rensis from the early Eocene of Algeria, na and Manning (1977), but this was ques- Microhyrax lavocati from the early Eocene tioned by some authors (Radulesco, Sudre, of Tunisia, and Dimaitherium patnaiki from 1985; Gheerbrant et al., 2005a). In the recent the late Eocene of Egypt (Court, Mahboubi, phylogenetic analyses, Phenacolophus is 1993; Tabuce et al., 2007). placed as a sister taxon to Sirenia (Tabuce et al., 2007) or to + Tethytheria 2.6.2. Tethytheria (Gheerbrant, 2009). Among embrithopods, The above-order ranked taxon Tethythe- the complete skull and skeleton are known ria was initially proposed to include Sirenia, for Arsinoitherium zitteli only (Andrews, Proboscidea, and (McKenna, 1906; Court, 1992a, 1993); the other taxa 1975; Domning et al., 1986; Novacek, 1986; are represented by gnathodental remains. Novacek, Wyss, 1986; Shoshani, 1986; No- Arsinoitherium was found to be a member of vacek et al., 1988; Tassy, Shoshani, 1988). Tethytheria by analysis of cranial characters (Court, 1992a). Some petrosal characters link 2.6.2.1. Embrithopoda Arsinoitherium to Proboscidea (Court, 1990). This small extinct group was part of Simpson’s concept of Paenungulata (Simp- 2.6.2.2. Proboscidea son, 1945), but was not included in the Proboscidea, one of the most diverse Tethytheria by McKenna (1975). The close mammalian order in a not far past, nowadays relationships of Embrithopoda to Tethytheria is represented by but two species of Loxo- were fi rst proposed by Tassy and Shoshani donta and one species of of the fam- (1988). The Arsinoitheriidae are endemic to ily (Gheerbrant et al., 2005a; Afro-Arabic continent and include Namathe- Rohland et al., 2010; Sanders et al., 2010a). rium blackcrowense from the middle Eocene A subrecent elephantid, the woolly of Namibia, Arsinoitherium zitteli is known Mammuthus primigenius, has become extinct from the late Eocene to early Oligocene of in the historical times (Vartanyan et al., 1993; Egypt, and A. giganteum is known from the Guthrie, 2004). Proboscideans are divided late Oligocene of (Andrews, 1906; into four superfamilies, two of which have Court, 1990, 1992a,b, 1993; Sanders et al., radiated in the Eocene-Oligocene of Africa 2004; Pickford et al., 2008; Sanders et al., (Barytheriodea and Moeritherioidea), one in 2010b). Remains referred to Arsinoitheri- the Neogene of the Old World (Deinotheri- 152 A.O. Averianov, A.V. Lopatin oidea), while modern distrib- lows to suggest an African origin of Sirenia uted in Africa, Eurasia and both Americas (Benoit et al., 2013a). appeared as late as in the early Oligocene 2.6.2.4. Desmostylia (Sanders et al., 2010a). The oldest stem proboscideans came This small order of the extinct ma- from the late Paleocene to early Eocene of rine mammals has no records in Africa, Morocco: Khamsaconus bulbosus, Erith- in contrast to other supposed afrotherians erium azzouzourm, escuil- (Gheerbrant et al., 2005a). Two families lieri, and Daoutherium rebouli (Sudre et al., of desmostylians, Palaeoparadoxiidae and 1993; Gheerbrant et al., 1996, 1998, 2002, Desmostylidae, are known only from the 2005b, 2012; Gheerbrant, 2009; Sanders et Oligocene–Miocene of North Pacifi c region. al., 2010a). Th is oldest proboscideans were The oldest known taxa are Behemotops pro- already well differentiated in their size and teus (Palaeoparadoxiidae) from the middle– morphology suggesting that origin of the en- late Oligocene of Washington, USA, and tire group had occurred signifi cantly earlier. Ashoro alaticosta from the late Oligocene The recent phylogenetic analyses placed Pro- of Japan (Desmostylidae) (Domning et al., boscidea as a sister taxon to Sirenia (Gheer- 1986; Ray et al., 1994; Inuzuka, 2000; Be- brant, 2009; Gheerbrant et al., 2014). atty, 2009). Traditionally, Desmostylia were consid- 2.6.2.3. Sirenia ered as a part of the tethytherian radiation Most of the diversity of Sirenia, just like most closely linked to proboscideans and in Hyracoidea and Proboscidea, was in the anthracobunids (Domning et al., 1986; Tassy, past. There are four families of Sirenia: Eo- Shoshani, 1988; Gheerbrant et al., 2005a). cene Porastomidae and , mid- However, in the recent phylogenetic analy- dle Eocene to Recent , and late sis including Recent taxa constrained by a Oligocene to Recent Trichechidae (Domning ‘‘molecular scaffold”, and et al., 2010). There are but four currently ex- Desmostylia were placed as stem perissodac- tant sirenian species: Indo-Pacifi c tyls (Cooper et al., 2014). In another analysis, dugon (Dugongidae) and three species of Anthracobunidae are placed within the crown Atlantic Trichechus (Trichechidae) (Gheer- group Perissodactyla (Rose et al., 2014). brant et al., 2005a; Domning et al., 2010). A North Pacifi c dugongid, the Steller’s sea cow, 3. Discussion gigas, has been exterminated Among the modern “afrotherian” clades, in the 18th century (Anderson, 1995). the origin of Tubulidentata is obscure. The oldest sirenian taxa are prorasto- Most likely, Tenrecoidea (Tenrecidae and mids, sirenoides and Pezosiren Chrysochloridae) originated from the Adapi- portelli, from the early–middle Eocene of soriculidae, Macroscelidea originated from Jamaica (Owen, 1855, 1875; Savage et al., Apheliscidae, and Paenungulata (Hyracoidea 1994; Domning, 2001). Recently, a proras- + Proboscidea + Sirenia) originated from tomid vertebra has been reported from the Phenacodontidae. middle Eocene of Senegal (Hautier et al., Apheliscidae and Phenacodontidae are 2012). An isolated sirenian petrosal from members of Condylarthra, which is sup- the early–middle Eocene of Tunisia is more posed to be a paraphyletic group of archaic primitive than that in Prorastomus, which al- ungulates (Archibald, 1998), while Adapiso- Fossils and monophyly of Afrotheria 153

and few postcranial elements, with its oldest representative Deccanolestes having come from the Maastrichtian of India (Prasad et al., 1994, 2010; Boyer et al., 2010; Smith et al., 2010; Goswami et al., 2011). According to one of the recent phylogenetic hypotheses (Goswami et al., 2011), Adapisoriculidae be- long to the very basal radiation of the stem placental mammals, prior to an offshoot of the zhelestid eutherians. This, if true, may explain many plesiomorphic features of the tenrecoids, including presence of cloaca and ineffi cient thermoregulation. What seems to be undoubted is that tenrecoids are not closely related to other “afrotherian” mam- mals which have originated from far more advanced archaic ungulates. Acknowledgements This work was supported by the Russian Scientifi c Fund (project 14-14-00015). References Al-Sayigh A.R., Nasir S., Schulp A.S., Stevens Fig. 1. А likely origin of main “afrotherian” N.J. 2008. The first described Arsinoitheri- um from the upper Eocene Aydim Forma- clades. The time scale is adapted from Gra- tion of Oman: Biogeographic implications. dstein et al. (2004). — Palaeoworld, 17 (1): 41–46. Рис. 1. Вероятное происхождение основных Anderson P.K. 1995. Competition, predation, клад «Afrotheria». Временная шкала со- and the evolution and of Steller’s гла сно Gradstein et al. (2004). sea cow, Hydrodamalis gigas. — Science, 11 (3): 391–394. riculidae is a group of insectivorous grade of Andrews C.W. 1906. A descriptive catalogue the mammals. of the Tertiary Vertebrata of the Fayum, The clade including Apheliscidae, Phe- Egypt. London: British Museum of Natural History. 324 p. nacodontidae, with their most recent com- Archibald J.D. 1998. Archaic ungulates (“Con- mon ancestor and all the latter’s descendants, dylarthra”). — Janis C.M., Scott K.M., Jacobs should include also at least Perissodactyla L.L. (eds). Evolution of Tertiary mammals of (Rose et al., 2014), thus making Afrotheria North America. Vol. 1: Terrestrial carni- paraphyletic in their current content. vores, ungulates, and ungulatelike mam- There is a considerable morphological mals. New York: Cambridge University and phylogenetic gap between Adapisoricu- Press. P. 292–331. Asher R.J. 2005. Insectivoran-grade placentals. lidae and archaic ungulates (Fig. 1). Unfor- — Rose K.D., Archibald J.D. (eds). The rise tunately, members of this group are known of placental mammals: Origins and relation- but from isolated teeth and jaw fragments ships of the major extant clades. Baltimore, 154 A.O. Averianov, A.V. Lopatin

The Johns Hopkins University Press. P. 50– clues for the origin and evolution of Sirenia 70. (Mammalia, Afrotheria) in Africa. — PLoS Asher R.J. 2010. Tenrecoidea. — Werdelin L., One, 8 (1): e54307. Sanders W.J. (eds). mammals of Benoit J., Lehmann T., Vatter M. et al. 2015. Africa. Berkeley: University of California Comparative anatomy and three-dimensi- Press. P. 99–106. onal geometric-morphometric study of the Asher R.J., Avery D.M. 2010. New golden moles bony labyrinth of Bibymalagasia (Mamma- (Afrotheria, Chrysochloridae) from the early lia, Afrotheria). — Journal of Pliocene of South Africa. — Palaeontologia Pa le ontology, 35 (3): e930043. Electronica, 13 (1): 3A. B enoit J., Orliac M., Tabuce R. 2013b. The pet- Asher R.J., Helgen K.M. 2010. Nomenclature rosal of the earliest elephant- Cham- and placental mammal phylogeny. — BMC bius (Macroscelidea: Afrotheria) from the Evolutionary Biology, 10: 102. Eocene of Djebel Chambi (Tunisia) and the Asher R.J., Hofreiter M. 2006. phylog- evolution of middle and inner ear of eleph- eny and the noninvasive extraction of nu- ant-shrews. — Journal of Systematic Palae- clear DNA. — Systematic Biology, 55 (2): ontology, 11 (8): 907–923. 181–194. Bown T.M., Simons E.L. 1987. New Oligo- Asher R.J., Lehmann T. 2008. Dental eruption cene Ptolemaiidae (Mammalia: ?Pantolesta) in afrotherian mammals. — BMC Biology, from the , Fayum 6: 14. Depression, Egypt. Journal of Vertebrate Pa- Asher R.J., Maree S., Bronner G. et al. 2010. leontology, 7 (3): 311–324. A phylogenetic estimate for golden moles Boyer D.M., Prasad G.V.R., Krause D.W. et (Mammalia, Afrotheria, Chrysochloridae). al. 2010. New postcrania of Deccanolestes — BMC Evolutionary Biology, 10: 69. from the Late of India and their Asher R.J., Novacek M.J., Geisler J.H. 2003. Re- bearing on the evolutionary and biogeo- la tionships of endemic African mammals graphic history of euarchontan mammals. and their fossil relatives based on morpho- — Naturwissenschaften, 97 (4): 365–377. logical and molecular evidence. — Journal Broom R. 1941. On two Pleistocene golden mo- of Mammalian Evolution, 10 (1–2): 131–194. les. Annals of the Transvaal Museum, 20: Asher R.J., Sánchez-Villagra M.R. 2005. Lock- 215–216. ing yourself out: diversity among dentally Broom R. 1948. Some South African Pliocene zalambdodont therian mammals. — Jour- and Pleistocene mammals. — Annals of the nal of Mammalian Evolution, 12 (1–2): Transvaal Museum, 21 (1–2): 1–38. 265–282. B uckley M. 2013. A molecular phylogeny of Ple- Averianov A.O., Lopatin A.V. 2014. High-level siorycteropus reassigns the extinct mamma- systematics of placental mammals: current lian order ‘Bibymalagasia’. PLoS One, 8 (3): status of the problem. — Biology Bulletin, e59614. 41 (9): 801–816. B utler P.M. 1984. Macroscelidea, , B arrow E., Seiffert E.R., Simons E.L. 2010. A and Chiroptera from the Miocene of East primitive hyracoid (Mammalia, Paenungu- Africa. — Palaeovertebrata, 14 (3): 117– lata) from the early (late Eoce- 200. ne) of Egypt. — Journal of Systematic Pal- B utler P.M. 1995. Fossil Macroscelidea. — Ma- aeontology, 8 (2): 213–244. mmal Review, 25 (1–2): 3–14. Beatty B.L. 2009. New material of Cornwal- B utler P.M., Hopwood A.T. 1957. Insectivora lius sookensis (Mammalia: Desmostylia) and chiroptera from the Miocene rocks of from the Yaquina Formation of Oregon. — Kenya colony. Fossil Mammals of Africa, Journal of Vertebrate Paleontology, 29 (3): 13. London: British Museum (Natural His- 894–909. tory). P. 1–35. Benoit J., Adnet S., Mabrouk E.E. et al. 2013a. Cooper L.N., Seiffert E.R., Clementz M.T. et al. Cranial remain from Tunisia provides new 2014. Anthracobunids from the Middle Eo- Fossils and monophyly of Afrotheria 155

cene of India and Pakistan are stem perisso- Douady C.J., Catzeflis F.M., Raman J. et al. dactyls. — PLoS One, 9 (10): e109232. 2003. The Sahara as a vicariant agent, and C orbet G.B., Hanks J. 1968. A revision of the the role of Miocene climatic events, in the elephant-shrews, family Macroscelididae. — diversification of the mammalian order Ma- Bulletin of the British Museum (Natural Hi- croscelidea (elephant shrews). — Proceed- story), Zoology, 16 (2): 45–111. ings of the National Academy of Sciences Cote S., Werdelin L., Seiffert E.R., Barry J.C. USA, 100 (14): 8325–8330. 2007. Additional material of the enigmatic Early Miocene mammal Kelba and its rela- Gheerbrant E. 1994. Les mammifères paléo- tionship to the order Ptolemaiida. — Pro- cenes du Bassin d’Ouarzazate (Maroc). II. ceedings of the National Academy of Sci- Todralestidae (Proteutheria, ). — ences USA, 104 (13): 5510–5515. Palaeontographica, Abteilung A: Palaozo- Court N. 1990. Periotic anatomy of Arsinoithe- ologie, Stratigraphie, 231 (4–6): 133–188. rium (Mammalia, Embrithopoda) and its phy- Gheerbrant E. 1995. Les mammifères paléoce- logenetic implications. — Journal of Verte- nes du Bassin d’Ouarzazate (Maroc). III. brate Paleontology, 10 (2): 179–182. Ada pisoriculidae et autres mammifères (Car- C ourt N. 1992a. The skull of Arsinoitherium (Ma- ni vora, ?Creodonta, Condylarthra, ?Ungu- mmalia, Embrithopoda) and the higher in- lata et ). — Palaeontographica, terrelationships of ungulates. — Palaeover- Abt. A: Palaozoologie, Stratigraphie, 237 (1– tebrata, 22 (1): 1–43. Court N. 1992b. A unique form of dental bilo- 4): 39–132. phodonty and a functional interpretation of Gheerb rant E. 2009. Paleocene emergence of ele- peculiarities in the masticatory system of Arsi- phant relatives and the rapid radiation of Afri- noitherium (Mammalia, Embrithopoda). — can ungulates. — Proceedings of the National Historical Biology, 6 (2): 91–111. Academy of Sciences USA, 106 (26): 10717– Court N. 1993. Morphology and functional ana- 10721. tomy of the postcranial skeleton in Arsinoi- Gheerbrant E., Amaghzaz M., Bouya B. et al. therium (Mammalia, Embrithopoda). — Pa lae- 2014. Ocepeia (Middle Paleocene of Moro- on tographica, A: Palaozoologie, Strati gra phie, cco): The oldest skull of an afrotherian mam- 226 (4–6): 125–169. mal. — PLoS One, 9 (2): e89739. C ourt N., Mahboubi M. 1993. Reassessment of Gheerbrant E., Bouya B., Amaghzaz M. 2012. lower Eocene Seggeurius amourensis: As- pects of primitive dental morphology in the Dental and cranial anatomy of mammalian order Hyracoidea. — Journal of azzouzorum from the Paleocene of Moroc- Paleontology, 67 (5): 889–893. co, earliest known proboscidean mammal. de Graaff G. 1957. A new chrysochlorid from — Palaeontographica, Abt. A: Palaozoolo- Makapansgat. — Palaeontologia Africana, gie, Stratigraphie, 297 (5–6): 151–183. 5: 21–27. Gheerbrant E., Domning D.P., Tassy P. 2005a. Domning D.P. 2001. The earliest known fully Paenungulata (Sirenia, Proboscidea, Hyra- quadrupedal sirenian. — Nature, 413 (6856): coidea, and relatives). — Rose K.D., Archi- 625–627. bald J.D. (eds). The rise of placental mam- D omning D.P., Ray C.E., McKenna M.C. 1986. mals. Origins and relationships of the major Two new Oligocene desmostylians and a extant clades. Baltimore: Johns Hopkins Uni- dis cussion of Tethytherian systematics. — Smithsonian Contributions to Paleobiology, versity Press. P. 84–105. 59: 1–56. Gheerbrant E., Sudre J., Cappetta H. 1996. A D omning D.P., Zalmout I.S., Gingerich P.D. 2010. Palaeocene proboscidean from Morocco. — Sirenia. — Werdelin L., Sanders W.J. (eds). Nature, 383 (6595): 68–70. Cenozoic mammals of Africa. Berkeley: Uni- Gheerbrant E., Sudre J., Cappetta H., Bignot G. versity of California Press. P. 147–160. 1998. Phosphatherium escuilliei du Thané- 156 A.O. Averianov, A.V. Lopatin

tien du Bassin des Ouled Abdoun (Maroc), mals of Africa. Berkeley: University of Cal- plus ancien proboscidien (Mammalia) d’Af- ifornia Press. P. 89–98. rique. — Geobios, 31 (2): 247–269. Holroyd P.A. 2010b. T ubulidentata. — Werde- Gheerbr ant E., Sudre J., Cappetta H. et al. 2002. lin L., Sanders W.J. (eds). Cenozoic mam- A new large mammal from the of mals of Africa. Berkeley: University of Cal- Morocco: Evidence of surprising diversity ifornia Press. P. 107–111. of early proboscideans. — Acta Palaeonto- Holroyd P.A., Mussell J.C. 2005. Macroscelidea logica Polonica, 47 (3): 493–506. and Tubulidentata. — Rose K.D., Archibald Gheerbra nt E., Sudre J., Tassy P. et al. 2005b. J.D. (eds). The rise of placental mammals: Nouvelles données sur Phosphatherium es- Origins and relationships of the major ex- cuilliei (Mammalia, Proboscidea) de l’Éo cè ne tant clades. Baltimore: The Johns Hopkins inférieur du Maroc, apports à la phylogé- University Press. P. 71–83. nie des Proboscidea et des ongulés lo pho- Hooker J.J., Russell D.E. 2012. Early Palaeo- dontes. — Geodiversitas, 27 (2): 239–333. gene Louisinidae (Macroscelidea, Mamma- Goloboff P.A. 19 99. NONA (ver. 1.9). Software lia), their relationships and north European published by the author, S.M. de Tucuman, diversity. — Zoological Journal of the Lin- Argentina. www..org. nean Society, 164 (4): 856–936. Goswami A., Prasad G.V.R., Upchurch P. et al. Inuzuka N. 2000. Prim itive late Oligocene des- 2011. A radiation of arboreal basal eutheri- mostylians from Japan and phylogeny of the Desmostylia. — Bulletin of the Ashoro Mu- an mammals beginning in the Late Creta- seum of Paleontology, 1: 91–123. ceous of India. — Proceedings of the Na- Kaya T.T. 1995. Palaeoamasia kansui (Mam- tional Academy of Sciences USA, 27 (108): malia) in the Eocene of Bultu-Zile (Tokat- 16333–16338. Northeastern Turkey) and systematic revi- Gradstein F.M., Ogg J.G., Smith A.l. 2004. A sion of Palaeoamasia. — Turkish Journal of geologic time scale 2004. Cambridge (MA): Earth Science, 4: 105–111. Cambridge University Press. 589 p. Kitching J.W. 1965. A new giant hyracoid from Gunnell G.F., Gingerich P.D., Holroyd P.A. the Limeworks Quarry, Makapansgat, Pot- 2010. Ptolemaiida. — Werdelin L., Sanders gietersrus. — Palaeontologica Africana, 9: W.J. (eds). Cenozoic mammals of Africa. 91–96. Berkeley: University of California Press. P. Lehmann T. 2006. Biodiversity of the Tubuli- 83–87. dentata over geological time. — Afrotheri- Guthrie R.D. 2004. Radiocarbon evidence of an Conservation, 4: 6–11. mid- stranded on an Lehmann T. 2008. Plio -Pleistocene aardvarks Alaskan Bering Sea island. — Nature, 429 (Mammalia, Tubulidentata) from East Af- (6993): 746–749. rica. — Fossil Record, 11 (2): 67–81. Hartenberger J.-L. 1986. Hypothèse paléonto- Lehmann T. 2009. Phylogeny and systematics logique sur l’origine des Macroscelidea (Mam- of the Orycteropodidae (Mammalia, Tubu- malia). — Comptes rendus de l’Aca démie lidentata). — Zoological Journal of the Lin- des sciences. Série 2, Mécanique, Phy si que, nean Society, 155 (3): 649–702. Chimie, Sciences de l’univers, Sciences de la Lehmann T., Vignaud P., Likius A., Brunet M. Terre, 302 (5): 247–249. 2005. A new species of Orycteropodidae Hautier L., Sarr R., Tabuce R. et al. 2012. First (Mammalia, Tubulidentata) in the Mio- prorastomid sirenian from Senegal (West- Pliocene of northern Chad. — Zoologi- ern Africa) and the Old World origin of sea cal Journal of the Linnean Society, 143 (1): cows. — Journal of Vertebrate Paleontolo- 109–131. gy, 32 (5): 1218–1222. Lehmann T., Vignaud P., Likius A. et al. 2006. Holroyd P.A. 2010a. M acroscelidea. — Werde- A sub-complete fossil (Mammalia, lin L., Sanders W.J. (eds). Cenozoic mam- Tubulidentata) from the Upper Miocene of Fossils and monophyly of Afrotheria 157

Chad. — Comptes Rendus Paleovol, 5 (5): Miller E.R., Rasmussen D.T., Kappelman J. et al. 693–703. 2015. Ptolemaia from West Turkana, Ken- Lehmann T., Vignaud P., Mackaye H.T., Bru- ya. — Bulletin of the Peabody Museum of net M. 2004. A fossil aardvark (Mammalia, Natural History, 56 (1): 81–88. Tubulidentata) from the lower Pliocene of Murphy W.J., Eizirik E., Johnson W.E. et al. Chad. — Journal of African Earth Sciences, 2001. Molecular phylogenetics and the ori- 40 (5): 201–217. gins of placental mammals. — Nature, 409 Maas M.C., Thewissen J.G.M., Kappelman J. (6820): 614–618. 1998. Hypsamasia seni (Mammalia: Embri- Novacek M.J. 1984. Evolutionary stasis in the thopoda) and other mammals from the Eo- elephant-shrew, . — Eldredge cene Kartal Formation of Turkey. — Bulle- N., Stanley S.M. (eds). Living Fossils. New tin of Carnegie Museum of Natural History, York: Springer. P. 4–22. 34: 286–297. Novacek M.J. 1986. Th e skull of leptictid in- MacPhee R.D.E. 1994. Morphology, adaptati- sectivorans and the higher-level classifica- ons, and relationships of Plesiorycteropus: tion of eutherian mammals. — Bulletin of and a diagnosis of a new order of eutherian the American Museum of Natural History, mammals. — Bulletin of the American Mu- 183: 1–112. seum of Natural History, 220: 1–214. Novacek M.J., Wyss A.R. 1986. Higher-level re- Madsen O., Scally M., Douady C.J. et al. 2001. lationships of the Recent eutherian orders: Parallel adaptive radiations in two major morphological evidence. — Cladistics, 2 (3): clades of placental mammals. — Nature, 257–287. 409 (6820): 610–614. Novacek M.J., Wyss A. R., McKenna M.C. Malia M.J., Adkins R.M., Allard M.W. 2002. 1988. The major groups of eutherian mam- Molecular support for Afrotheria and the mals. — Benton M.J. (ed). The phylogeny of Lipotyphla based on analyses and classification of the Tetrapods, Vol. 2: of the growth hormone receptor gene. — Mammals. The Systematics Association, Spe- Molecular Phylogenetics and Evolution, 24 (1): 91–101. cial Volume. 35B: 31–71. McDowell S.B. 1958. The Greater Antillean in- O’Leary M.A., Bloch J .I., Flynn J.J. et al. 2013. sectivores. — Bulletin of the American Mu- The placental mammal ancestor and the post- seum of Natural History, 115: 113–214. K-Pg radiation of placentals. — Science, McKenna M.C. 1975. To wards a phylogenetic 339 (6120): 662–667. classification of the Mammalia. — Luckett Osborn H.F. 1908. New fossil mammals from W.P., Szalay F.S. (eds). Phylogeny of the Pri- the Fayum Oligocene, Egypt. — Bulletin of mates. New York: Plenum Press. P. 21–46. the American Museum of Natural History, McKenna M.C., Manning E.M. 1977. Affini- 24: 265–272. ties and palaeobiogeographic significance Owen R. 1855. On the fossil skull of a mam- of the Mongolian Paleogene genus Phena- mal (Prorastomus sirenoides, Owen) from colophus. — Geobios, Memoire Special, 1: the island of Jamaica. — Quarterly Journal 61–85. of the Geological Society of London, 11: Mein P., Pickford M. 2003. Insectivora from 541–543. Arrisdrift, a basal Middle Miocene local- Owen R. 1875. On Pror astomus sirenoides (Ow.). ity in southern Namibia. — Memoir of the — Part II. — Quarterly Journal of the Geo- Geological Survey of Namibia, 19: 143–146. logical Society of London, 31: 559–567. Mess A., Carter A.M. 2006. Evolutionary trans- Patterson B. 1965. Th e fossil elephant shrews formations of fetal membrane characters in (family Macroscelididae). — Bulletin of the Eutheria with special reference to Afroth- Museum of Comparative Zoology, 133 (6): eria. — Journal of Experimental Zoology. 297–336. Part B: Molecular and Developmental Evo- Patterson B. 1975. Th e fossil aardvarks (Mam- lution, 306 (2): 140–163. malia: Tubulidentata). — Bulletin of the 158 A.O. Averianov, A.V. Lopatin

Museum of Comparative Zoology, 147 (5): Rasmussen D.T. 1989. The evolution of the Hy- 185–237. racoidea. — Prothero D.R., Schoch R.R. (eds). Penkrot T.A., Zack S. P., Rose K.D., Bloch J.I. The Evolution of Perissodactyls. New York: 2008. Postcranial morphology of Aphelis- Oxford University Press. P. 57–78. cus and Haplomylus (Condylarthra, Ap- Rasmussen D.T., Gutiérrez M. 2010. Hyracoi- heliscidae): Evidence for a Paleocene Hol- dea. — Werdelin L., Sanders W.J. (eds). Ce- arctic origin of Macroscelidea. — Sargis nozoic mammals of Africa. Berkeley: Uni- E.J., Dagosto M. (eds). Mammalian Evolu- versity of California Press. P. 123–145. tionary Morphology. A Tribute to Frederick Rasmussen D.T., Pickford M., Mein P. et al. S. Szalay. Dordrect: Springer. P. 73–106. 1996. Earliest known procaviid hyracoid from Pickford M. 1975. New fossil Orycteropodi- the Late Miocene of Namibia. — Journal of dae (Mammalia, Tubulidentata) from East , 77 (3): 745–754. Africa. Orycteropus minutus sp. nov. and R ay C.E., Domning D.P., McKenna M.C. 1994. Orycteropus chemeldoi sp. nov. — Nether- A new specimen of Behemotops proteus (Ma- lands Journal of Zoology, 25 (1): 57–88. mmalia: Desmostylia) from the mari ne Oligo- Pickford M., Hlusko L .J. 2007. Late Miocene cene of Washington. — Berta A., Deméré T.A. procaviid hyracoids (Hyracoidea: Dendro- (eds). Contributions in marine mammal pale- hyrax) from Lemudong’o, Kenya. — Kirt- ontology honoring Frank C. Whitmore, Jr. landia, 56: 106–111. Proceedings of the San Diego Society of Na- Pickford M., Senut B., Morales J., Mein P., tural History, 29: 205–222. Sanchez I.M. 2008. Mammalia from the Lu- Rohland N., Reich D., Mallick S., Meyer M., tetian of Namibia. — Memoir of the Geo- Green R.E., Georgiadis N.J., Roca A.L., logical Survey of Namibia, 20: 465–514. Hofreiter M. 2010. Genomic DNA sequenc- Poduschka W., Podusch ka C. 1985. Zur Frage es from and des Gattungsnamens von “Geogale” aletris reveal deep of forest and sa- Butler und Hopwood, 1957 (Mammalia, In- vanna . — PLoS Biology, 8 (12): sectivora) aus dem Miozän Ostafrikas. — e1000564. Zeitschrift für Säugetierkunde, 50: 129–140. Rose K.D., Holbrook L.T., Rana R.S. et al. Prasad G.V.R., Jaeger J. -J., Sahni A. et al. 1994. 2014. Early Eocene fossils suggest that the Eutherian mammals from the Upper Creta- mammalian order Perissodactyla originat- ceous (Maastrichtian) Intertrappean Beds of ed in India. — Nature Communications, 5: Naskal, Andhra Pradesh, India. — Journal 5570. of Vertebrate Paleontology, 14 (2): 260–277. Prasad G.V.R., Verma O., Gheerbrant E. et al. Sánchez-Villagra M.R., Narita Y., Kuratani S. 2010. First mammal evidence from the Late 2007. Thoracolumbar vertebral number: the Cretaceous of India for biotic dispersal be- first skeletal synapomorphy for afrotherian tween India and Africa at the KT transition. mammals. — Systematics and Biodiversity, — Comptes Rendus Palevol, 9 (1–2): 63–71. 5 (1): 1–7. Radulesco C., Iliesco G. , Iliesco M. 1976. De- Sande rs W.J., Gheerbrant E., Harris J.M. et al. couverte d’un Embrithopode nouveau (Ma- 2010a. Proboscidea. — Werdelin L., Sand- m malia) dans la Paléogène de la dépression ers W.J. (eds). Cenozoic mammals of Afri- de Hateg (Roumanie) et considération géné- ca. Berkeley: University of California Press. rales sur la géologie de la région. — Neu- P. 161–251. es Jahrbuch für Geologie und Paläontologie, Sanders W.J., Kappelman J., Rasmussen D.T. Mo natshefte (11): 690–698. 2004. New large-bodied mammals from the Radulesco C., Sudre J. 1985. Criva diatherium late Oligocene site of Chilga, Ethiopia. — Acta iliescui n. sp., nouvel embrithopode (Mam- Palaeontologica Polonica, 49 (3): 365–392. malia) dans le Paleogene ancien de la De- Sande rs W.J., Nemec W., Aldinucci M. et al. pression de Hateg (Roumanie). — Palaeo- 2014. Latest evidence of Palaeoamasia (Ma- vertebrata, 15 (3): 139–157. m malia, Embrithopoda) in Turkish Ana tolia. Fossils and monophyly of Afrotheria 159

— Journal of Vertebrate Paleontology, 34 ceedings of the National Academy of Sci- (5): 1155–1164. ences USA, 92 (8): 3269–3273. Sanders W.J., Rasmussen D.T., Kappelman J. Simons E.L., Holroyd P.A., Bown T.M. 1991. 2010b. Embrithopoda. — Werdelin L., San- Early tertiary elephant-shrews from Egypt ders W.J. (eds). Cenozoic mammals of Afri- and the origin of the Macroscelidea. — Pro- ca. Berkeley: University of California Press. ceedings of the National Academy of Sci- P. 115 –122. ences USA, 88 (21): 9734–9737. Savag e R.J.G., Domning D.P., Thewissen J.G.M. Simpson G.G. 1945. The principles of classifi- 1994. Fossil Sirenia of the west Atlantic and cation and a classification of mammals. — region. V. The most primitive Bulletin of the American Museum of Natu- known sirenian, Prorastomus sirenoides ral History, 85: I–XVI +1–350. Ow en, 1855. — Journal of Vertebrate Pale- Smit H.A ., Jansen van Vuuren B., O’Brien P.C.M. ontology, 14 (3): 427–449. et al. 2011. Phylogenetic relationships of ele- Schwartz G.T., Rasmussen D.T., Smith R.J. phant-shrews (Afrotheria, Macroscelididae). 1995. Body-size diversity and community — Journal of Zoology, 284 (2): 133–143. structure of fossil hyracoids. — Journal of Smith T., De Bast E., Sigé B. 2010. Euarchontan Mammalogy, 76 (4): 1088–1099. affinity of Paleocene Afro-European adapi- Seiff ert E.R. 2007. A new estimate of afrotherian soriculid mammals and their origin in the phylogeny based on simultaneous analysis of late Cretaceous Deccan Traps of India. — genomic, morphological, and fossil evidence. Naturwissenschaften, 97 (4): 417–422. — BMC Evolutionary Biology, 7: 224. Springer M.S., Amrine H.M., Burk A., Stan- Seiff ert E.R. 2010. The oldest and youngest re- hope M.J. 1999. Additional support for Afro- cords of afrosoricid placentals from the Fay- and Paenungulata, the performance um Depression of northern Egypt. — Acta of mitochondrial versus nuclear genes, and Palaeontologica Polonica, 55 (4): 599–616. the impact of data partitions with heteroge- Seiff ert E.R., Simons E.L. 2000. Widanelfara- neous base composition. — Syste matic Bi- sia, a diminutive placental from the late Eo- ology, 48 (1): 65–75. cene of Egypt. — Proceedings of the Na- Springer M .S., Cleven G.C., Madsen O. et al. tional Academy of Sciences USA, 97 (6): 1997. Endemic African mammals shake the 2646–2651. Seiff ert E.R., Simons E.L., Ryan T. et al. 2007. phylogenetic tree. — Nature, 388 (6637): New remains of Eocene and Oligocene Afro- 61–64. soricida (Afrotheria) from Egypt, with im- Springer M .S., Stanhope M.J., Madsen O., Jong plications for the origin(s) of afrosoricid W.W., de 2004. Molecules consolidate the zalambdodonty. — Journal of Vertebrate placental mammal tree. — Trends in Ecol- Paleontology, 27 (4): 963–972. ogy and Evolution, 19 (8): 430–438. Sen S., Heintz E. 1979. Palaeoamasia kansui Stanhope M .J., Madsen O., Waddell V.G. et al. Ozansoy 1966, embrithopode (Mammalia) 1998a. Highly congruent molecular support de l’Eocene de Anatolie. — Annales de Palé- for a diverse superordinal clade of endemic ontologie (Vertébrés), 65 (1): 73–91. African mammals. — Molecular Phyloge- Shoshani J. 1986. Mammalian phylogeny: com- netics and Evolution, 9 (3): 501–508. parison of morphological and molecular re- Stanhope M .J., Waddell V.G., Madsen O. et al. sults. — Molecular Biology and Evolution, 1998b. Molecular evidence for multiple ori- 3 (3): 222–242. gins of Insectivora and for a new order of Shoshani J., Goldman C.A., Thewissen J.G.M. endemic African insectivore mammals. — 1988. Orycteropus afer. — Mammalian Spe- Proceedings of the National Academy of Sci- cies, 300: 1–8. e nces USA, 95 (17): 9967–9972. Simons E .L., Bown T.M. 1995. Ptolemaiida, a Sudre J., Jaeger J.-J., Sigé B., Vianey-Liaud M. new order of Mammalia, with description 1993. Nouvelles données sur les Condylar- of the cranium of Ptolemaia grangeri. Pro- thres du Thanétien et de l’Yprésien du Bas- 160 A.O. Averianov, A.V. Lopatin

sin d’Ouarzazate (Maroc). — Geobios, 26 van Dijk M.A.M., Madsen O., Catzeflis F.M. et (5): 609–615. al. 2001. Protein sequence signatures sup- Tabuce R., Coiffait B., Coiffait P.-E. et al. 2001. port the African clade of mammals. — Pro- A new genus of Macroscelidea (Mammalia) ceedings of the National Academy of Sci- from the Eocene of Algeria: a possible ori- ences USA, 98 (1): 188–193. gin for elephant-shrews. — Journal of Ver- Vartanyan S.L., Garutt V.E., Sher A.V. 1993. tebrate Paleontology, 21 (3): 535–546. Holocene dwarf mammoths from Wrangel Tabuce R., Jaeg er J.-J., Marivaux L. et al. 2012. Island in the Siberian Arctic. — Nature, 362 New stem elephant-shrews (Mammalia, Mac- (6418): 336–339. roscelidea) from the Eocene of Dur At-Talah, Vialle N., Merz eraud G., Delmer C. et al. 2013. Libya. — Palaeontology, 55 (5): 945–955. Discovery of an embrithopod mammal (Ar- Tabuce R., Mari vaux L., Adaci M. et al. 2007. sinoitherium?) in the late Eocene of Tuni- Early Tertiary mammals from North Africa sia. — Journal of African Earth Sciences, reinforce the molecular Afrotheria clade. — 87: 86–92. Proceedings of the Royal Society B: Biolog- Werdelin L. 201 0. Bibymalagasia (Mammalia ical Sciences, 274 (1614): 1159–1166. Incertae Sedis). — Werdelin L., Sanders Tassy P., Shoshani J. 1988. The Tethytheria: el- W.J. (eds). Cenozoic Mammals of Africa. ephants and their relatives. — Benton M.J. Berkeley: University of California Press. P. (ed.). The phylogeny and classification of 113–114. the Tetrapods, Volume 2: Mammals. The Zack S.P., Penk rot T.A., Bloch J.I., Rose K.D. Systematics Association Special Volume. 2005. Affinities of “hyopsodontids” to el- 35B. Cambridge (UK): Cambridge Univer- ephant shrews and a Holarctic origin of sity Press. P. 283–315. Afrotheria. — Nature, 434 (7032): 497–501.