Northumbria Research Link

Total Page:16

File Type:pdf, Size:1020Kb

Northumbria Research Link Northumbria Research Link Citation: Hutchinson, David K., Coxall, Helen K., Lunt, Daniel J., Steinthorsdottir, Margret, de Boer, Agatha M., Baatsen, Michiel, von der Heydt, Anna, Huber, Matthew, Kennedy- Asser, Alan T., Kunzmann, Lutz, Ladant, Jean-Baptiste, Lear, Caroline H., Moraweck, Karolin, Pearson, Paul N., Piga, Emanuela, Pound, Matthew, Salzmann, Ulrich, Scher, Howie D., Sijp, Willem P., Śliwińska, Kasia K., Wilson, Paul A. and Zhang, Zhongshi (2021) The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons. Climate of the Past, 17 (1). pp. 269-315. ISSN 1814-9324 Published by: Copernicus Publications URL: https://doi.org/10.5194/cp-17-269-2021 <https://doi.org/10.5194/cp-17-269-2021> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/44997/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.) Clim. Past, 17, 269–315, 2021 https://doi.org/10.5194/cp-17-269-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons David K. Hutchinson1, Helen K. Coxall1, Daniel J. Lunt2, Margret Steinthorsdottir1,3, Agatha M. de Boer1, Michiel Baatsen4, Anna von der Heydt4,5, Matthew Huber6, Alan T. Kennedy-Asser2, Lutz Kunzmann7, Jean-Baptiste Ladant8, Caroline H. Lear9, Karolin Moraweck7, Paul N. Pearson9, Emanuela Piga9, Matthew J. Pound10, Ulrich Salzmann10, Howie D. Scher11, Willem P. Sijp12, Kasia K. Sliwi´ nska´ 13, Paul A. Wilson14, and Zhongshi Zhang15,16 1Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 2School of Geographical Sciences, University of Bristol, Bristol, UK 3Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden 4Institute for Marine and Atmospheric Research, Department of Physics, Utrecht University, Utrecht, the Netherlands 5Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands 6Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, USA 7Senckenberg Natural History Collections, Dresden, Germany 8Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, USA 9School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK 10Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK 11School of the Earth, Ocean and Environment, University of South Carolina, Columbia SC, USA 12Climate Change Research Centre, University of New South Wales, Sydney, Australia 13Department of Stratigraphy, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark 14University of Southampton, National Oceanography Centre, Southampton, UK 15Department of Atmospheric Science, China University of Geoscience, Wuhan, China 16NORCE Research and Bjerknes Centre for Climate Research, Bergen, Norway Correspondence: David K. Hutchinson ([email protected]) Received: 3 May 2020 – Discussion started: 18 May 2020 Revised: 17 November 2020 – Accepted: 18 November 2020 – Published: 28 January 2021 Abstract. The Eocene–Oligocene transition (EOT) was a thesise proxy evidence of palaeogeography, temperature, ice climate shift from a largely ice-free greenhouse world to sheets, ocean circulation and CO2 change from the marine an icehouse climate, involving the first major glaciation of and terrestrial realms. Furthermore, we quantitatively com- Antarctica and global cooling occurring ∼ 34 million years pare proxy records of change to an ensemble of climate ago (Ma) and lasting ∼ 790 kyr. The change is marked by a model simulations of temperature change across the EOT. global shift in deep-sea δ18O representing a combination of The simulations compare three forcing mechanisms across deep-ocean cooling and growth in land ice volume. At the the EOT: CO2 decrease, palaeogeographic changes and ice same time, multiple independent proxies for ocean tempera- sheet growth. Our model ensemble results demonstrate the ture indicate sea surface cooling, and major changes in global need for a global cooling mechanism beyond the imposition fauna and flora record a shift toward more cold-climate- of an ice sheet or palaeogeographic changes. We find that adapted species. The two principal suggested explanations of CO2 forcing involving a large decrease in CO2 of ca. 40 % this transition are a decline in atmospheric CO2 and changes (∼ 325 ppm drop) provides the best fit to the available proxy to ocean gateways, while orbital forcing likely influenced the evidence, with ice sheet and palaeogeographic changes play- precise timing of the glaciation. Here we review and syn- ing a secondary role. While this large decrease is consistent Published by Copernicus Publications on behalf of the European Geosciences Union. 270 D. K. Hutchinson et al.: The Eocene–Oligocene transition with some CO2 proxy records (the extreme endmember of proaches and highlight areas for future work. We then com- decrease), the positive feedback mechanisms on ice growth bine and synthesise the observational and modelling aspects are so strong that a modest CO2 decrease beyond a critical of the literature in a model–data intercomparison of the avail- threshold for ice sheet initiation is well capable of triggering able models of the EOT. This approach allows us to assess rapid ice sheet growth. Thus, the amplitude of CO2 decrease the relative effectiveness of the three modelled mechanisms signalled by our data–model comparison should be consid- in explaining the EOT observations. ered an upper estimate and perhaps artificially large, not least The paper is structured as follows: Sect. 1.2 defines the because the current generation of climate models do not in- chronology of events around the EOT and clarifies the ter- clude dynamic ice sheets and in some cases may be under- minology of associated events, transitions and intervals, sensitive to CO2 forcing. The model ensemble also cannot thereby setting the framework for the rest of the review. Sec- exclude the possibility that palaeogeographic changes could tion 2 reviews our understanding of palaeogeographic change have triggered a reduction in CO2. across the EOT and discusses proxy evidence for changes in ocean circulation and ice sheets. Section 3 synthesises ma- rine proxy evidence for sea surface temperatures (SSTs) and deep-ocean temperature change. Section 4 synthesises terres- 1 Introduction trial proxy evidence for continental temperature change, with 1.1 Scope of review a focus on pollen-based reconstructions. Section 5 presents estimates of CO2 forcing across the EOT, from geochemical Since the last major review of the Eocene–Oligocene transi- and stomatal-based proxies. Section 6 qualitatively reviews tion (EOT; Coxall and Pearson, 2007) the fields of palaeo- previous modelling work, and Sect. 7 provides a new quan- ceanography and palaeoclimatology have advanced consid- titative intercomparison of previous modelling studies, with erably. New proxy techniques, drilling and field archives of a focus on model–data comparisons to elucidate the relative Cenozoic (66 Ma to present) climates, have expanded global importance of different forcings across the EOT. Section 8 coverage and added increasingly detailed views of past cli- provides a brief conclusion. mate patterns, forcings and feedbacks. From a broad perspec- tive, statistical interrogation of an astronomically dated, con- 1.2 Terminology of the Eocene–Oligocene transition tinuous composite of benthic foraminifera isotope records confirms that the EOT is the most prominent climate tran- Palaeontological evidence has long established Eocene (56 to sition of the whole Cenozoic and suggests that the polar ice 34 Ma) warmth in comparison to a long-term Cenozoic cool- sheets that ensued seem to play a critical role in determin- ing trend (Lyell and Deshayes, 1830, p. 99–100). As modern ing the predictability of Earth’s climatological response to stratigraphic records improved, a prominent step in that cool- astronomical forcing (Westerhold et al., 2020). New proxy ing towards the end of the Eocene began to be resolved. This records capture near- and far-field signals of the onset of became evident in early oxygen isotope records (δ18O) de- Antarctic glaciation. Meanwhile, efforts to simulate the onset rived from deep-sea benthic foraminifera,
Recommended publications
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Paleontological Exploration in Africa
    Paleontological Exploration in Africa A View from the Rukwa Rift Basin of Tanzania Nancy J. Stevens, Michael D. Gottfried, Eric M. Roberts, Saidi Kapilima, Sifa Ngasala and Patrick M. O’Connor Introduction The Mesozoic – Cenozoic transition was a period of dramatic global change during which time the Earth’s continents were in the process of fragmenting from a large, relatively continuous landmass to assume a configuration similar to that seen today. The most significant tectonic activity in the southern hemisphere occurred during the Cretaceous-Paleogene interval, when the large Gondwanan sub-regions of Africa, South America, Australia, Indo- Madagascar and Antarctica became increasingly isolated from one another (Smith et al., 1994; Scotese, 2001). Continental dynamics of this scale are not only geologically significant, they also profoundly influenced the evolution of both terrestrial and marine biotas (Forster, 1999; Krause et al., 1999; Sereno, 1999; Lieberman, 2000; Upchurch et al., 2002; Humphries and Ebach, 2004). Indeed, the Cretaceous-Paleogene transition marks large-scale faunal turnover of major vertebrate and invertebrate taxa (e.g., extinction of nonavian dinosaurs, radiation of ‘‘modern’’ mammals and birds; Cracraft, 2001; Springer et al., 2003, 2004; Archibald and Fastovsky, 2004; Kielan-Jaworowska et al., 2004; Rose and Archibald, 2004; Clarke et al., 2005). Numerous hypotheses have been proposed to explain the origin, diversifica- tion, and extinction of many vertebrate groups living on, or dispersing through, Gondwana during the Cretaceous and Paleogene. For example, molecular studies have postulated a Cretaceous-Paleogene African origin for a number of higher-level amniote clades, including Placentalia (Murphy et al., 2001 and references therein), Afrotheria (Hedges et al., 1996; Springer et al., 1997, 2003, Nancy J.
    [Show full text]
  • The First Fossil Owl (Aves, Strigiformes) from the Paleogene of Africa
    diversity Article The First Fossil Owl (Aves, Strigiformes) From the Paleogene of Africa N. Adam Smith 1,* , Thomas A. Stidham 2,3,4 and Jonathan S. Mitchell 5 1 Campbell Geology Museum, Clemson University, Clemson, SC 29634, USA 2 Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; [email protected] 3 CAS—Center for Excellence in Life and Paleoenvironment, Beijing 100044, China 4 University of Chinese Academy of Sciences, Beijing 100049, China 5 West Virginia University Institute of Technology, Beckley, WV 25801, USA; [email protected] * Correspondence: [email protected] Received: 10 April 2020; Accepted: 21 April 2020; Published: 23 April 2020 Abstract: The relatively extensive fossil record of owls (Aves, Strigiformes) in North America and Europe stands in stark contrast to the paucity of fossil strigiformes from Africa. The first occurrence of a fossil owl from the Paleogene of Africa extends the fossil record of this clade on that continent by as much as 25 million years, and confirms the presence of large-sized owls in Oligocene continental faunas. The new fossil is tentatively referred to the Selenornithinae, a clade of large owls previously restricted to Europe. This new fossil owl was likely similar in size to the extant Eagle Owls of the genus Bubo, and suggests that the niche of large, volant, terrestrial avian predator, although relatively rare throughout avian evolutionary history, may be an ecological role that was more common among extinct owls than previously recognized. Keywords: Egypt; Fayum Depression; Jebel Qatrani Formation; Oligocene; Selenornithinae 1.
    [Show full text]
  • Age of the Earliest African Anthropoids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 1986 Age of the Earliest African Anthropoids John G. Fleagle State University of New York Thomas M. Bown United States Geological Survey John D. Obradovich United States Geological Survey Elwyn L. Simons Duke University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Fleagle, John G.; Bown, Thomas M.; Obradovich, John D.; and Simons, Elwyn L., "Age of the Earliest African Anthropoids" (1986). USGS Staff -- Published Research. 210. https://digitalcommons.unl.edu/usgsstaffpub/210 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Age of the Earliest African Anthropoids vcgetated in many areas, as evidenced by numerous fossil root casts and areas with abundant fossil trees. There wcre areally large, but shallow and probably cphcmeral, nonsaline ponds; soils wcre generally damp with probably seasonal rainfall. The earliest fossil record of African anthropoid prunates (monkeys and apes) comes The fossil megafloras show affinities with from the Jebel Qatrani Formation in the Fayum depression of Egypt. Reevaluation of prescnt-day tropical Indomalaysian floras. both geologic and faunal evidence indicates that this formation was deposited in the They suggest a "tropical forest existing in a early part of the Oligocene Epoch, more than 31 million years ago, earlier than wet, pcrhaps monsoonal climate" (5).
    [Show full text]
  • Revised Age Estimates for the Later Paleogene Mammal Faunas of Egypt and Oman
    Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman Erik R. Seiffert* Department of Earth Sciences and Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PW, United Kingdom Communicated by Elwyn L. Simons, Duke University, Durham, NC, January 30, 2006 (received for review January 3, 2006) The Jebel Qatrani Formation of northern Egypt has produced available from the Formation itself is the magnetostratigraphy Afro-Arabia’s primary record of Paleogene mammalian evolution, developed by Kappelman et al. (17) (Fig. 1A), but there remain including the world’s most complete remains of early anthropoid multiple possible correlations of that magnetostratigraphy to the primates. Recent studies of Fayum mammals have assumed that geomagnetic polarity time scale (GPTS). the Jebel Qatrani Formation contains a significant Eocene compo- The Jebel Qatrani Formation is divided into upper and lower nent (Ϸ150 of 340 m), and that most taxa from that succession are sequences (15), with the boundary between these units being the between 35.4 and 33.3 million years old (Ma), i.e., latest Eocene to 4- to 10-m-thick cliff-forming ‘‘Barite Sandstone’’ that uncon- earliest Oligocene in age. Reanalysis of the chronological evidence formably overlies the upper red sandstone of the lower sequence. shared by later Paleogene strata exposed in Egypt and Oman Rasmussen et al. (16) suggested that the approximate position of (Taqah and Thaytiniti areas, Dhofar Province) reveals that this the EOB is probably marked by this unconformity,
    [Show full text]
  • Vicariance and Dispersal in Southern Hemisphere Freshwater Fish Clades
    Biol. Rev. (2019), 94, pp. 662–699. 662 doi: 10.1111/brv.12473 Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective Alessio Capobianco∗ and Matt Friedman Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1105 N. University Ave, Ann Arbor, MI 48109-1079, U.S.A. ABSTRACT Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break-ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node-based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well-known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non-uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total-group Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma).
    [Show full text]
  • Fossil Birds from the Oligocène Jebel Qatrani Formation, Fayum Province, Egypt
    SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 62 Fossil Birds from the Oligocène Jebel Qatrani Formation, Fayum Province, Egypt D. Tab Rasmussen, Storrs L. Olson, and Elwyn L. Simons SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1987 ABSTRACT Rasmussen, D. Tab, Storrs L. Olson, and Elwyn L. Simons. Fossil Birds from the Oligocène Jebel Qatrani Formation, Fayum Province, Egypt. Smithsonian Contributions to Paleobiology, number 62, 20 pages, 15 figures, 1986.•^Fossüs from fluvial deposits of early Oligocène age in Egypt document the earliest known diverse avifauna from Africa, comprising at least 13 families and 18 species. Included are the oldest fossil records of the Musophagidae (turacos), Pandionidae (ospreys), Jacanidae (jacanas), and Balaenicipi- tidae (shoebilled storks). Odier families represented are the Accipitridae (hawks and eagles), Rallidae (rails), Gruidae (cranes), Phoenicopteridae (flamingos), Ardeidae (herons), Ciconiidae (storks), and Phalacrocoracidae (cormorants). A highly distinctive rostrum is described as a new family, Xenerodiopidae, probably most closely related to herons. A humérus lacking the distal end is tentatively referred to the same family. Two new genera and three species of large to very large jacanas are described from the distal ends of tarsometatarsi. This Oligocène avifauna resembles that of modern tropical African assemblages. The habitat preferences of the constituent species of birds indicate a tropical, swampy, vegetation-choked, fresh-water environment at the time of deposition. OFFICIAL PUBLICATION DATE is handsiamped in a limited number of initial copies and is recorded in the Institution'! annual report, Smithsonian Year. SERIES COVER DESIGN: The trilobitc Phacops rana Green. Library of Congress Cataloging in Publication Dala Rasmussen, D. Tab Fossil birds from the Oligocène Jebel Qatrani Formation, Fayum Province, Egypt (Smithsonian contributions to paleobiology ; no.
    [Show full text]
  • Dear Dr Feng, Thank You for Your Comments on the Manuscript and for the Opportunity to Submit a Revised Version. Below We Outlin
    Dear Dr Feng, Thank you for your comments on the manuscript and for the opportunity to submit a revised version. Below we outline in blue text, our responses to the reviewers, and then a list of extra changes we have made to address your comments and several further issues we identified in the original submission. Kind Regards, David Hutchinson Anonymous Referee #1 General Comments This manuscript, entitled “The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons” by Hutchinson et al., is an outstanding review paper worthy of publication in Climate of the Past. This paper makes large strides and provides a comprehensive update to Eocene-Oligocene research as much has been done since the 2007 review of Coxall and Pearson. The authors take a methodical approach, first addressing terminology and a framework for the Eocene-Oligocene, then boundary conditions such as paleogeographic reconstructions, paleoceanography, and constraints on glaciation. Next, the authors move to a comprehensive review of marine and terrestrial paleoclimate and pCO2 reconstructions, mechanistic modeling studies of paleogeographic, CO2 and temperature changes. Finally, and most importantly, the authors end the paper with a metaanalysis of the factors affecting paleoenvironmental changes during the E-O transition and conclude that CO2 decrease likely served as the primary driver of cooling and Antarctic glaciation. As this manuscript is very well written, I do not have large structural comments. Thank you for the positive overall assessment. Instead, I include my few specific comments along with line-by-line technical corrections below. Specific Comments and Technical Corrections Lines 111 and 125: This is just one example of “Fig.” vs “Figure.” Be consistent throughout.
    [Show full text]
  • Widanelfarasia, a Diminutive Placental from the Late Eocene of Egypt
    Widanelfarasia, a diminutive placental from the late Eocene of Egypt Erik R. Seiffert* and Elwyn L. Simons*†‡ *Department of Biological Anthropology and Anatomy, Duke University, Box 90383, Durham, NC 27708-0383; and †Primate Center, Duke University, 3705 Erwin Road, Durham, NC 27705 Contributed by Elwyn L. Simons, December 15, 1999 The lower dentition of Widanelfarasia (new genus), a diminutive Cimolestes, Aboletylestes, indeterminate didelphodontines) as late Eocene placental from the Fayum Depression in Egypt, is well as a possible endemic form referred to Proteutheria, described. Widanelfarasia exhibits a complex of features associ- Todralestes, have also been described from the Ouarzazate Basin ated with incipient zalambdodonty and at least three unequivocal (5, 7, 8). apomorphies [loss of P1, an enlarged I2 (relative to I3), and a basal These diminutive north African eutherians have provided new cusp on I2], which provide weak support for its placement as a evidence for the presence of intermittent biogeographical con- possible sister taxon of either a tenrecid–chrysochlorid clade or of nections between Afro-Arabia and Laurasia during the early solenodontids. The former hypothesis gains additional support Cenozoic (16) and have helped to elucidate a considerable from biogeographical evidence, but both scenarios are currently degree of biogeographical cosmopolitanism for palaeoryctoids tenuous as Widanelfarasia is clearly not truly zalambdodont. through the late Cretaceous and early Paleogene (e.g., ref. 17). Phylogenetic hypotheses positing affinities with tenrecids alone or Due to the limited nature of the available material, however, it chrysochlorids alone must invoke either convergent acquisition of remains unclear just how the scarce Eocene Afro-Arabian zalambdodonty in these taxa or autapomorphic reversal in ‘‘lipotyphlans’’ may relate to living and extinct Laurasian forms Widanelfarasia.
    [Show full text]
  • Paleurafrica Origin of the European Modern Faunas Through Palaeogene Central Africa Collections
    PalEurAfrica Origin of the European modern faunas through Palaeogene Central Africa collections BR/121/A3/PalEurAfrica Thierry SMITH (Royal Belgian Institute of Natural Sciences, Belgium) - Thierry DE PUTTER (Royal Museum for Central Africa, Belgium) - Stephen LOUWYE (Ghent University, Ghent, Belgium) - Johan YANS (Namur University, Namur, Belgium) - Nancy STEVENS (Ohio University, Athens, USA) - Annelise FOLIE (Royal Belgian Institute of Natural Sciences, Belgium) Axis 3: Cultural, historical and scientific heritage 11 Project BR/121/A3/PalEurAfrica - Origin of the European modern faunas through Palaeogene Central Africa collections NETWORK PROJECT PALEURAFRICA Origin of the European modern faunas through Palaeogene Central Africa collections Contract - BR/121/A3/PalEurAfrica FINAL REPORT PROMOTORS: Thierry SMITH (Royal Belgian Institute of Natural Sciences, Belgium) Thierry DE PUTTER (Royal Museum for Central Africa, Belgium) Stephen LOUWYE (Ghent University, Ghent, Belgium) Johan YANS (Namur University, Namur, Belgium) Gregg F. GUNNELL† (Duke University, Durham, USA) Nancy STEVENS (Ohio University, Athens, USA) AUTHORS: Thierry SMITH (RBINS), Thierry DE PUTTER (RMCA), Stephen LOUWYE (UGhent), Johan YANS (UNamur), Nancy STEVENS (Ohio Univ.), Annelise FOLIE (RBINS) BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 2 Project BR/121/A3/PalEurAfrica - Origin of the European modern faunas through Palaeogene Central Africa collections Published in 2021 by the Belgian Science Policy Office WTCIII Simon Bolivarlaan 30 Boulevard Simon Bolivar B-1000 Brussels Belgium Tel: +32 (0)2 238 34 11 - Fax: +32 (0)2 230 59 12 http://www.belspo.be http://www.belspo.be/brain-be Contact person: Maaike VANCAUWENBERGHE Tel: +32 (0)2 238 36 78 Neither the Belgian Science Policy Office nor any person acting on behalf of the Belgian Science Policy Office is responsible for the use which might be made of the following information.
    [Show full text]
  • Fossil Birds from the Oligocene Jebel Qatrani Formation, Fayum Province, Egypt
    SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 62 Fossil Birds from the Oligocene Jebel Qatrani Formation, Fayum Province, Egypt D. Tab Rasmussen, Storrs L. Olson, and Elwyn L. Simons SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1987 ABSTRACT Rasmussen, D. Tab, Storrs L. Olson, and Elwyn L. Simons. Fossil Birds from the Oligocene Jebel Qatrani Formation, Fayum Province, Egypt. Smithsonian Contributions to Paleobiology, number 62, 20 pages, 15 figures, 1986.—^Fossils from fluvial deposits of early Oligocene age in Egypt document the earliest known diverse avifauna from Africa, comprising at least 13 families and 18 species. Included are the oldest fossil records of the Musophagidae (turacos), Pandionidae (ospreys), Jacanidae (jacanas), and Balaenicipi- tidae (shoebilled storks). Other families represented are the Accipitridae (hawks and eagles), Rallidae (rails), Gruidae (cranes), Phoenicopteridae (flamingos), Ardeidae (herons), Ciconiidae (storks), and Phalacrocoracidae (cormorants). A highly distinctive rostrum is described as a new family, Xenerodiopidae, probably most closely related to herons. A humerus lacking the distal end is tentatively referred to the same family. Two new genera and three species of large to very large jacanas are described from the distal ends of tarsometatarsi. This Oligocene avifauna resembles that of modern tropical African assemblages. The habitat preferences ofthe constituent species of birds indicate a tropical, swampy, vegetation-choked, fresh-water environment at the time of deposition. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smittisonian Year. SERIES COVER DESIGN: The trilobite Phacops rana Green. Library of Congress Cataloging in Publication Data Rasmussen, D. Tab Fossil birds from the Oligocene Jebel Qatrani Formation, Fayum Province, Egypt (Smithsonian contributions to paleobiology ; no.
    [Show full text]
  • Kelba Quadeemae
    Additional material of the enigmatic Early Miocene mammal Kelba and its relationship to the order Ptolemaiida Susanne Cote*†, Lars Werdelin‡, Erik R. Seiffert§, and John C. Barry* *Department of Anthropology and Peabody Museum, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138; ‡Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, S-10405 Stockholm, Sweden; and §Department of Earth Sciences and Oxford University Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PR, United Kingdom Communicated by Elwyn L. Simons, Duke University, Durham, NC, January 24, 2007 (received for review December 28, 2006) Kelba quadeemae, a fossil mammal from the Early Miocene of East Viverridae (Carnivora) and is synonymous with two other poorly Africa, was originally named on the basis of three isolated upper known mammals from Songhor, Kenyalutra songhorensis (9) and molars. Kelba has previously been interpreted as a creodont, a Ndamathaia kubwa (10). pantolestid, an insectivoran, and a hemigaline viverrid. The true All of these suggestions are problematic because they each affinities of this taxon have remained unclear because of the require significant temporal and geographic range extensions. limited material and its unique morphology relative to other Given the original hypodigm of a few isolated molars of gener- Miocene African mammals. New material of Kelba from several alized tribosphenic pattern, it has not been possible to state with East African Miocene localities, most notably a skull from the Early certainty to which of these groups (if any) Kelba is most closely Miocene locality of Songhor in Western Kenya, permits analysis of related. It has always been clear, however, that Kelba represents the affinities of Kelba and documents the lower dentition of this a unique taxon in the East African Miocene record and that its taxon.
    [Show full text]