Protohydra Leuckarti: A: Contracted Hydranth; B and C: Various Stages of Relaxed Hydranths; D: Hydranth Feeding on a Copepode; E: Two Stages of Transversal Fission

Total Page:16

File Type:pdf, Size:1020Kb

Protohydra Leuckarti: A: Contracted Hydranth; B and C: Various Stages of Relaxed Hydranths; D: Hydranth Feeding on a Copepode; E: Two Stages of Transversal Fission sm68s2Ffig2 14/10/04 15:35 Página 329 FIG. 47. – Anthomedusae. Capitata. Protohydridae. A to E: Protohydra leuckarti: A: contracted hydranth; B and C: various stages of relaxed hydranths; D: hydranth feeding on a copepode; E: two stages of transversal fission. Sphaerocorynidae. F and G: Sphaerocoryne bedoti:F: hydroid; G: fully-grown medusa. Tubulariida. Acaulidae. H and I: Acauloides. H: Acauloides ammisatum hydroid, I: Acauloides ilonae: hydroid; J: Boreohydra simplex: hydranth; K: Psammohydra nanna: hydranth (A to E after Leloup, 1952; F after Hirohito, 1988; G after Petersen, 1990; H after Bouillon, 1971; I after Brinckmann-Voss, 1966; J after Westblad, 1937; K after Clausen and Salvini-Plawen, 1986). FAUNA OF THE MEDITERRANEAN HYDROZOA 329 sm68s2Ffig2 14/10/04 15:35 Página 330 FIG. 48. – Anthomedusae. Capitata. Candelabridae. A: Candelabrum cocksi hydranth. Cladonematidae. B to D: Cladonema radiatum:B: hydroid; C: schema of hypostome showing the ectodermal glandular oral cavity. D: fully-grown medusa; E to H: Eleutheria: E and F: Eleutheria claparedei: E: hydranth, F: medusa. G and H: Eleutheria dichotoma: G: part of colony with hydranths developing medusa buds, H: mature medusa with planulae inside brooding pouch. I and J: Staurocladia portmanni: I: hydranth; J: adult medusa (A after Hyman, 1940; B after Leloup, 1952, C after Bouillon, 1971; D after Russell, 1953; E after Brinckmann-Voss, 1970; F after Mayer, 1910; G after Hincks, 1861; H after Hincks, 1868; I after Bouillon, 1978b; J after Brinckmann, 1964a). 330 J. BOUILLON et al. sm68s2Ffig2 14/10/04 15:35 Página 331 FIG. 49. – Anthomedusae. Capitata. Corymorphidae. A to C: Corymorpha nutans: A: hydranth; B: adult medusa; C: tip of medusa tenta- cle. D to F: Eugotoea petalina: mature medusa: D and F: lateral views; E: oral view; G to I: Euphysora: G: Euphysora annulata: adult medusa; H and I: Euphysora bigelowi: H: hydranth; I: adult medusa. J: Paragotoea bathybia: mature medusa; K and L: Vannuccia forbesii:K: hydranth; L: mature medusa (A after Allman, 1872; B and G after Kramp, 1959a; C after Russell, 1953; D to F after Margulis, 1989; H after Sassaman and Rees, 1978; I after Petersen, 1990; J after Pagès and Bouillon, 1997; K and L after Schuchert, 1996). FAUNA OF THE MEDITERRANEAN HYDROZOA 331 sm68s2Ffig2 14/10/04 15:35 Página 332 FIG. 50. – Anthomedusae. Capitata. Corynidae. A to F: Coryne: A to D: Coryne eximia: A and B: general view of two colonies; C: hydranth with medusa buds; D: mature medusa. E and F: Coryne muscoides: E view of a part of a colony; F: hydranth with gonophores (A, B and D after Schuchert, 1996; C and F after Schuchert, 2001b; E after Brinckmann -Voss, 1970). 332 J. BOUILLON et al. sm68s2Ffig2 14/10/04 15:35 Página 333 FIG. 51. – Anthomedusae. Capitata. Corynidae. A to K: Coryne. A and B: Coryne pintneri: A: detail of a colony; B: hydranth with gonophores. C and D: Coryne producta: C: two hydranths; D: adult medusa. E to G: Coryne prolifera: E: adult medusa; F: tentacle bulb with medusa buds; G: medusa marginal tentacle tip. H and I: Coryne pusilla: H: part of a colony; I: hydranth with gonophores. J: Coryne epizoica; K: Coryne fucicola (A, B and K after Brinckmann-Voss, 1970; C, D and E after Russell, 1953; F,G, I and J after Schuchert, 2001b; H after Hirohito, 1988). FAUNA OF THE MEDITERRANEAN HYDROZOA 333 sm68s2Ffig2 14/10/04 15:35 Página 334 FIG. 52. – Anthomedusae. Capitata. Corynidae. A to K: Dipurena: A: Dipurena gemmifera: medusa with medusa buds; B to E: Dipure- na halterata: B: hydroid colony in a sponge; C: longitudinal section of hypostome showing the glandular mucous button (gb) character- istic of the genus; D: adult medusa, E: marginal tentacular bulbs, lateral and frontal view. F to H: Dipurena ophiogaster: F: two hydranths; G: adult medusa; H: lateral view of a marginal bulb of a mature medusa. I to K: Dipurena reesi: I: hydranth; J: adult medusa; K: tip of medusa tentacle, note the long, spiny cnidocils (A, F to K after Schuchert, 2001b, B after Bouillon, 1971; C after Bouillon, 1968; D and E after Pagès et al., 1992). 334 J. BOUILLON et al. sm68s2Ffig2 14/10/04 15:35 Página 335 FIG. 53. – Anthomedusae. Capitata. Corynidae. A to J: Sarsia tubulosa: A: fragment of a colony; B to D: detail of hydranths with medusa buds; E: hydranth regressing during reproductive exhaustion with gonophore shorty before release; F: subadult medusa, note enlarged radial canals; G: mature medusa; H: basal part of manubrium; I and J: lateral and frontal view of a marginal bulb (A to I after Edwards, 1978; J after Schuchert, 2001b). FAUNA OF THE MEDITERRANEAN HYDROZOA 335 sm68s2Ffig2 14/10/04 15:35 Página 336 FIG. 54. – Anthomedusae. Capitata. Euphysidae. A to E: Euphysa: A to D: Euphysa aurata: A: hydroid; B: longitudinal histological sec- tion of the basal papilla and statocyst of a hydranth (see asterisk figure A); C: mature medusa; D: medusa, view of a non tentacular margin- al bulb; E: Euphysa flammea fully-grown medusa; F: Siphonohydra adriatica diagram of a longitudinal section through a hydranth: left: radi- al, right: interradial. Paracorynidae. G: Paracoryne huvei: view of a mature colony (A after Rees, 1938; B after Bouillon and Grohman, 1990; C and D after Russell, 1953; E after Kramp, 1959a; F after Salvini-Pawen, 1966; G after Bouillon, 1975). at: aboral tentacle; bu: bud; c: process covering the gonophore; dac: dactylozooid; di: digestive inclusions; egr: ectodermal granulations; ei: excretory inclusions; end: endoderm; go: gonophore; ga: gastrozooid; gz: gonozooid; hyr: hydrorhiza; ot: oral tentacle; p: periderm; sta: statocyst. 336 J. BOUILLON et al. sm68s2Ffig2 14/10/04 15:35 Página 337 FIG. 55. – Anthomedusae. Capitata. Pennariidae. A to C: Pennaria disticha: A: portion of a colony; B: detail of branch with two hydranth; C: eumedusoid. Tricyclusidae. D: Tricyclusa singularis: hydranth with actinula larvae. Tubulariidae. E and J: Ectopleura: E and F: Ecto- pleura crocea: E: above left female hydranth with gonophores, below right detail of mature female gonophore, F: aboral ends of hydrocauli of newly-settled specimens showing the development of the stolons from the pedal disc area; G to J: Ectopleura dumortieri: G: hydranth; H and I: lateral view of mature medusae; J: apical view of an adult medusa (A and B after Schuchert, 1996; C after Kramp, 1959a; D after Bouillon, original; E and F after Petersen, 1990; G after Russell, 1953; H after Mayer, 1910; I and J after Rees, 1957). FAUNA OF THE MEDITERRANEAN HYDROZOA 337 sm68s2Ffig2 14/10/04 15:35 Página 338 FIG. 56. – Anthomedusae. Capitata. Tubulariidae. A to E: Ectopleura: A and B: Ectopleura larynx: A: general view of a colony; B: detail of branches with hydranth and gonophores. C: Ectopleura minerva: adult medusa; D: Ectopleura sacculifera: fully-grown medusa; E: Ecto- pleura wrighti: left: hydroid, right: blastostyle with two medusa buds; F to H: Hybocodon prolifer: F: hydranth; G and H: medusae with and without medusa buds. I: Plotocnide borealis: mature medusa; J: Rhabdoon singulare: adult medusa (A and B after Cornelius et al., 1990; C after Mayer, 1910; D after Bouillon, 1978b; E after Petersen, 1990; F after Russell, 1953; G and H after Kramp, 1959a; I after Arai and Brinckmann-Voss, 1980; J after Vannucci and Soares Moreira, 1966). 338 J. BOUILLON et al. sm68s2Ffig2 14/10/04 15:35 Página 339 FIG. 57. – Anthomedusae. Capitata. Tubulariidae. A to F: Tubularia: A and B: Tubularia ceratogyne: A: hydranth, B: female blatostyle with an actinula escaping from a gonophore. C to F: Tubularia indivisa: C: portion of a colony; D: detail of a hydranth; E: cluster of gonophores of a female colony; F: actinula. Cladocorynidae. G: Cladocoryne floccosa: hydranth with gonophores. Porpitidae. H and I: Por- pita porpita: H: polyp; I: medusa. J and K: Velella velella: J: polyp; K: medusa. (A to D after Leloup, 1952; E after Patriti, 1970; F after Pèrèz, 1920; G after Bouillon, 1995; H and J after Pagès et al., 1992; I after Bouillon, 1984d; K after Brinckmann-Voss, 1964b). FAUNA OF THE MEDITERRANEAN HYDROZOA 339 sm68s2Ffig2 14/10/04 15:35 Página 340 FIG. 58. – Anthomedusae. Capitata. Rosalindidae. A to C: Rosalinda incrustans: A: semi-diagrammatic drawing of a part of coenosarc and spines; B: detail of a portion of colony on a spine of Anamathia rissoana showing three hydranths; C: detail of a hydranth. Zancleidae. D and E: Halocoryne epizoica: D: general view of a part of colony living on a bryozoan host showing two polyps, one with medusa buds; E: newly released eumedusoid. F to H: Zanclea sp.: F: adult medusa; G: portion of a marginal tentacle with cnidophores; H: detail of a cnidophore (A and B after Vervoort 1966b; C after Petersen, 1990; D and E after Bouillon, 1995; F to H after Russell, 1953). 340 J. BOUILLON et al. sm68s2Ffig2 14/10/04 15:35 Página 341 FIG. 59. – Anthomedusae. Capitata. Zancleidae. A to M: Zanclea: A to D: Zanclea costata: A: two hydranths with medusa buds; B: above left microbasic mastigophores, below left and at right macrobasic euryteles of hydranths; C: mature medusa; D: macrobasic euyryteles from medusan cnidophores. E to I: Zanclea giancarloi: E: hydranth with medusa buds; F: cnidome of hydroid comprising undischarged stenoteles of two sizes and discharged macrobasic euryteles of two types; G: newly released medusae; H: mature medusae I: cnidome of medusa com- prising undischarged stenoteles of two sizes, discharged and undischarged macrobasic euryteles from cnidophores and undischarged microba- sic euryteles from exumbrella. J to M: Zanclea sessilis: J: hydranth in different states of contraction, one with medusa buds; K: cnidocysts of the hydroid, stenoteles of two sizes, undischarged and discharged macrobasic euryteles; L: adult medusa; M: cnidome of the medusa, stenoteles of two sizes, undischarged and discharged macrobasic euryteles from cnidophores (all after Boero et al., 2000).
Recommended publications
  • Epibenthic and Mobile Species Colonisation of a Geotextile Artificial Surf Reef on the South Coast of England
    RESEARCH ARTICLE Epibenthic and mobile species colonisation of a geotextile artificial surf reef on the south coast of England Roger J. H. Herbert1☯*, Ken Collins2☯, Jenny Mallinson2, Alice E. Hall1, Josephine Pegg3, Kathryn Ross4, Leo Clarke1, Tom Clements2 1 Bournemouth University, Department of Life and Environmental Sciences, Faculty of Science and Technology, Talbot Campus, Poole, Dorset, United Kingdom, 2 School of Ocean and Earth Science, a1111111111 University of Southampton, National Oceanography Centre, Waterfront Campus, European Way, a1111111111 Southampton, United Kingdom, 3 University Centre Sparsholt, Sparsholt, Winchester, Hampshire, United a1111111111 Kingdom, 4 British Trust for Ornithology, Thetford, Norfolk, United Kingdom a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] Abstract OPEN ACCESS With increasing coastal infrastructure and use of novel materials there is a need to investi- Citation: Herbert RJH, Collins K, Mallinson J, Hall gate the colonisation of assemblages associated with new structures, how these differ to AE, Pegg J, Ross K, et al. (2017) Epibenthic and mobile species colonisation of a geotextile artificial natural and other artificial habitats and their potential impact on regional biodiversity. The surf reef on the south coast of England. PLoS ONE colonisation of Europe's first artificial surf reef (ASR) was investigated at Boscombe on the 12(9): e0184100. https://doi.org/10.1371/journal. south coast of England (2009±2014) and compared with assemblages on existing natural pone.0184100 and artificial habitats. The ASR consists of geotextile bags filled with sand located 220m Editor: Maura (Gee) Geraldine Chapman, University offshore on a sandy sea bed at a depth of 0-5m.
    [Show full text]
  • Towards Understanding the Phylogenetic History of Hydrozoa: Hypothesis Testing with 18S Gene Sequence Data*
    SCI. MAR., 64 (Supl. 1): 5-22 SCIENTIA MARINA 2000 TRENDS IN HYDROZOAN BIOLOGY - IV. C.E. MILLS, F. BOERO, A. MIGOTTO and J.M. GILI (eds.) Towards understanding the phylogenetic history of Hydrozoa: Hypothesis testing with 18S gene sequence data* A. G. COLLINS Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA SUMMARY: Although systematic treatments of Hydrozoa have been notoriously difficult, a great deal of useful informa- tion on morphologies and life histories has steadily accumulated. From the assimilation of this information, numerous hypotheses of the phylogenetic relationships of the major groups of Hydrozoa have been offered. Here I evaluate these hypotheses using the complete sequence of the 18S gene for 35 hydrozoan species. New 18S sequences for 31 hydrozoans, 6 scyphozoans, one cubozoan, and one anthozoan are reported. Parsimony analyses of two datasets that include the new 18S sequences are used to assess the relative strengths and weaknesses of a list of phylogenetic hypotheses that deal with Hydro- zoa. Alternative measures of tree optimality, minimum evolution and maximum likelihood, are used to evaluate the relia- bility of the parsimony analyses. Hydrozoa appears to be composed of two clades, herein called Trachylina and Hydroidolina. Trachylina consists of Limnomedusae, Narcomedusae, and Trachymedusae. Narcomedusae is not likely to be the basal group of Trachylina, but is instead derived directly from within Trachymedusae. This implies the secondary gain of a polyp stage. Hydroidolina consists of Capitata, Filifera, Hydridae, Leptomedusae, and Siphonophora. “Anthomedusae” may not form a monophyletic grouping. However, the relationships among the hydroidolinan groups are difficult to resolve with the present set of data.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • CORE Arrigoni Et Al Millepora.Docx Click Here To
    An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea Item Type Article Authors Arrigoni, Roberto; Maggioni, Davide; Montano, Simone; Hoeksema, Bert W.; Seveso, Davide; Shlesinger, Tom; Terraneo, Tullia Isotta; Tietbohl, Matthew; Berumen, Michael L. Citation Arrigoni R, Maggioni D, Montano S, Hoeksema BW, Seveso D, et al. (2018) An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs. Available: http://dx.doi.org/10.1007/s00338-018-01739-8. Eprint version Post-print DOI 10.1007/s00338-018-01739-8 Publisher Springer Nature Journal Coral Reefs Rights Archived with thanks to Coral Reefs Download date 05/10/2021 19:48:14 Link to Item http://hdl.handle.net/10754/629424 Manuscript Click here to access/download;Manuscript;CORE Arrigoni et al Millepora.docx Click here to view linked References 1 2 3 4 1 An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea 5 6 2 7 8 3 Roberto Arrigoni1, Davide Maggioni2,3, Simone Montano2,3, Bert W. Hoeksema4, Davide Seveso2,3, Tom Shlesinger5, 9 10 4 Tullia Isotta Terraneo1,6, Matthew D. Tietbohl1, Michael L. Berumen1 11 12 5 13 14 6 Corresponding author: Roberto Arrigoni, [email protected] 15 16 7 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah 17 18 8 University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 19 20 9 2Dipartimento di Scienze dell’Ambiente e del Territorio (DISAT), Università degli Studi di Milano-Bicocca, Piazza 21 22 10 della Scienza 1, Milano 20126, Italy 23 24 11 3Marine Research and High Education (MaRHE) Center, Faafu Magoodhoo 12030, Republic of the Maldives 25 26 12 4Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Characterization of Tentacle Branching Morphogenesis in the Jellyfish
    Characterization of tentacle branching morphogenesis in the jellyfish Cladonema pacificum Akiyo Fujiki1 Ayaki Nakamoto1 Gaku Kumano1 1 Research Center for Marine Biology, Asamushi, Graduate School of Life Sciences, Tohoku University To understand how tissues are shaped is a fundamental subject in the field of developmental biology. Among many tissue shaping events in animal development, we are particularly interested in branching morphogenesis. This study focuses on branching morphogenesis of the medusa tentacles of the jellyfish, Cladonema pacificum. One of the synapomorphic characters in the family Cladonematidae is that the medusa tentacles are branched with branches having nematocyst knobs and those having adhesive organs for landing. Therefore, studying tentacle branching mechanisms of Cladonema pacificum and other jellyfish species would provide us a useful insight into the evolutionary process of the acquisition of a novel morphological trait. In addition, since jellyfishes are not well-studied organisms and have simple cell constitutions, studying their branching morphogenesis might reveal a novel mechanism which might not be discovered in other branching phenomena such as those in the trachea of the fly, the mammalian lungs and angiogenesis of vertebrates. In this study, through analyses of the branching process of the Cladonema pacificum medusa tentacles, we try to obtain new knowledge to understand basic mechanisms of branching morphogenesis. As a first step toward this goal, we described how the tentacles are branched as well as how the branches with nematocyst knobs and adhesive organs form differently. To characterize the process of tentacle branching, we tracked the same tentacles during a period of one month starting from day 0, when small tentacles appeared on medusa buds.
    [Show full text]
  • Zoologische Verhandelingen
    The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia T.B. Razak & B.W. Hoeksema Razak, T.B. & B.W. Hoeksema, The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia. Zool. Verh. Leiden 345, 31.x.2003: 313-336, figs 1-42.— ISSN 0024-1652/ISBN 90-73239-89-3. Tries Blandine Razak & Bert W. Hoeksema. National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). Correspondence to second author. Key words: Taxonomic revision; Millepora; Indonesia; new records; M. boschmai. This revision of Indonesian Millepora species is based on the morphology of museum specimens and photographed specimens in the field. Based on the use of pore characters and overall skeleton growth forms, which are normally used for the classification of Millepora, the present study concludes that six of seven Indo-Pacific species appear to occur in Indonesia, viz., M. dichotoma Forskål, 1775, M. exaesa Forskål, 1775, M. platyphylla Hemprich & Ehrenberg, 1834, M. intricata Milne-Edwards, 1857 (including M. intricata forma murrayi Quelch, 1884), M. tenera Boschma, 1949, and M. boschmai de Weerdt & Glynn, 1991, which so far was considered an East Pacific endemic. Of the 13 species previously reported from the Indo-Pacific, six were synonymized. M. murrayi Quelch, 1884, has been synonymized with M. intricata, which may show two distinct branching patterns, that may occur in separate corals or in a single one. M. latifolia Boschma, 1948, M. tuberosa Boschma, 1966, M. cruzi Nemenzo, 1975, M. xishaen- sis Zou, 1978, and M. nodulosa Nemenzo, 1984, are also considered synonyms.
    [Show full text]
  • Bibliografía De Los Cnidarios De La Península Ibérica E Islas Baleares
    Bibliografía de los Cnidarios de la Península Ibérica e Islas Baleares Alvaro Altuna Prados http://www.fauna-iberica.mncn.csic.es/CV/CVAltuna.htm [Referencias al listado bibliográfico: Altuna Prados, A., 2.006. Bibliografía de los Cnidarios de la Península Ibérica e Islas Baleares. Documento electrónico disponible en http://www.fauna- iberica.mncn.csic.es/faunaib/Altuna3.pdf, Proyecto Fauna Ibérica, Museo Nacional de Ciencias Naturales, Madrid] (Última revisión: 15 de Enero de 2.006). INTRODUCCIÓN Una de las principales dificultades que plantea el estudio de cualquier grupo zoológico en un ámbito geográfico concreto, es la recopilación de la información previa existente con el objetivo de valorar los datos propios y la obtención de conclusiones. Ello puede suponer una tarea muy ardua, duradera y de difícil ejecución, particularmente para nuevos investigadores. Estas dificultades son mucho más acentuadas en aquellos phyla como Cnidaria, en los que la información se encuentra muy dispersa o hay escasez de estudios monográficos y revisiones. Además, la marcada heterogeneidad morfológica de sus especies –medusas, sifonóforos, corales, gorgonias, pennátulas, anémonas, antipatarios, etc,- ha llevado a los investigadores a interesarse y especializarse sólo en grupos taxonómicos muy concretos. Esta particularidad ha llegado al extremo de que en algunas de sus subclases (Anthomedusae Haeckel, 1879, Leptomedusae Haeckel, 1879), las sucesivas fases del ciclo vital de una misma especie (pólipo y medusa) han sido estudiadas tradicionalmente por investigadores diferentes y recibido, incluso, nombres distintos. Conseguir una clasificacion sistemática unitaria para ambos morfos ha sido motivo de intensas discusiones (ver BOUILLON, 1985) y ha cristalizado en trabajos recientes muy relevantes (BOUILLON & BOERO, 2000a, 2000b; BOUILLON et al., 2004).
    [Show full text]
  • (Allman, 1859). Sarsia Eximia Es Una Especie De Hidroide Atecado
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Sarsia eximia (Allman, 1859). Sarsia eximia (Allman, 1859). Foto (c) Ken-ichi Ueda, algunos derechos reservados (CC BY-NC-SA) (http://www.naturalista.mx/taxa/51651-Sarsia-eximia) Sarsia eximia es una especie de hidroide atecado perteneciente a la familia Corynidae. Su distribución geográfica es muy amplia, siendo registrada en localidades costeras de todo el mundo. Se puede encontrar en una amplia gama de hábitats de la costa rocosa, pero también es abundante en algas y puede a menudo ser encontrado en las cuerdas y flotadores de trampas para langostas (GBIF, 2016). Información taxonómica Reino: Animalia Phylum: Cnidaria Clase: Hydrozoa Orden: Anthoathecata Familia: Corynidae Género: Sarsia Especie: Sarsia eximia (Allman, 1859) Nombre común: coral de fuego Sinónimo: Coryne eximia. Resultado: 0.2469 Categoría de riesgo: Medio Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Sarsia eximia (Allman, 1859). Descripción de la especie Sarsia eximia es una especie de hidroide marino colonial, formado por una hidrorriza filiforme de 184 micras de diámetro que recorre el substrato y de la que se elevan hidrocaules monosifónicos, que pueden alcanzar 2.3 cm de altura, con ramificaciones frecuentes, y ramas en un sólo plano, orientación distal y generalmente con un recurbamiento basal. Su diámetro es bastante uniforme en toda su longitud, con un perisarco espeso, liso u ondulado, y con numerosas anillaciones espaciadas. Típicamente se presentan 11-20 basales en el hidrocaule, y un número similar o superior en el inicio de las ramas, aunque asimismo existen algunas pequeñas agrupaciones irregulares en diversos puntos de la colonia, y en la totalidad de algunas ramas.
    [Show full text]
  • Cnidaria) Bentónicos Del Golfo De Vizcaya Y Zonas Próximas (Atlántico NE
    2010 Listado de los cnidarios (Cnidaria) bentónicos del Golfo de Vizcaya y zonas próximas (Atlántico NE) Álvaro Altuna Proyecto Fauna Ibérica 01/10/2010 Cnidarios bentónicos del Golfo de Vizcaya Listado de los cnidarios bentónicos (Cnidaria) del Golfo de Vizcaya y zonas próximas (Atlántico NE) (42º N a 48º30’N y 10º W) Álvaro Altuna INSUB, Museo de Okendo, Apdo.3223, Donostia-San Sebastián Referencias al listado : ALTUNA , A., 2010. Listado de los cnidarios bentónicos (Cnidaria) del Golfo de Vizcaya y zonas próximas (Atlántico NE) (42º N a 48º30’N y 10º W). Proyecto Fauna Ibérica, Museo Nacional de Ciencias Naturales, Madrid, 27 pp. Documento electrónico disponible en: http://www.faunaiberica.es/faunaib altuna7.pdf . (Última revisión: 01/10/2010). Resumen : mediante una revisión de la literatura y datos propios no publicados, se ha confeccionado un listado con la fauna de cnidarios bentónicos (Cnidaria) del Golfo de Vizcaya y zonas próximas, en un área geográfica comprendida entre los 42º N a 48º30’N y 10º W (Atlántico NE). Se han listado 421 especies, de las que 207 son medusozoos (Staurozoa, Scyphozoa, Hydrozoa) y 214 antozoos. De ellas, 336 (79.8 %) se conocen al sur del paralelo 44ºN (cornisa cantábrica española y Galicia). Se ha trazado asimismo la repartición batimétrica de cada especie, atribuyéndose en cada caso su presencia a los Dominios Bentónicos Costero (0-200 m) y Profundo (+200 m). Los medusozoos se encuentran más diversificados en el Dominio Costero, y los antozoos en el Dominio Profundo. En algunos grupos taxonómicos, incluso a nivel de orden, la biodiversidad conocida se estima próxima a la real.
    [Show full text]
  • (Hydrozoa, Anthomedusae) and the Use of 16S Rdna Sequences for Unpuzzling Systematic Relationships in Hydrozoa*
    SCI. MAR., 64 (Supl. 1): 117-122 SCIENTIA MARINA 2000 TRENDS IN HYDROZOAN BIOLOGY - IV. C.E. MILLS, F. BOERO, A. MIGOTTO and J.M. GILI (eds.) Sarsia marii n. sp. (Hydrozoa, Anthomedusae) and the use of 16S rDNA sequences for unpuzzling systematic relationships in Hydrozoa* BERND SCHIERWATER1,2 and ANDREA ENDER1 1Zoologisches Institut der J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt, Germany, E-mail: [email protected] 2JTZ, Ecology and Evolution, Ti Ho Hannover, Bünteweg 17d, D-30559 Hannover, Germany. SUMMARY: A new hydrozoan species, Sarsia marii, is described by using morphological and molecular characters. Both morphological and 16S rDNA data place the new species together with other Sarsia species near the base of a clade that developed‚ “walking” tentacles in the medusa stage. The molecular data also suggest that the family Cladonematidae (Cladonema, Eleutheria, Staurocladia) is monophyletic. The taxonomic embedding of Sarsia marii n. sp. demonstrates the usefulness of 16S rDNA sequences for reconstructing phylogenetic relationships in Hydrozoa. Key words: Sarsia marii n. sp., Cnidaria, Hydrozoa, Corynidae, 16S rDNA, systematics, phylogeny. INTRODUCTION Cracraft, 1991; Schierwater et al., 1994; Swofford et al., 1996). Nevertheless molecular data are especial- Molecular data and parsimony analysis have ly useful or even indispensable in groups where become powerful tools for the study of phylogenet- other characters, like morphological data, are limit- ic relationships among extant animal taxa. In partic- ed or hard to interpret. ular, DNA sequence data have added important and One classical problem to animal phylogeny is the surprising information on the phylogenetic relation- evolution of cnidarians and the groups therein ships at almost all taxonomic levels in a variety of (Hyman, 1940; Brusca and Brusca, 1990; Bridge et animal groups (for references see Avise, 1994; al., 1992, 1995; Schuchert, 1993; Schierwater, 1994; DeSalle and Schierwater, 1998).
    [Show full text]