Sobrevivência E Crescimento De Percebes (Pollicipes Pollicipes) Em Sistemas Alternativos De Cultivo

Total Page:16

File Type:pdf, Size:1020Kb

Sobrevivência E Crescimento De Percebes (Pollicipes Pollicipes) Em Sistemas Alternativos De Cultivo Sobrevivência e crescimento de percebes (Pollicipes pollicipes) em sistemas alternativos de cultivo Maria Lopes Santos 2019 ii Sobrevivência e crescimento de percebes (Pollicipes pollicipes) em sistemas alternativos de cultivo Maria Lopes Santos Dissertação para obtenção de Mestre em Aquacultura Dissertação de Mestrado realizada sob a orientação da Professora Doutora Teresa Cruz e coorientação da Professora Doutora Ana Pombo 2019 iii iv Agradecimentos Agradeço, Em primeiro lugar, aos meus pais, à minha irmã, aos meus avós e ao meu avô Artur por todo o amor, apoio e motivação, que lutam constantemente para que eu seja feliz e siga os meus sonhos. À Escola Superior de Turismo e Tecnologia do Mar e à Universidade de Évora, concretamente ao CIEMAR, por todo o apoio e conhecimento que me proporcionaram ao longo de todo este percurso. À Teresa Cruz, que sempre se mostrou uma excelente profissional, com um conhecimento e paciência incansável, sempre pronta a ajudar em todos os processos, pela transmissão de conhecimentos e principalmente pela amizade. À professora Ana Pombo por me ter orientado, por me ter dado o prazer de conhecer o CIEMAR e me ter colocado no melhor caminho possível. A toda a equipa do CIEMAR, à Ana Torres, ao David Mateus, ao David Jacinto, à Teresa Silva, à Joana, à Inês, por toda a disponibilidade, toda a ajuda e por tudo o que me ensinaram ao longo deste período. Ao Ricardo que tem o dom de enaltecer o melhor que há em mim, sem nunca duvidar das minhas capacidades, por todo o apoio, amizade e cumplicidade À Ana, à Catarina, à Mariana, ao Bruno, à Ariana, à Inês, ao Adriano e a todos os meus amigos que mesmo estando longe me apoiaram e me fizeram sentir perto. A todos, os que direta ou indiretamente, tornaram este trabalho possível, um muito obrigada. v Resumo O percebe (Pollicipes pollicipes) é um crustáceo cirrípede de elevado interesse económico na península ibérica. Ao longo dos últimos anos têm sido desenvolvidos estudos com o objetivo de testar a viabilidade biológica da aquacultura de percebes. No presente trabalho testou-se o efeito de um sistema alternado de cultivo, no qual os percebes alternam entre a jangada, a permanência em condições laboratoriais durante o período de maior incrustação por outras espécies (verão) e o retorno à jangada. Este estudo dividiu-se em duas experiências, tendo a primeira durado entre maio e setembro de 2019 (primavera/verão), e a segunda entre maio e dezembro de 2019 (primavera/verão/outono). Na primeira experiência, foi observado que a sobrevivência dos percebes mantidos na jangada era semelhante à de percebes que permaneceram na jangada e que foram depois cultivados em laboratório, o que indica que neste período, as condições de cultivo na jangada permaneceram favoráveis à sobrevivência desta espécie. Contudo, na segunda experiência foi observada uma mortalidade quase total dos percebes que foram mantidos na jangada, mas uma considerável sobrevivência (valor médio de 34%) nos percebes que alternaram entre o cultivo na jangada, o cultivo em laboratório entre julho a setembro, e novamente o cultivo em jangada. Sendo assim, os resultados do presente trabalho indicam que é biologicamente viável produzir percebes num sistema alternado de cultivo. O segundo objetivo do trabalho incidiu no cultivo laboratorial do percebe e consistiu em testar o efeito das condições hidrodinâmicas (indivíduos mantidos com a bomba de fluxo sempre desligada, sempre ligada, ligada apenas durante o período de alimentação e desligada apenas durante o período de alimentação) e do regime alimentar (período de alimentação de 2h seguido de 2h em que os percebes estavam no exterior do aquário em condições de emersão, de modo a garantir que não continuavam a alimentar-se, período de alimentação de 2h em imersão, e período de 4h em imersão) na sobrevivência, tamanho, crescimento e no comportamento dos cirros dos percebes. A sobrevivência não foi afetada por estes fatores. Porém o crescimento e o número de batimento dos cirros antes da alimentação variaram entre tratamentos. O crescimento não parece ter uma relação linear com a duração do período de alimentação, pois não foram encontradas diferenças no crescimento em percebes sujeitos a um período de alimentação de 2h ou 4h, e é influenciado positivamente pelo hidrodinamismo, nomeadamente durante o período de alimentação, o que poderá indicar uma maior taxa de ingestão de alimento em condições mais hidrodinâmicas. Este maior crescimento também parece ser devido a um menor dispêndio de energia na atividade dos cirros que batem menos nestas condições. Palavras-chave: Pollicipes pollicipes, condições laboratoriais, “barticle”, crescimento, sobrevivência, condições hidrodinâmicas, alimentação, aquacultura vi Abstract The stalked barnacle (Pollicipes pollicipes) is a cirripedean crustacean of high economic interest. Studies have been developed to improve the aquaculture production. In this study we tested the effect of an alternative system, the barnacles alternate between the platform and the laboratory, during the period of greater biofouling by other species (summer). This study was divided into two experiments, the first one took place between May and September 2019 (spring/summer period), and the second between May and December 2019 (spring / summer and autumn period). In the first experiment, the average survivability of barnacles was higher than previous studies, indicating that during this period, platform cultivation conditions remained favourable for survivability (mean value of 34%). However, in the second experiment there was an almost total mortality of the barnacles that were kept in the platform. However, the survival rate was better in the barticles who interval the platform period with a lab period from July to September, when biofouling is most incident. Thus, the results demonstrate that it is biologically viable to produce barnacles in an alternating system (platform-laboratory conditions-platform). The second objective was to test the effect of hydrodynamic conditions and duration of feeding period on survival, size, growth and cirrus behaviour of barnacles. Three diets were tested, the two-hour feeding period followed by the two-hour in which the barnacles were outside the aquarium to ensure that they did not continue to feed, the two-hour feeding period and the four-hour feeding period. It was concluded that there’s no linear relationship between the growth and the feeding period and that the barnacles are satiated only with the two hours of feeding. Regarding the hydrodynamic conditions, the following treatments were tested: individuals kept with the flow pump always off; always on; switched on only during the power period; and only turned off during the power period. It was concluded that high turbulence contributes positively to growth since there is a higher energy allocation in growth due to lower energy expenditure in cirrus movement for respiration and, in addition, greater assimilation of food and higher intake in conditions of greater hydrodynamism. Keywords: Pollicipes pollicipes, laboratorial conditions, “barticle”, survivability, hydrodynamic conditions, feeding, aquaculture. vii Índice 1. Introdução ................................................................................................................... 1 1.1 Taxonomia, distribuição geográfica e abundância ............................................. 1 1.2 Morfologia interna e externa de P. pollicipes ..................................................... 2 1.3 Ciclo de vida, recrutamento, crescimento e mortalidade .................................. 3 1.4 Comportamento alimentar e respiração – batimento dos cirros ...................... 7 1.5 Gestão, conservação e bio-economia da espécie ............................................... 9 1.6 Potencial do percebe para a aquacultura ......................................................... 11 1.7 Objetivo ............................................................................................................. 13 2. Materiais e Métodos ................................................................................................. 13 2.1 Recolha dos percebes .................................................................................... 13 2.2 Sistemas de Cultivo ....................................................................................... 15 2.3 Estudo 1. Sistema alternado de cultivo: os percebes alternam entre a jangada e o laboratório ........................................................................................................... 17 2.4 Estudo 2. Efeito do regime alimentar e das condições de hidrodinamismo 20 3. Resultados .................................................................................................................. 23 4. Discussão ................................................................................................................... 40 5. Conclusão ................................................................................................................... 45 6. Referências Bibliográficas .......................................................................................... 46 viii ix Índice de figuras FIGURA 1. DISTRIBUIÇÃO DAS ESPÉCIES DO GÉNERO POLLICIPES. .................................................................................... 1 FIGURA 2. A) MORFOLOGIA EXTERNA DE POLLICIPES POLLICIPES, COM A DIVISÃO EM PEDÚNCULO E CAPITULUM, COM IDENTIFICAÇÃO DAS DIFERENTES PLACAS CALCÁRIAS; B) MORFOLOGIA INTERNA DE P.POLLICIPES COM IDENTIFICAÇÃO
Recommended publications
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Remarkable Convergent Evolution in Specialized Parasitic Thecostraca (Crustacea)
    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A Published in: BMC Biology DOI: 10.1186/1741-7007-7-15 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pérez-Losada, M., Høeg, J. T., & Crandall, K. A. (2009). Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea). BMC Biology, 7(15), 1-12. https://doi.org/10.1186/1741-7007-7-15 Download date: 25. Sep. 2021 BMC Biology BioMed Central Research article Open Access Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Marcos Pérez-Losada*1, JensTHøeg2 and Keith A Crandall3 Address: 1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal, 2Comparative Zoology, Department of Biology, University of Copenhagen, Copenhagen, Denmark and 3Department of Biology and Monte L Bean Life Science Museum, Brigham Young University, Provo, Utah, USA Email: Marcos Pérez-Losada* - [email protected]; Jens T Høeg - [email protected]; Keith A Crandall - [email protected] * Corresponding author Published: 17 April 2009 Received: 10 December 2008 Accepted: 17 April 2009 BMC Biology 2009, 7:15 doi:10.1186/1741-7007-7-15 This article is available from: http://www.biomedcentral.com/1741-7007/7/15 © 2009 Pérez-Losada et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • A Possible 150 Million Years Old Cirripede Crustacean Nauplius and the Phenomenon of Giant Larvae
    Contributions to Zoology, 86 (3) 213-227 (2017) A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae Christina Nagler1, 4, Jens T. Høeg2, Carolin Haug1, 3, Joachim T. Haug1, 3 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg- Martinsried, Germany 2 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany 4 E-mail: [email protected] Key words: nauplius, metamorphosis, palaeo-evo-devo, Cirripedia, Solnhofen lithographic limestones Abstract The possible function of giant larvae ................................ 222 Interpretation of the present case ....................................... 223 The larval phase of metazoans can be interpreted as a discrete Acknowledgements ....................................................................... 223 post-embryonic period. Larvae have been usually considered to References ...................................................................................... 223 be small, yet some metazoans possess unusually large larvae, or giant larvae. Here, we report a possible case of such a giant larva from the Upper Jurassic Solnhofen Lithographic limestones (150 Introduction million years old, southern Germany), most likely representing an immature cirripede crustacean (barnacles and their relatives). The single specimen was documented with up-to-date
    [Show full text]
  • Barnacle Editor Workshop
    Barnacle Editor Workshop VLIZ InnovOcean Site Wandelaarkaai 7 – entrance Pakhuis 61 (UNESCO) B-8400 Oostende, Belgium February 24-28, 2020 Final Report Barnacle Participants: Keith Crandall, Meeting Organizer, George Washington University, Washington, DC USA Jens Hoeg, University of Copenhagen, Copenhagen, Denmark Marcos Pérez-Losada, George Washington University, Washington, DC USA Benny Chan, Academia Sinica, Taipei, Taiwan Henrick Glenner, University of Bergen, Bergen, Norway Andy Gale, University of Portsmouth, Portsmouth, United Kingdom Niklas Dreyer, Academia Sinica, Taipei, Taiwan WoRMS Data Management Team (DMT): Stefanie Dekeyzer (Meeting Coordinator) Bart Vanhoorne Wim Decock Leen Vandepitte Target Group: The barnacles – more specifically, the broader group of Thecostraca including the traditional barnacles (Cirripedia) as well as the related groups of Facetotecta and Ascothoracida. The thecostracan barnacles rank among the most commonly encountered marine crustaceans in the world. They deviate from almost all other Crustacea in that only the larvae are free-living, while the adults are permanently sessile and morphologically highly specialized as filter feeders or parasites. In the most recent classifications of the crustacean Maxillopoda 1 and latest phylogenetic analyses 2-4 the Thecostraca sensu Grygier 5, comprising the Facetotecta, Ascothoracida, and Cirripedia, form monophyletic assemblages. Barnacle phylogenetics has advanced greatly over the last 10 years. Nonetheless, the relationships and taxonomic status of some groups within these three infraclasses are still a matter of debate. While the barnacles where the focus of Darwin’s detailed taxonomic work, there has not been a comprehensive review of the species of barnacles as a whole since Darwin. As a consequence, the barnacle entries within the WoRMS Database is woefully out of date taxonomically and missing many, many species and higher taxa.
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • Arthropod Fossil Data Increase Congruence of Morphological and Molecular Phylogenies
    ARTICLE Received 14 Jan 2013 | Accepted 21 Aug 2013 | Published 30 Sep 2013 DOI: 10.1038/ncomms3485 Arthropod fossil data increase congruence of morphological and molecular phylogenies David A. Legg1,2,3, Mark D. Sutton1 & Gregory D. Edgecombe2 The relationships of major arthropod clades have long been contentious, but refinements in molecular phylogenetics underpin an emerging consensus. Nevertheless, molecular phylogenies have recovered topologies that morphological phylogenies have not, including the placement of hexapods within a paraphyletic Crustacea, and an alliance between myriapods and chelicerates. Here we show enhanced congruence between molecular and morphological phylogenies based on 753 morphological characters for 309 fossil and Recent panarthropods. We resolve hexapods within Crustacea, with remipedes as their closest extant relatives, and show that the traditionally close relationship between myriapods and hexapods is an artefact of convergent character acquisition during terrestrialisation. The inclusion of fossil morphology mitigates long-branch artefacts as exemplified by pycnogonids: when fossils are included, they resolve with euchelicerates rather than as a sister taxon to all other euarthropods. 1 Department of Earth Sciences and Engineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK. 2 Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. 3 Oxford University Museum of Natural History, Oxford OX1 3PW, UK. Correspondence and requests for materials should be addressed to D.A.L. (email: [email protected]). NATURE COMMUNICATIONS | 4:2485 | DOI: 10.1038/ncomms3485 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3485 rthropods are diverse, disparate, abundant and ubiqui- including all major extinct and extant panarthropod groups.
    [Show full text]
  • Aquaculture of Stalked Barnacles (Pollicipes Pollicipes)
    Aquaculture of stalked barnacles (Pollicipes pollicipes) Sofia Cota Franco A thesis submitted to Newcastle University in candidature for the Degree of Doctor of Philosophy School of Marine Science and Technology July 2014 Abstract The stalked barnacle, Pollicipes pollicipes, is considered a delicacy on the Iberian Peninsula and has a high market value. Despite being a dangerous activity, increased collection efforts and associated stock shortage have raised awareness of the need for effective conservation and stock management policies. Accordingly, aquaculture has received interest as an alternative to supply the market and for re-stocking programmes. However, knowledge on the aquaculture requirement of this species and applicable production cycles is limited. Research challenges span the entire P. pollicipes life cycle, from adult reproduction to larval settlement. Though adults have been kept in culture, the conditions required for broodstock reproduction and larval release remain poorly studied and larvae have been routinely extracted from wild-collected adults and reared to cyprids. Optimization of larval culture is essential for the production of high-quality larvae and avoidance of high mortality. Furthermore, cyprid settlement on artificial substrata presents a bottleneck to production, with settlement occurring mostly on conspecific adults. The conditions that mediate settlement on preferential substrata have yet to be established. Though juvenile behaviour and growth in the wild have been the subject of ecological studies, research on culture conditions is limited and the influence of environmental factors is poorly understood. In the present work, the effect of environmental conditions on the behaviour and development of P. pollicipes was tested throughout the life cycle to identify optimal culture conditions and assess potential for larger-scale culture.
    [Show full text]
  • Harvest Locations of Goose Barnacles Can Be Successfully Discriminated
    www.nature.com/scientificreports OPEN Harvest locations of goose barnacles can be successfully discriminated using trace Received: 19 October 2015 Accepted: 03 May 2016 elemental signatures Published: 13 June 2016 Rui Albuquerque1,2, Henrique Queiroga1, Stephen E. Swearer3, Ricardo Calado1 & Sérgio M. Leandro2 European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual’s origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma−Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach
    [Show full text]
  • Cypris Larvae of Acrothoracican Barnacles (Thecostraca: Cirripedia: Acrothoracica) Gregory A
    ARTICLE IN PRESS Zoologischer Anzeiger 246 (2007) 127–151 www.elsevier.de/jcz Cypris larvae of acrothoracican barnacles (Thecostraca: Cirripedia: Acrothoracica) Gregory A. Kolbasova, Jens T. Høegb,Ã aDepartment of Invertebrate Zoology, the White Sea Biological Station, Biological Faculty, Moscow State University, Moscow 119992, Russia bDepartment of Cell Biology and Comparative Zoology, Institute of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark Received 20 July 2006; received in revised form 1 February 2007; accepted 30 March 2007 Corresponding editor: A.R. Parker Abstract We used SEM to investigate the morphology of the cypris larvae from a range of species of the Cirripedia Acrothoracica, representing all three families and including the first detailed account of cyprids in the highly specialized Cryptophialidae. Special attention was given to the head shield (carapace), the lattice organs, the antennules, the thoracopods, the telson and the furcal rami. The cypris larvae of the Acrothoracica fall into two morphological groups; those of the Trypetesidae and Lithoglyptidae have a well-developed carapace (head shield) that can completely enclose the body and sports fronto-lateral pores, numerous short setae and lattice organs perforated by numerous small, rounded pores and a single, conspicuous terminal pore. The fourth antennular segment has the setae arranged in subterminal and terminal groups. There is a developed thorax with natatory thoracopods and a distinct abdomen and telson. In comparison, the cyprids of the Cryptophialidae exhibit apomorphies in the morphology of the carapace, the antennules and the thorax, mostly in the form of simplifications and reductions. They have a much smaller head shield, leaving parts of the body directly exposed.
    [Show full text]
  • Ordens Lepadiformes, Scalpelliformes, Verruciformes E Balaniformes
    Revista IDE@ - SEA, nº 99B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Órdenes Lepadiformes, Scalpelliformes, Clase: Thecostraca Manual Verruciformes y Balaniformes Versión en español CLASSE THECOSTRACA: SUBCLASSE CIRRIPEDIA: SUPERORDEM THORACICA: Ordens Lepadiformes, Scalpelliformes, Verruciformes e Balaniformes Teresa Cruz1,2, Joana N. Fernandes1, Robert J. Van Syoc3 & William A. Newman4 1 MARE – Marine and Environmental Sciences Center, Laboratório de Ciências do Mar, Universidade de Évora, Apartado 190, 7521-903 Sines, Portugal. 2 Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal. 3 California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA. 4 Scripps Institution of Oceanography, University of California San Diego, La Jolla CA 92093, USA. [email protected] 1. Breve definição do grupo e principais características diagnosticantes A superordem Thoracica pertence à classe Thecostraca e à subclasse Cirripedia (cirri / cirros - apêndices torácicos modificados). Os cirrípedes (“barnacles” em inglês) são crustáceos cujos adultos são geralmente sésseis e vivem fixos a um substrato duro ou a outros organismos. O corpo dos cirrípedes é envolvido por uma carapaça (manto) que na maioria das formas segrega uma concha calcária, o que levou, no século XIX, à sua identificação incorreta como moluscos. Os cirrípedes também incluem as superordens Acrothoracica (“burrowing barnacles”, vivem em buracos de substrato calcário e têm os apêndices torácicos localizados na extremidade do tórax) e Rhizocephala (parasitas muito modificados, sem apêndices torácicos), podendo os Thoracica (apêndices torácicos presentes ao longo de um tórax bem desenvolvido) ser considerados como a superordem mais importante dos Cirripedia por serem o grupo mais diversificado, abundante e conspícuo, já tendo sido designados como os verdadeiros cirrípedes (“true barnacles”) (Newman & Abbott, 1980).
    [Show full text]
  • Downloaded from Brill.Com10/08/2021 07:29:42PM Via Free Access
    Contributions to Zoology 89 (2020) 324-352 CTOZ brill.com/ctoz From swimming towards sessility in two metamorphoses – the drastic changes in structure and function of the nervous system of the bay barnacle Amphibalanus improvisus (Crustacea, Thecostraca, Cirripedia) during development Paul Kalke Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055 Rostock, Germany Current address: Georg-August-University Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Animal Evolution and Biodiversity, Untere Karspuele 2, 37073 Göttingen, Germany Thomas Frase Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055 Rostock, Germany [email protected] Stefan Richter Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055 Rostock, Germany Abstract Knowledge about the development of the nervous system in cirripeds is limited, particularly with regard to the changes that take place during the two metamorphoses their larvae undergo. This study delivers the first detailed description of the development of the nervous system in a cirriped species, Amphibalanus improvisus by using immunohistochemical labeling against acetylated alpha-tubulin, and confocal laser scanning microscopy. The development of the nervous system in the naupliar stages corresponds largely to that in other crustaceans. As development progresses, the protocerebral sensory organs differentiate and the intersegmental nerves forming the complex peripheral nervous system appear, innervating the sensory structures of the cephalic shield. During metamorphosis into a cypris the lateral sides of the cephalic shield fold down into a bilateral carapace, which leads to a reorganization of the peripheral ner- vous system. The syncerebrum of the cypris exhibits the highest degree of complexity of all developmen- tal stages, innervating the frontal filaments, nauplius eye, compound eyes and the antennules.
    [Show full text]
  • Phylogenomic Analysis of Copepoda (Arthropoda, Crustacea) Reveals Unexpected Similarities with Earlier Proposed Morphological Ph
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers from the Nebraska Center for Biotechnology Biotechnology, Center for 1-2017 Phylogenomic analysis of Copepoda (Arthropoda, Crustacea) reveals unexpected similarities with earlier proposed morphological phylogenies Seong-il Eyun University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biotechpapers Part of the Biotechnology Commons, Molecular, Cellular, and Tissue Engineering Commons, Other Genetics and Genomics Commons, and the Terrestrial and Aquatic Ecology Commons Eyun, Seong-il, "Phylogenomic analysis of Copepoda (Arthropoda, Crustacea) reveals unexpected similarities with earlier proposed morphological phylogenies" (2017). Papers from the Nebraska Center for Biotechnology. 10. http://digitalcommons.unl.edu/biotechpapers/10 This Article is brought to you for free and open access by the Biotechnology, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers from the Nebraska Center for Biotechnology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Eyun BMC Evolutionary Biology (2017) 17:23 DOI 10.1186/s12862-017-0883-5 RESEARCHARTICLE Open Access Phylogenomic analysis of Copepoda (Arthropoda, Crustacea) reveals unexpected similarities with earlier proposed morphological phylogenies Seong-il Eyun Abstract Background: Copepods play a critical role in marine ecosystems but have been poorly investigated in phylogenetic studies. Morphological evidence supports the monophyly of copepods, whereas interordinal relationships continue to be debated. In particular, the phylogenetic position of the order Harpacticoida is still ambiguous and inconsistent among studies. Until now, a small number of molecular studies have been done using only a limited number or even partial genes and thus there is so far no consensus at the order-level.
    [Show full text]