04 Hoeg Proof Final Version Web.Indd

Total Page:16

File Type:pdf, Size:1020Kb

04 Hoeg Proof Final Version Web.Indd ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2009 Band/Volume: 67 Autor(en)/Author(s): Hoeg J.T., Pérez- Losada Marcos, Glenner Henrik, Kolbasov Gregory A., Crandall Keith A. Artikel/Article: Evolution of Morphology, Ontogeny and Life Cycles within the Crustacea Thecostraca 199-217 Arthropod Systematics & Phylogeny 199 67 (2) 199 – 217 © Museum für Tierkunde Dresden, eISSN 1864-8312, 25.8.2009 Evolution of Morphology, Ontogeny and Life Cycles within the Crustacea Thecostraca JENS T. HØEG 1 *, MARCOS PÉREZ-LOSADA 2, HENRIK GLENNER 3, GREGORY A. KOLBASOV 4 & KEITH A. CRANDALL 5 1 Comparative Zoology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark [[email protected]] 2 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal 3 Marine Organismal Biology, Department of Biology, University of Bergen, Box 7803, 5020 Bergen, Norway 4 Department of Invertebrate Zoology, White Sea Biological Station, Biological Faculty, Moscow State University, Moscow 119899, Russia 5 Department of Biology & Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah, 84602-5181, USA * Corresponding author Received 16.iii.2009, accepted 8.vi.2009. Published online at www.arthropod-systematics.de on 25.viii.2009. > Abstract We use a previously published phylogenetic analysis of the Thecostraca to trace character evolution in the major lineages of the taxon. The phylogeny was based on both molecular (6,244 sites from 18S rna, 28S rna and H3 genes) and 41 larval morphological characters with broad taxon sampling across the Facetotecta (7 spp.), Ascothoracida (5 spp.), and Cirripedia (3 acrothoracican, 25 rhizocephalan and 39 thoracican spp.). Morphological apomorphies are identifi ed in larval morpho- logy for almost all major branches within the Thecostraca. Characters from the cypris larva provide a long suite of apomor- phies for the Cirripedia and reinforce the concept that this larva was a prerequisite to the tremendous success of that taxon. The evolution of parasitism, obligatory in three major taxa, is discussed. We conclude that the last common ancestor to the Cirripedia was most likely a suspension feeder, and the advanced metamorphosis and endoparasitism known from the Rhizocephala and strongly indicated for the Facetotecta are the result of convergent evolution. We also discuss reproductive systems, which range from separate sexes, over hermaphrodites combined with a separate male sex (androdioecy), to pure hermaphroditism. It is concluded, as envisaged by Darwin, that the Thecostraca provide excellent opportunities for studying the evolution of a wide range of complex life history traits which can now be better analyzed and understood in a robust phylogenetic framework. > Key words Phylogeny, parasitology, metamorphosis, sessility, larval biology, nauplius, cyprid. 1. Introduction The taxon Thecostraca (class or subclass) encompasses relationships to discuss morphological and life history three major groups: the Cirripedia, the Ascothoracida trends in the different lineages. and the Facetotecta (MARTIN & DAVIS 2001). Due to The modern concept of the Thecostraca was not evolving ideas of relationships and taxonomy within conceived until GRYGIER (1987a) but has nevertheless these groups, we do not use absolute rank in this pa- won almost universal acceptance and is reproduced in per; rather, we discuss relationships of these taxa only most text books (BRUSCA & BRUSCA 2002; RUPPERT et in terms of relationships of lineages. We then use these al. 2004). While the monophyly of the Thecostraca is 200 HØEG et al.: Evolution of Thecostraca rarely challenged, it has been particularly diffi cult to basic arthropod traits (GRYGIER 1996a; GRYGIER & analyze the intrinsic phylogeny of the taxon, because HØEG 2005). it is one of the most variable groups within all Crus- The Facetotecta were known until recently only as tacea. This variability, present both within and among pelagic nauplius and cypris larvae of type ‘y’ (GRYGIER the three major lineages, concerns ontogeny, adult 1996b). But GLENNER et al. (2008) managed to induce morphology, mode of life and especially the repro- metamorphosis of the y-cyprid stage and obtained ductive systems, and it renders the Thecostraca excel- results indicating that the adult is a highly modifi ed lently suited for studying and testing theories on the parasite with early endoparasitic stages that bear a re- evolution of a host of biological traits. markable resemblance to those found in the life cycle All thecostracans are sessile as adults. The lar- of rhizocephalan cirripedes. This, and the general un- val development normally comprises a series of pe- certainty about thecostracan phylogeny, puts special lagic nauplii and is terminated by the cypridoid stage, emphasis on tracing the evolution of parasitism within which is specialized for attaching to a substratum and this taxon (PÉREZ-LOSADA et al. 2009). initiating the juvenile phase. Following HØEG et al. As a further complication, the Tantulocarida are (2004), the cypridoid stage is called ‘y-cyprid’ in the often mentioned as the most likely sister group to Facetotecta, ‘a-cyprid’ in the Ascothoracida and sim- the Thecostraca. The tantulocarids are also highly ply ‘cyprid’ in the Cirripedia (Electronic Supplement advanced parasites and, especially given the lack of video clip 1). knowledge about facetotectan adults, it cannot be ex- cluded that they are nested somewhere within the The- The Cirripedia (barnacles) comprises the Acro- costraca (BOXSHALL 2005a). thoracica (burrowing barnacles), the Rhizocephala (parasitic barnacles) and the Thoracica (pedunculated and sessile barnacles). Like all other thecostracans, cirripedes are sessile as adults (ANDERSON 1994). The 2. Variation within the Thecostraca acrothoracicans and thoracicans have become special- ized suspension feeders, using their six pairs of highly modifi ed thoracopods (cirri) as a highly specialized 2.1. Larval development basket for food capture. As a consequence, they con- tain modifi cations in the orientation of the body and Details of larval development vary both among and the entire morphology. The acrothoracicans burrow within the major taxa. The cypridoid stage is always into calcareous substrata, but most thoracicans are non-feeding. In the Thoracica, most species have freely exposed, and their body is more or less com- planktotrophic nauplii, but lecitotrophy is prevalent or pletely armed by a system of mineralized shell plates. obligatory in several families such as the Scalpellidae. Thoracicans therefore sport a highly modifi ed mode All Rhizocephala and Acrothoracica have lecitotroph- of moulting and growth, and Louis Agassiz is alleged ic nauplii. This is also the prevalent mode of devel- to have described them as “Nothing but a tiny little opment in the Ascothoracida and the Facetotecta, but shrimp-like animal, standing on its head in a lime both these taxa also have species with planktotrophic stone house and kicking food into its mouth” (RUPPERT nauplii. There is accordingly no obligatory link be- & BARNES 1994). The Rhizocephala are all parasitic, tween parasitism and naupliar mode of feeding in the their hosts being other Crustacea. The adult, devel- Thecostraca. Some ascothoracids and cirripedes have oping from an internal parasitic phase, is highly re- an abbreviated development. In the Thecostraca many duced and has lost almost all arthropod traits such as taxa have six naupliar instars just as in the Copepoda, segmentation and appendages. But within this highly so this could be the ground pattern, but some forms, modifi ed body morphology, adult rhizocephalans dis- such as the Rhizocephala, have only fi ve or four. There play a remarkable morphological variation includ- is no obligatory relation between numbers of instars or ing forms where multiple parasites are produced by feeding mode and the duration of the naupliar phase asexual budding from a common internal system of as shown by some cold water rhizocephalans that use rootlets, a situation unique in the Arthropoda. The only almost 30 days to reach the cyprid stage (WALOSSEK et morphological evidence that the Rhizocephala belong al. 1996). Pelagic nauplii are absent in many groups. to the Cirripedia comes from the development of the In the Cirripedia this seems always to involve larvae larvae (THOMPSON 1836; HØEG & MØLLER 2006). hatching as cyprids, but in the Ascothoracida some The Ascothoracida are also parasites, but the least species seem to brood the hatched nauplii in the mantle modifi ed members of the taxon have a morphology cavity and later release them as a-cyprids. As a further with few if any obvious adaptations to this mode of complication, some ascothoracids have two consecu- life. More advanced forms can be extensively modi- tive a-cyprid stages, with only the latter performing fi ed to parasitism although they always retain some settlement on the host (KOLBASOV et al. 2007). Finally, Arthropod Systematics & Phylogeny 67 (2) 201 A B Fig. 1. Metamorphosis in the Cirripedia Thoracica. Recently settled, but fully metamorphosed specimens. A: Lepas sp., presum- ably L. pectinata. Note the distinct similarity with a cypris larva although the appearance of annulated cirri and a true peduncle are clear post-metamorphic traits.
Recommended publications
  • 1 Creating a Species Inventory for a Marine Protected Area: the Missing
    Katherine R. Rice NOAA Species Inventory Project Spring 2018 Creating a Species Inventory for a Marine Protected Area: The Missing Piece for Effective Ecosystem-Based Marine Management Katherine R. Rice ABSTRACT Over the past decade, ecosystem-based management has been incorporated into many marine- management administrations as a marine-conservation tool, driven with the objective to predict, evaluate and possibly mitigate the impacts of a warming and acidifying ocean, and a coastline increasingly subject to anthropogenic control. The NOAA Office of National Marine Sanctuaries (ONMS) is one such administration, and was instituted “to serve as the trustee for a network of 13 underwater parks encompassing more than 600,000 square miles of marine and Great Lakes waters from Washington state to the Florida Keys, and from Lake Huron to American Samoa” (NOAA, 2015). The management regimes for nearly all national marine sanctuaries, as well as other marine protected areas, have the goal of managing and maintaining biodiversity within the sanctuary. Yet none of those sanctuaries have an inventory of their known species nor a standardized protocol for measuring or monitoring species biodiversity. Here, I outline the steps required to compile a species inventory for an MPA, but also describe some of stumbling blocks that one might encounter along the way and offer suggestions on how to handle these issues (see Appendix A: Process for Developing the MBNMS Species Inventory (PD-MBNMS)). This project consists of three research objectives: 1. Determining what species inventory efforts exist, how they operate, and their advantages and disadvantages 2. Determining the process of creating a species inventory 3.
    [Show full text]
  • Biodiversity, Habitats, Flora and Fauna
    1 North East inshore Biodiversity, Habitats, Flora and Fauna - Protected Sites and Species 2 North East offshore 3 East Inshore Baseline/issues: North West Plan Areas 10 11 Baseline/issues: North East Plan Areas 1 2 4 East Offshore (Please note that the figures in brackets refer to the SA scoping database. This is • SACs: There are two SACs in the plan area – the Berwickshire and North available on the MMO website) Northumberland Coast SAC, and the Flamborough Head SAC (Biodiv_334) 5 South East inshore • Special Areas of Conservation (SACs): There are five SACs in the plan area • The Southern North Sea pSAC for harbour porpoise (Phocoena phocoena) 6 South inshore – Solway Firth SAC, Drigg Coast SAC, Morecambe Bay SAC, Shell Flat and is currently undergoing public consultation (until 3 May 2016). Part of Lune Deep SAC and Dee Estuary SAC (Biodiv_372). The Sefton Coast the pSAC is in the offshore plan area. The pSAC stretches across the 7 South offshore SAC is a terrestrial site, mainly for designated for dune features. Although North East offshore, East inshore and offshore and South East plan areas not within the inshore marine plan area, the development of the marine plan (Biodiv_595) 8 South West inshore could affect the SAC (Biodiv_665) • SPAs: There are six SPAs in the plan area - Teesmouth and Cleveland 9 South west offshore • Special protection Areas (SPAs): There are eight SPAs in the plan area - Coast SPA, Coquet Island SPA, Lindisfarne SPA, St Abbs Head to Fast Dee Estuary SPA, Liverpool Bay SPA, Mersey Estuary SPA, Ribble and Castle SPA and the Farne Islands SPA, Flamborough Head and Bempton 10 North West inshore Alt Estuaries SPA, Mersey Narrows and North Wirral Foreshore SPA, Cliffs SPA (Biodiv_335) Morecambe Bay SPA, Duddon Estuary SPA and Upper Solway Flats and • The Northumberland Marine pSPA is currently undergoing public 11 North West offshore Marshes SPA (Biodiv_371) consultation (until 21 April 2016).
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Hull Fouling Is a Risk Factor for Intercontinental Species Exchange in Aquatic Ecosystems
    Aquatic Invasions (2007) Volume 2, Issue 2: 121-131 Open Access doi: http://dx.doi.org/10.3391/ai.2007.2.2.7 © 2007 The Author(s). Journal compilation © 2007 REABIC Research Article Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems John M. Drake1,2* and David M. Lodge1,2 1Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA 2Environmental National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA 93101 USA *Corresponding author Current address: Institute of Ecology, University of Georgia, Athens, GA 30602 USA E-mail: [email protected] (JMD) Received: 13 March 2007 / Accepted: 25 May 2007 Abstract Anthropogenic biological invasions are a leading threat to aquatic biodiversity in marine, estuarine, and freshwater ecosystems worldwide. Ballast water discharged from transoceanic ships is commonly believed to be the dominant pathway for species introduction and is therefore increasingly subject to domestic and international regulation. However, compared to species introductions from ballast, translocation by biofouling of ships’ exposed surfaces has been poorly quantified. We report translocation of species by a transoceanic bulk carrier intercepted in the North American Great Lakes in fall 2001. We collected 944 individuals of at least 74 distinct freshwater and marine taxa. Eight of 29 taxa identified to species have never been observed in the Great Lakes. Employing five different statistical techniques, we estimated that the biofouling community of this ship comprised from 100 to 200 species. These findings adjust upward by an order of magnitude the number of species collected from a single ship.
    [Show full text]
  • Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand
    ISSN 0083-7903, 70 (Print) ISSN 2538-1016; 70 (Online) Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand by PENELOPE A. LUCKENS New Zealand Oceanographic.Institute Memoir No. 70 1976 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand by PENELOPE A. LUCKENS New Zealand Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir No. 70 1976 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World List of Scientific Periodicals ( 4th edn.): Mem. N.Z. oceanogr. Inst. 70 New Zealand Oceanographic Institute Memoir No. 70 ISSN 0083-7903 Edited by Q. W. Ruscoe and D. J. Zwartz, Science Information Division, DSIR Received for publication May 1969 © Crown Copyright 1976 A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND - 1976 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Abstract page 5 Introduction .. 5 The experimental areas Location and physical structure Tidal phenomena 9 Terminology 9 General zonation pattern at the localities sampled 9 Methods 11 Settlement seasons 12 Organisms settling in the experimental areas (Table 1) 15 Factors affecting settlement of some of the organisms 42 Changes observed after clearance of the experimental areas .. 44 Temporal succession .. 60 Climax populations 60 Summary 61 Acknowledgments 61 Appendix 62 References 63 Index 64 3 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Otago Submarine Canyons: Mapping and Macrobenthos
    Otago Submarine Canyons: Mapping and Macrobenthos Bryce A. Peebles A thesis submitted in partial fulfilment for the degree of Master of Science at the University of Otago December 2013 ii Abstract Submarine canyons are steep-sided “V’ or “U” shaped valleys that incise continental slopes worldwide. The geophysical and oceanographic features of submarine canyons can produce environmental conditions that cause benthic assemblages to be distinctive and productive compared to those of the adjacent slope; however the assemblages are potentially vulnerable to anthropogenic impacts, including bottom fishing. In order to help inform policy and management, submarine canyons need to be objectively defined topographically and their benthic assemblages characterised. A canyon network occurs off the Otago Peninsula, south-eastern New Zealand, but lack of detailed bathymetric data and adequate benthic sampling has limited study of the canyons. This thesis outlines a method of defining submarine canyon areas and examines epifaunal and infaunal assemblages of the Otago canyons and adjacent slope. Objective definition of the Otago canyon network in the GIS software GRASS along with the steps to use this methodology worldwide are described. Archival count data from 1966-74 on the epifauna are analysed using the PRIMER suite of programs to characterise epifaunal assemblages. Anomurans, polychaetes, asteroids and ascidians make up 70% of the epifaunal canyon assemblage. The epifaunal assemblage is clearly defined by water depth and recognisable from 380 m. Quantitative sampling of infauna in Saunders canyon, Papanui canyon and adjacent slope was carried out to examine infaunal community structure of the canyons and adjacent slope. Infaunal canyon assemblages are dominated by polychaetes, amphipods, ophiuroids, decapods and isopods in canyons, accounting for 75% of collected individuals.
    [Show full text]
  • Origin of Chordates Part-I
    ORIGIN OF CHORDATES Evolution of chordate was one of the most important event in the history of chordate as it was the beginning of evolution of more advanced chordates like bird and mammals. It is the story of origin from a primitive invertebrate like creatures to early chordates. Though first fossil of the first vertebrate the ostrachoderm was discovered from the Ordovician period but it might have originated in late Cambrian period. As early chordates were soft bodied, their fossil records are not preserved. Hence, to trace their ancestry, we have to find out the similarity among different deuterostomes to trace the origin of chordates. Some structural features shared by them such as bilateral symmetry, antero-posterior body axis, triploblastic coelomate condition, etc., may he because of their common ancestry. TIME OF ORIGIN: Late Cambrian period PLACE OF ORIGIN: Fresh water THEORIES OF INVERTEBRATE ANCESTRY OF CHORDATES Several theories have been put forwarded to explain the origin of chordates either directly from some invertebrate group or through the intervention of some protochordate. Almost every invertebrate phylum—Coelenterata, Nemertean, Phoronida, Annelids, Arthropods and Echinodermatashas been suggested. But these theories are far from being satisfactory and convincing and have only a historical value. Only the echinoderm theory has received some acceptance. DIVISION OF BILATERIA The Bilateria is divided into two major divisions (1) Protostomia and (2) Deuterostornia. This division is based on the differences in embryonic and larval developments. Protostomia includes from Annelida to Arthropoda while deuterostomia includes Echinodermata, Pogonophora and Chordate. DEUTEROSTOME LINE OF CHORDATE EVOLUTION Following common features of all Deuterostomes suggests strong evidence of a closer evolutionary relationship between the three principal deuterostome phyla – Echinodermata, Hemichordata and Chordata.
    [Show full text]
  • Remarkable Convergent Evolution in Specialized Parasitic Thecostraca (Crustacea)
    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A Published in: BMC Biology DOI: 10.1186/1741-7007-7-15 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pérez-Losada, M., Høeg, J. T., & Crandall, K. A. (2009). Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea). BMC Biology, 7(15), 1-12. https://doi.org/10.1186/1741-7007-7-15 Download date: 25. Sep. 2021 BMC Biology BioMed Central Research article Open Access Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Marcos Pérez-Losada*1, JensTHøeg2 and Keith A Crandall3 Address: 1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal, 2Comparative Zoology, Department of Biology, University of Copenhagen, Copenhagen, Denmark and 3Department of Biology and Monte L Bean Life Science Museum, Brigham Young University, Provo, Utah, USA Email: Marcos Pérez-Losada* - [email protected]; Jens T Høeg - [email protected]; Keith A Crandall - [email protected] * Corresponding author Published: 17 April 2009 Received: 10 December 2008 Accepted: 17 April 2009 BMC Biology 2009, 7:15 doi:10.1186/1741-7007-7-15 This article is available from: http://www.biomedcentral.com/1741-7007/7/15 © 2009 Pérez-Losada et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • A Possible 150 Million Years Old Cirripede Crustacean Nauplius and the Phenomenon of Giant Larvae
    Contributions to Zoology, 86 (3) 213-227 (2017) A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae Christina Nagler1, 4, Jens T. Høeg2, Carolin Haug1, 3, Joachim T. Haug1, 3 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg- Martinsried, Germany 2 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany 4 E-mail: [email protected] Key words: nauplius, metamorphosis, palaeo-evo-devo, Cirripedia, Solnhofen lithographic limestones Abstract The possible function of giant larvae ................................ 222 Interpretation of the present case ....................................... 223 The larval phase of metazoans can be interpreted as a discrete Acknowledgements ....................................................................... 223 post-embryonic period. Larvae have been usually considered to References ...................................................................................... 223 be small, yet some metazoans possess unusually large larvae, or giant larvae. Here, we report a possible case of such a giant larva from the Upper Jurassic Solnhofen Lithographic limestones (150 Introduction million years old, southern Germany), most likely representing an immature cirripede crustacean (barnacles and their relatives). The single specimen was documented with up-to-date
    [Show full text]
  • Barnacle Editor Workshop
    Barnacle Editor Workshop VLIZ InnovOcean Site Wandelaarkaai 7 – entrance Pakhuis 61 (UNESCO) B-8400 Oostende, Belgium February 24-28, 2020 Final Report Barnacle Participants: Keith Crandall, Meeting Organizer, George Washington University, Washington, DC USA Jens Hoeg, University of Copenhagen, Copenhagen, Denmark Marcos Pérez-Losada, George Washington University, Washington, DC USA Benny Chan, Academia Sinica, Taipei, Taiwan Henrick Glenner, University of Bergen, Bergen, Norway Andy Gale, University of Portsmouth, Portsmouth, United Kingdom Niklas Dreyer, Academia Sinica, Taipei, Taiwan WoRMS Data Management Team (DMT): Stefanie Dekeyzer (Meeting Coordinator) Bart Vanhoorne Wim Decock Leen Vandepitte Target Group: The barnacles – more specifically, the broader group of Thecostraca including the traditional barnacles (Cirripedia) as well as the related groups of Facetotecta and Ascothoracida. The thecostracan barnacles rank among the most commonly encountered marine crustaceans in the world. They deviate from almost all other Crustacea in that only the larvae are free-living, while the adults are permanently sessile and morphologically highly specialized as filter feeders or parasites. In the most recent classifications of the crustacean Maxillopoda 1 and latest phylogenetic analyses 2-4 the Thecostraca sensu Grygier 5, comprising the Facetotecta, Ascothoracida, and Cirripedia, form monophyletic assemblages. Barnacle phylogenetics has advanced greatly over the last 10 years. Nonetheless, the relationships and taxonomic status of some groups within these three infraclasses are still a matter of debate. While the barnacles where the focus of Darwin’s detailed taxonomic work, there has not been a comprehensive review of the species of barnacles as a whole since Darwin. As a consequence, the barnacle entries within the WoRMS Database is woefully out of date taxonomically and missing many, many species and higher taxa.
    [Show full text]