Carbohydrates

Total Page:16

File Type:pdf, Size:1020Kb

Carbohydrates Carbohydrates Objectives: I. Define carbohydrates on the basis of the organic functional groups present on the molecule. II. Define carbohydrates on the basis of size A. Monosaccharides B. Disaccharides C. Oligosaccharides D. Polysaccharides III. Classify the important monosaccharides on the basis of: A. The number of carbons in the molecule. B. Whether it is an aldehyde or a ketone. C. Both IV. Describe the biochemically most important monosaccharides. A. Aldoses (6) versus ketoses (4) B. Significance of stereoisomerism on carbohydrate structure and function. C. Recognize and name the common monosaccharides from their Fischer projection D. From a Fischer projection identify a carbohydrate as a D or L sugar. E. Recognize and name the enantiomer pairs and/or diastereomers of the common monosaccharides from their Fischer projections. V. Describe the differences and similarities in structure and function among glucose, galactose, mannose, fructose, and ribose. VI. What are epimers? A. Which of the monosaccharides are epimers of each other? VII. Cyclic forms of the monosaccharides A. What organic functional group form when an aldose cyclizes? B. What organic functional group form when a ketose cyclizes? C. What are anomers? D. What is the anomeric carbon? E. Which of the monosaccharides are anomers of each other? F. What is Mutarotation? G. Recognize the monosaccharide when given in the Haworth projection of its α- and/or β-cyclic forms. H. Be able to convert the Fischer projection of a monosaccharide into its corresponding Haworth projection or a Haworth projection into its corresponding Fischer projection. VIII.Recognize some of the chemical properties of carbohydrates and relate them to the chemistry of alcohols and carbonyl compounds. A. Oxidation of aldehyde function group to form aldonic acids B. Reduction of carbonyl group to form sugar alcohols C. Oxidation of terminal hydroxyl group to form uronic acids D. Esterification E. Reduction of hydroxyl group to form deoxy sugars F. Substitution of hydroxyl group by an amino group G. Reaction of amino group with a carboxylic acid - amide formation H. Non-enzymatic glycation reactions 1 ©Kevin R. Siebenlist, 2019 IX. Recognize whether a monosaccharide is a reducing sugar or a non reducing sugar A. Discuss the use of the Tollen’s reagent and/or Benedict’s reagent to determine whether an aldose is present. X. Describe the reaction by which monosaccharides are joined to form disaccharides and polysaccharides. A. Describe the glycosidic bond. 1. What type of organic group is formed when a glycosidic bond forms? B. Describe the involvement of the anomeric carbon / anomeric hydroxyl group in the formation of a glycosidic bond. XI. Discuss the structural, chemical, and biochemical properties of the three common disaccharides. A. Describe the nature of the glycosidic bond(s) in the common disaccharides. B. Identify the disaccharide as reducing or non reducing. XII. Homopolysaccharides A. Discuss the structural, chemical, and biochemical properties of the homopolysaccharides produced by bacteria. B. Discuss the structural, chemical, and biochemical properties of the three common homopolysaccharides in eukaryotes. 1. Describe the nature of the glycosidic bond(s) in the common eukaryotic polysaccharides. XIII.Heteropolysaccharides A. With repeating disaccharide units - The Glycosaminoglycans 1. Discuss biochemical properties of the common glycosaminoglycans. a) Chondroitin sulfate. (1) D-Glucuronate (D-Glucuronic acid) and N-Acetyl-D-galactosamine. (2) C-4 or C-6 of N-acetyl galactosamine is often esterified with sulfate. (3) found in tendons, cartilage and bone where it modulates the compressibility of these tissues. b) Dermatan sulfate. (1) L-Iduronate (L-Iduronic acid) and N-Acetyl-D-galactosamine. (2) L-Iduronate is the C-5 epimer of D-Glucuronate (D-Glucuronic acid). (3) N-acetyl-D-galactosamine is often sulfated. (4) found in most tissues, but is especially rich in skin. c) Heparin. (1) D-Glucuronate (D-Glucuronic acid) and D-Glucosamine. (2) both are sulfated. (3) found in all cells, particularly rich Mast Cells where it has anticoagulant activities. d) Hyaluronic acid. (1) D-Glucuronate (D-Glucuronic acid) and N-Acetyl-D-glucosamine. (2) molecule Is Not Sulfated. (3) found in synovial fluid, vitreous humor, loose connective tissue, and cartilage. (4) plays a role in directing cell migration through the extracellular matrix and it modulates the compressibility of cartilage. e) Keratan sulfate. (1) N-Acetyl-D-glucosamine and D-Galactose. (2) N-acetyl-D-glucosamine is often sulfated. (3) found in the cornea of the eye where it plays a role in corneal transparency and 2 ©Kevin R. Siebenlist, 2019 also found in cartilage and tendons. 2. Assembly of glycosaminoglycans into proteoglycans B. With a “random” structure. 1. O-Linked vs N-Linked 2. Lectins & Selectins 3. A, B, O Blood group heteropolysaccharides (A, B, O Blood group antigens) kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk General Considerations The CARBOHYDRATES are widely distributed in nature, and by mass they are the most abundant biomolecules on earth. Carbohydrates are also called SACCHARIDES or SUGARS. In terms of organic functional groups present on the molecule, carbohydrates are polyhydroxyl aldehydes or ketones, or molecules that yield polyhydroxyl aldehydes or polyhydroxyl ketones upon hydrolysis. MONOSACCHARIDES are the monomeric units of carbohydrates. They all share the general formula, Cn(H2O)n, where n ≥ 3. From this formula the origin of the name “carbohydrate” is obvious - Carbon + Water. DISACCHARIDES contain two monomeric units covalently linked. OLIGOSACCHARIDES are polymers of monosaccharides containing ≤ 20 monomeric units. POLYSACCHARIDES are polymers of monosaccharides containing > 20 monomeric units. GLYCOCONJUGATES are carbohydrate derivatives in which oligosaccharides or polysaccharides are covalently linked to peptides, proteins, or lipids. Glycoconjugates include the: • PEPTIDOGLYCANS and PROTEOGLYCANS- more sugar than peptide/protein by mass. • GLYCOPROTEINS - more protein than sugar by mass. • GLYCOLIPIDS - more lipid than sugar by mass. The Monosaccharides The monosaccharides are all polyhydroxyl aldehydes or ketones. They can be classified by the number of carbon atoms they contain -TRIOSE, TETROSE, PENTOSE, HEXOSE, etc. NONOSES, monosaccharides with 9 carbons, are the largest monosaccharides found in nature. Monosaccharides can be classified by the type / location of carbonyl group they contain; an aldehyde group - ALDOSE; or a ketone group - KETOSE. A combination of these terms is can be used to describe monosaccharides more precisely - e.g., a KETOTETROSE has 4 carbons and a ketone functional group. Aldoses and ketoses with the same number of carbon atoms are isomers of each other. They have the same empirical formula Cn(H2O)n, but different structural formulas. Most monosaccharides end in the suffix “OSE”. The two simplest monosaccharides are GLYCERALDEHYDE, an aldotriose, and DIHYDROXYACETONE, a 3 ©Kevin R. Siebenlist, 2019 ketotriose. H O H O C C CH2OH HO CH H COH CO CH2OH CH2OH CH2OH L-Glyceraldehyde D-Glyceraldehyde Dihydroxyacetone Glyceraldehyde is a chiral molecule. The second carbon atom of this molecule is a chiral (asymmetric) carbon. Since glyceraldehyde contains a chiral carbon it can exist as a pair of enantiomers, a D-form (R) and an L-form (S). All of the aldoses and the ketoses with four or more carbons contain at least one chiral carbon and therefore can exist as at least one pair of enantiomers. Like the amino acids, only one enantiomeric form of the carbohydrates is primarily used by cells. The D-form of the carbohydrates is the biologically active form. L-forms are used to a limited extent in specialized structures or for specialized functions. The larger aldoses and ketoses can be modeled as extensions of glyceraldehyde or dihydroxyacetone. A secondary alcohol functional group H-C-OH or its mirror image HO-C-H is inserted between the carbonyl carbon and the adjacent secondary alcohol group. When these groups are inserted, two possible stereoisomers result; one with the -OH group pointing to the right the other with the -OH group pointing left. Of the 15 possible D-form aldoses with 6 or fewer carbons the ones most often encountered in living organisms are: D-GLYCERALDEHYDE is a aldotriose, D-ERYTHROSE is a aldotetrose, D-RIBOSE (Rib) is a aldopentose, and D-GLUCOSE (Glc), D-GALACTOSE (Gal), & D-MANNOSE (Man) are aldohexoses. H O H O C C H O H C OH C H C OH H C OH H C OH H C OH H C OH CH2OH CH OH 2 CH2OH D-Glyceraldehyde D-Erythrose D-Ribose H O H O H O C C C H C OH H C OH HO C H HO C H HO C H HO C H H C OH HO C H H C OH H C OH H C OH H C OH CH2OH CH2OH CH2OH D-Glucose D-Galactose D-Mannose 4 ©Kevin R. Siebenlist, 2019 CH2OH CH OH C O 2 CH2OH C O C O HO C H CH2OH H C OH HO C H H C OH C O H C OH H C OH H C OH CH OH CH OH CH OH 2 2 CH2OH 2 Dihydroxyacetone D-Ribulose D-Xylulose D-Fructose Of the 8 possible D-form ketoses with 6 or fewer carbon atoms the ones most often encountered are: DIHYDROXYACETONE is a ketotriose, D-RIBULOSE & D-XYLULOSE are ketopentoses, and D-FRUCTOSE (Fru) is a ketohexose. While the ketone functional group can be on any interior carbon of the molecule, all of the naturally occurring ketoses have the carbonyl group on carbon two. Except for dihydroxyacetone all of the monosaccharides depicted here contain one or more chiral carbon atoms. All of the sugars presented here are the D-enantiomeric form. When more than one chiral carbon is present in the molecule how is the D-form determined? If the configuration of the chiral carbon furthest from the carbonyl carbon; if the configuration of the last chiral carbon is identical to that of D- glyceraldehyde (i.e., it points to the right in the Fischer Projection), it is a D-monosaccharide.
Recommended publications
  • Characterisation and Enzymic Degradation of Non-Starch Polysaccharides in Lignocellulosic By-Products
    CHARACTERISATION AND ENZYMIC DEGRADATION OF NON-STARCH POLYSACCHARIDES IN LIGNOCELLULOSIC BY-PRODUCTS A study on sunflower meal and palm-kernel meal l( OC\ "i Promotoren: dr.ir. A.G.J. Voragen hoogleraar in de levensmiddelenchemie dr. W. Pilnik emeritus-hoogleraar in de levensmiddelenleer fifNOftZOl /S^3 E.-M. Dusterhoft CHARACTERISATION AND ENZYMIC DEGRADATION OF NON- STARCH POLYSACCHARIDES IN LIGNOCELLULOSIC BY­ PRODUCTS A study on sunflower meal and palm-kernel meal Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, dr. H.C. van der Plas in het openbaar te verdedigen op woensdag 24 februari 1993 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen 0000 0512 8810 u>n SJLJ^Q CIP-DATA KONINKLUKEBIBLIOTHEEK , DEN HAAG Dusterhoft, Eva-Maria Characterisation and enzymic degradation of non-starch polysaccharides in lignocellulosic by-products: a study on sunflower meal and palm-kernel meal / Eva-Maria Dusterhoft. - [S.l.:s.n.] Thesis Wageningen.- With ref.- With summary in Dutch. ISBN 90-5485-076-0 Subject headings: non-starch polysaccharides / Helianthus annuus / Elaeis guineensis BlliLi .i :.;.;.:. LANDBOUWLNiVLRiHiol; ffiAGEMNGEN The research described in this thesis was financially supported by BP Nutrition Nederland B.V. and by a grant of the Dutch Ministry of Economic Affairs (subsidiary agreement 'Programmatische Bedrijfsgerichte Technologie Stimulering' (PBTS). fJNO^W! i 1-5^3 STELLINGEN 1) Kennis van alleen de suikersamenstelling van een heterogeen substraat is niet voldoende voor een voorspelling van de benodigde enzymen voor de hydrolyse ervan. dit proefschrift 2) De vertaling, die Thibault en Crepeau (1989) geven van de suikersamenstelling van zonnepitdoppen naar de daarin aanwezige polysacchariden, is gedeeltelijk onjuist.
    [Show full text]
  • Pentose PO4 Pathway, Fructose, Galactose Metabolism.Pptx
    Pentose PO4 pathway, Fructose, galactose metabolism The Entner Doudoroff pathway begins with hexokinase producing Glucose 6 PO4 , but produce only one ATP. This pathway prevalent in anaerobes such as Pseudomonas, they doe not have a Phosphofructokinase. The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt) is a biochemical pathway parallel to glycolysis that generates NADPH and pentoses. While it does involve oxidation of glucose, its primary role is anabolic rather than catabolic. There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of 5-carbon sugars. For most organisms, the pentose phosphate pathway takes place in the cytosol. For each mole of glucose 6 PO4 metabolized to ribulose 5 PO4, 2 moles of NADPH are produced. 6-Phosphogluconate dh is not only an oxidation step but it’s also a decarboxylation reaction. The primary results of the pathway are: The generation of reducing equivalents, in the form of NADPH, used in reductive biosynthesis reactions within cells (e.g. fatty acid synthesis). Production of ribose-5-phosphate (R5P), used in the synthesis of nucleotides and nucleic acids. Production of erythrose-4-phosphate (E4P), used in the synthesis of aromatic amino acids. Transketolase and transaldolase reactions are similar in that they transfer between carbon chains, transketolases 2 carbon units or transaldolases 3 carbon units. Regulation; Glucose-6-phosphate dehydrogenase is the rate- controlling enzyme of this pathway. It is allosterically stimulated by NADP+. The ratio of NADPH:NADP+ is normally about 100:1 in liver cytosol.
    [Show full text]
  • Effect of Metal Chlorides on Glucose Mutarotation and Possible Implications on Humin Formation
    Reaction Chemistry & Engineering Effect of Metal Chlorides on Glucose Mutarotation and Possible Implications on Humin Formation Journal: Reaction Chemistry & Engineering Manuscript ID RE-COM-10-2018-000233.R1 Article Type: Communication Date Submitted by the 28-Nov-2018 Author: Complete List of Authors: Ramesh, Pranav; Rutgers The State University of New Jersey, Chemical and Biochemical Engineering Kritikos, Athanasios; Rutgers The State University of New Jersey, Chemical and Biochemical Engineering Tsilomelekis, George; Rutgers The State University of New Jersey, Chemical and Biochemical Engineering Page 1 of 5 ReactionPlease doChemistry not adjust & Engineering margins Journal Name COMMUNICATION Effect of Metal Chlorides on Glucose Mutarotation and Possible Implications on Humin Formation a a a Received 00th January 20xx, Pranav Ramesh , Athanasios Kritikos and George Tsilomelekis * Accepted 00th January 20xx DOI: 10.1039/x0xx00000x www.rsc.org/ An in-situ Raman spectroscopic kinetic study of the glucose suggested that the possible changes in the anomeric mutarotation reaction is presented herein. The effect of metal equilibrium especially via the stabilization of the α-anomer of chlorides on the ease of ring opening process is discussed. It is glucose, might be responsible for improved selectivity towards 7, 8 shown that SnCl4 facilitates the mutarotation process towards the fructose . This also agrees with the concept of anomeric β-anomer extremely fast, while CrCl3 appears to promote the specificity of enzymes; for instance, immobilized D-glucose formation of the α-anomer of glucose. Infrared spectra of humins isomerase has shown ~40% and ~110% higher conversion rates prepared in different Lewis acids underscore the posibility of starting with α–D-glucose as compared to equilibrated glucose multiple reaction pathways.
    [Show full text]
  • Marking Scheme for the Exam
    Chemistry 2420 S10 Spring 2005 Term Exam #1 110 Minutes Name: ______________________ Student Number___________________ Marking Scheme For The Exam QUESTION # 1 2 3 4 5 6 7 8 6 12 14 14 13 39 12 9 TOTAL 119 % Question 1. (6 Marks) Under mildly acidic conditions, compound A reacts to produce compound E plus two equivalents of methanol. Identify the main functional group present in: A: ___________ E: ___________ CH3 CH3 CH 3 CH3 + NH2 H A OCH3 E + 2 CH3OH H O OCH3 2 N Provide the structures of the three additional neutral molecules (B, C and D) that are formed during the conversion. Identify the major functional group present in each of the molecules you have drawn. A E B C D Question 2. (12 Marks) Circle the structure that will best satisfy the given information. - the compound able to undergo an intramolecular cyclization to form a hemiacetal H H HO H HO OH O O O - the compound able to undergo an intramolecular cyclization to form an enamine H H H Me2N MeHN H2N O O O + - the produc t formed from treatment of 2-butanone with NaBD4 followed by a H3O work-up DO H HO D DO D HO H - the compound that would most likely be coloured O H O O - the compound capable of undergoing mutarotation O O O OH OCH3 OH CH3 H CH 3 - the compound that would not react with MeMgBr O O O OH OCH3 OH CH3 H CH3 - the compound bes t described as “anti-aromatic”: - the most stable carbocation + + + Cl Cl Cl OCH 3 H NO2 H H H Question 3.
    [Show full text]
  • Carbohydrates: Structure and Function
    CARBOHYDRATES: STRUCTURE AND FUNCTION Color index: . Very important . Extra Information. “ STOP SAYING I WISH, START SAYING I WILL” 435 Biochemistry Team *هذا العمل ﻻ يغني عن المصدر المذاكرة الرئيسي • The structure of carbohydrates of physiological significance. • The main role of carbohydrates in providing and storing of energy. • The structure and function of glycosaminoglycans. OBJECTIVES: 435 Biochemistry Team extra information that might help you 1-synovial fluid: - It is a viscous, non-Newtonian fluid found in the cavities of synovial joints. - the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement O 2- aldehyde = terminal carbonyl group (RCHO) R H 3- ketone = carbonyl group within (inside) the compound (RCOR’) 435 Biochemistry Team the most abundant organic molecules in nature (CH2O)n Carbohydrates Formula *hydrate of carbon* Function 1-provides important part of energy Diseases caused by disorders of in diet . 2-Acts as the storage form of energy carbohydrate metabolism in the body 3-structural component of cell membrane. 1-Diabetesmellitus. 2-Galactosemia. 3-Glycogen storage disease. 4-Lactoseintolerance. 435 Biochemistry Team Classification of carbohydrates monosaccharides disaccharides oligosaccharides polysaccharides simple sugar Two monosaccharides 3-10 sugar units units more than 10 sugar units Joining of 2 monosaccharides No. of carbon atoms Type of carbonyl by O-glycosidic bond: they contain group they contain - Maltose (α-1, 4)= glucose + glucose -Sucrose (α-1,2)= glucose + fructose - Lactose (β-1,4)= glucose+ galactose Homopolysaccharides Heteropolysaccharides Ketone or aldehyde Homo= same type of sugars Hetero= different types Ketose aldose of sugars branched unBranched -Example: - Contains: - Contains: Examples: aldehyde group glycosaminoglycans ketone group.
    [Show full text]
  • Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
    Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them.
    [Show full text]
  • Brazilian Potential for Biomass Ethanol: Challenge of Using Hexose and Pentose Co- Fermenting Yeast Strains
    Journal of Scientific & Industrial Research 918Vol. 67, November 2008, pp.918-926 J SCI IND RES VOL 67 NOVEMBER 2008 Brazilian potential for biomass ethanol: Challenge of using hexose and pentose co- fermenting yeast strains Boris U Stambuk1*, Elis C A. Eleutherio2, Luz Marina Florez-Pardo3 Ana Maria Souto-Maior4 and Elba P S Bon5 1Laboratório de Biologia Molecular e Biotecnologia de Leveduras, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil 2Laboratório de Investigação de Fatores de Estresse, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil 3Departamento Sistemas de Produccion, Universidad Autonoma de Occidente, Cali, Colombia 4Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brasil 5Laboratório de Tecnologia Enzimática, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil Received 15 July 2008; revised 16 September 2008; accepted 01 October 2008 This paper reviews Brazilian scenario and efforts for deployment of technology to produce bioethanol vis-à-vis recent international advances in the area, including possible use of hexose and pentose co-fermenting yeast strains. Keywords: Biomass ethanol, Brazilian ethanol production, Ethanologenic yeasts, Hexose-pentose co-fermentation Introduction ethanol, 109 produce only ethanol and 16 produce only Brazil produces annually 5 x 109 gallons of ethanol sugar. Brazil will produce around 27 billion litre of ethanol from sugarcane grown on 5 million ha. Sugarcane is in 2008, and plans to build 41 new distilleries before 2010, processed in 365 sugar/ethanol producing units, and it and 45 more until 20156. Land use for energy crops as is forecasted that 86 new distilleries will be built before compared to food crops has been opted for renewable 2015.
    [Show full text]
  • Structural Features
    1 Structural features As defined by the International Union of Pure and Applied Chemistry gly- cans are structures of multiple monosaccharides linked through glycosidic bonds. The terms sugar and saccharide are synonyms, depending on your preference for Arabic (“sukkar”) or Greek (“sakkēaron”). Saccharide is the root for monosaccha- rides (a single carbohydrate unit), oligosaccharides (3 to 20 units) and polysac- charides (large polymers of more than 20 units). Carbohydrates follow the basic formula (CH2O)N>2. Glycolaldehyde (CH2O)2 would be the simplest member of the family if molecules of two C-atoms were not excluded from the biochemical repertoire. Glycolaldehyde has been found in space in cosmic dust surrounding star-forming regions of the Milky Way galaxy. Glycolaldehyde is a precursor of several organic molecules. For example, reaction of glycolaldehyde with propenal, another interstellar molecule, yields ribose, a carbohydrate that is also the backbone of nucleic acids. Figure 1 – The Rho Ophiuchi star-forming region is shown in infrared light as captured by NASA’s Wide-field Infrared Explorer. Glycolaldehyde was identified in the gas surrounding the star-forming region IRAS 16293-2422, which is is the red object in the centre of the marked square. This star-forming region is 26’000 light-years away from Earth. Glycolaldehyde can react with propenal to form ribose. Image source: www.eso.org/public/images/eso1234a/ Beginning the count at three carbon atoms, glyceraldehyde and dihydroxy- acetone share the common chemical formula (CH2O)3 and represent the smallest carbohydrates. As their names imply, glyceraldehyde has an aldehyde group (at C1) and dihydoxyacetone a carbonyl group (at C2).
    [Show full text]
  • 406-3 Wood Sugars.Pdf
    Wood Chemistry Wood Chemistry Wood Carbohydrates l Major Components Wood Chemistry » Hexoses – D-Glucose, D-Galactose, D-Mannose PSE 406/Chem E 470 » Pentoses – D-Xylose, L-Arabinose Lecture 3 » Uronic Acids Wood Sugars – D-glucuronic Acid, D Galacturonic Acid l Minor Components » 2 Deoxy Sugars – L-Rhamnose, L-Fucose PSE 406 - Lecture 3 1 PSE 406 - Lecture 3 2 Wood Chemistry Wood Sugars: L Arabinose Wood Chemistry Wood Sugars: D Xylose l Pentose (5 carbons) CHO l Pentose CHO l Of the big 5 wood sugars, l Xylose is the major constituent of H OH arabinose is the only one xylans (a class of hemicelluloses). H OH found in the L form. » 3-8% of softwoods HO H HO H l Arabinose is a minor wood » 15-25% of hardwoods sugar (0.5-1.5% of wood). HO H H OH CH OH 2 CH2OH PSE 406 - Lecture 3 3 PSE 406 - Lecture 3 4 1 1 Wood Chemistry Wood Sugars: D Mannose Wood Chemistry Wood Sugars: D Glucose CHO l Hexose (6 carbons) CHO l Hexose (6 carbons) l Glucose is the by far the most H OH l Mannose is the major HO H constituent of Mannans (a abundant wood monosaccharide (cellulose). A small amount can HO H class of hemicelluloses). HO H also be found in the » 7-13% of softwoods hemicelluloses (glucomannans) H OH » 1-4% of hardwoods H OH H OH H OH CH2OH CH2OH PSE 406 - Lecture 3 5 PSE 406 - Lecture 3 6 Wood Chemistry Wood Sugars: D Galactose Wood Chemistry Wood Sugars CHO CHO l Hexose (6 carbons) CHO H OH H OH l Galactose is a minor wood D Xylose L Arabinose HO H HO H monosaccharide found in H OH HO H H OH certain hemicelluloses CH2OH HO H CHO CH2OH CHO CHO » 1-6% of softwoods HO H H OH H OH » 1-1.5% of hardwoods HO H HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH CH2OH CH2OH CH2OH CH2OH D Mannose D Glucose D Galactose PSE 406 - Lecture 3 7 PSE 406 - Lecture 3 8 2 2 Wood Chemistry Sugar Numbering System Wood Chemistry Uronic Acids CHO 1 CHO l Aldoses are numbered l Uronic acids are with the structure drawn HO H 2 polyhydroxy carboxylic H OH vertically starting from the aldehydes.
    [Show full text]
  • REFERENCE ONLY UNIVERSITY of LONDON THESIS This Thesis
    REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree Year Name of Author 0" * COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. This thesis comes within category D.
    [Show full text]
  • Part 1 in Our Series of Carbohydrate Lectures. in This Section, You Will Learn About Monosaccharide Structure
    Welcome to Part 1 in our series of Carbohydrate lectures. In this section, you will learn about monosaccharide structure. The building blocks of larger carbohydrate polymers. 1 First, let’s review why learning about carbohydrates is important. Carbohydrates are used by biological systems as fuels and energy resources. Carbohydrates typically provide quick energy and are one of the primary energy storage forms in animals. Carbohydrates also provide the precursors to other major macromolecules within the body, including the deoxyribose and ribose required for nucleic acid biosynthesis. Carbohydrates can also provide structural support and cushioning/shock absorption, as well as cell‐cell communication, identification, and signaling. 2 Carbohydrates, as their name implies, are water hydrates of carbon, and they all have the same basic core formula (CH2O)n and are always found in the ratio of 1 carbon to 2 hydrogens to 1 oxygen (1:2:1) making them easy to identify from their molecular formula. 3 Carbohydrates can be divided into subcategories based on their complexity. The simplest carbohydrates are the monosaccharides which are the simple sugars required for the biosynthesis of all the other carbohydrate types. Disaccharides consist of two monosaccharides that have been joined together by a covalent bond called the glycosidic bond. Oligosaccharides are polymers that consist of a few monosaccharides covalently linked together, and Polysaccharides are large polymers that contain hundreds to thousands of monosaccharide units all joined together by glycosidic bonds. The remainder of this lecture will focus on monosaccharides 4 Monosaccharides all have alcohol functional groups associated with them. In addition they also have one additional functional group, either an aldehyde or a ketone.
    [Show full text]
  • Ii- Carbohydrates of Biological Importance
    Carbohydrates of Biological Importance 9 II- CARBOHYDRATES OF BIOLOGICAL IMPORTANCE ILOs: By the end of the course, the student should be able to: 1. Define carbohydrates and list their classification. 2. Recognize the structure and functions of monosaccharides. 3. Identify the various chemical and physical properties that distinguish monosaccharides. 4. List the important monosaccharides and their derivatives and point out their importance. 5. List the important disaccharides, recognize their structure and mention their importance. 6. Define glycosides and mention biologically important examples. 7. State examples of homopolysaccharides and describe their structure and functions. 8. Classify glycosaminoglycans, mention their constituents and their biological importance. 9. Define proteoglycans and point out their functions. 10. Differentiate between glycoproteins and proteoglycans. CONTENTS: I. Chemical Nature of Carbohydrates II. Biomedical importance of Carbohydrates III. Monosaccharides - Classification - Forms of Isomerism of monosaccharides. - Importance of monosaccharides. - Monosaccharides derivatives. IV. Disaccharides - Reducing disaccharides. - Non- Reducing disaccharides V. Oligosaccarides. VI. Polysaccarides - Homopolysaccharides - Heteropolysaccharides - Carbohydrates of Biological Importance 10 CARBOHYDRATES OF BIOLOGICAL IMPORTANCE Chemical Nature of Carbohydrates Carbohydrates are polyhydroxyalcohols with an aldehyde or keto group. They are represented with general formulae Cn(H2O)n and hence called hydrates of carbons.
    [Show full text]