Latitude of Landing Site
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Step Toward Mars University of Dayton
University of Dayton eCommons News Releases Marketing and Communications 4-26-2017 A Step Toward Mars University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/news_rls Recommended Citation University of Dayton, "A Step Toward Mars" (2017). News Releases. 10986. https://ecommons.udayton.edu/news_rls/10986 This News Article is brought to you for free and open access by the Marketing and Communications at eCommons. It has been accepted for inclusion in News Releases by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Wednesday April 26, 2017 R E L A T E D A STEp TOWARD MARS A R T I C L E S A highly successful test of a prototype power generator Come on at the University of Dayton Research Institute bodes well for NASA's plans to expand its exploration of Mars over Mars with the next rover mission. Rover In early February, NASA scientists narrowed down potential landing sites for Mars 2020 to three — Northeast Syrtis, Jezero Crater and Columbia Hills — at least one of which is likely to be warmer than sites where previous rovers landed. Simultaneously, researchers in Dayton performed a high-temperature qualifying test on a power generator prototype to see if it would operate successfully at the higher temperatures that may be experienced by the generator powering the next rover. The Mars 2020 rover will be powered by a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) — similar to the unit currently providing power to Curiosity in Gale Crater — which converts heat created by naturally decaying plutonium radioisotopes into electricity to power the rover's instruments, computers, wheels, robotic arm and radio. -
Hip # 987-1088
Hip No. Consigned by Tate Farms Hip No. 987 Jess Sizzlin SI 92 987 1997 Sorrel Mare Streakin La Jolla SI 99 {Streakin Six SI 104 Mr Jess Perry SI 113 { Bottom’s Up SI 82 Scoopie Fein SI 99 {Sinn Fein SI 98 Jess Sizzlin SI 92 Legs La Scoop SI 95 3654393 Easy Jet SI 100 {Jet Deck SI 100 Sizzlin Kim SI 86 Lena’s Bar TB SI 95 (1987) { Sun Spots {Double Bid SI 100 Winsum Miss SI 95 By MR JESS PERRY SI 113 (1992). Champion 2-year-old, $687,184 [G1]. Sire of 799 ROM, 107 stakes winners, $39,619,142, incl. champions APOL- LITICAL JESS SI 107 (world champion, $1,399,831, Los Alamitos Derby [G1]), ONE FAMOUS EAGLE SI 101 ($1,387,453 [G1]). Sire of the dams of 46 stakes winners, incl. BODACIOUS DASH SI 101 ($756,495 [G1]), JES A GAME SI 111 ($323,978 [G2]), TERRIFIC SYNERGY SI 92 ($288,066 [RG2]). 1st dam SIZZLIN KIM SI 86, by Easy Jet. Placed to 3. Dam of 7 foals, 6 to race, 3 winners, including– Jess Sizzlin SI 92 (f. by Mr Jess Perry). Stakes placed winner, below. Streakin Kim (f. by Streakin La Jolla). Unplaced. Dam of– Kims Corona SI 97 (g. by Corona Cocktail). 3 wins to 4, $38,666. 2nd dam SUN SPOTS, by Double Bid. Unraced. Dam of 13 starters, 7 ROM, incl.– SUN KISSES SI 102 (f. by Game Plan). 7 wins to 3, $68,935, Shebester Derby, Mystery Derby. Dam of Exquisite Expense SI 99 ($42,264 [G3]). -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
The Deposition and Alteration History of the Northeast Syrtis Major Layered Sulfates
The deposition and alteration history of the northeast Syrtis Major layered sulfates Daven P. Quinn1 and B.L. Ehlmann1,2 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA October 12, 2018 Abstract The ancient stratigraphy on the western margin of the Isidis basin records the history of wateron early Mars. Noachian units are overlain by layered, basaltic-composition sedimentary rocks that are enriched in polyhydrated sulfates and capped by more resistant units. The layered sulfates – uniquely exposed at northeast Syrtis Major – comprise a sedimentary sequence up to 600-m thick that has undergone a multi-stage history of deposition, alteration, and erosion. Siliciclastic sed- iments enriched in polyhydrated sulfates are bedded at m-scale and were deposited on slopes up to 10°, embaying and thinning against pre-existing Noachian highlands around the Isidis basin rim. The layered sulfates were then modified by volume-loss fracturing during diagenesis, and the fractures hosted channelized flow and jarosite mineral precipitation to form resistant ridges upon erosion. The depositional form and diagenetic volume-loss recorded by the layered sulfates suggest deposition in a deepwater basin. After their formation, the layered sulfates were first capped by a “smooth capping unit” and then eroded to form paleovalleys. Hesperian Syrtis Ma- jor lavas were channelized by this paleotopography, capping it in some places and filling it in others. Later fluvial features and phyllosilicate-bearing lacustrine deposits, which share a con- sistent regional base level (~-2300 m), were superimposed on the sulfate-lava stratigraphy. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Towards Bioinspired in Vitro Models of Intestinal Mucus
RSC Advances REVIEW View Article Online View Journal | View Issue Towards bioinspired in vitro models of intestinal mucus Cite this: RSC Adv.,2019,9, 15887 Lorenzo Sardelli, Daniela Peneda Pacheco, Anna Ziccarelli, Marta Tunesi, Omar Caspani, Andrea Fusari, Francesco Briatico Vangosa, Carmen Giordano and Paola Petrini * Intestinal mucus is a biological structure that acts as a barrier between the external environment and the epithelium. It actively selects nutrient and drug intake, regulates the symbiosis with the intestinal microbiota and keeps the epithelium protected from the attack of pathogens. All these functions are closely connected to the chemical and structural complexity of this biological material, on which its viscoelastic and diffusive properties depend. Many models have been proposed to replicate these characteristics using glycoproteins in solution and possibly the addition of other mucus components, such as lipids and other proteins. In the field of mucus modelling, an overall view of the mucus as a material, having its own viscous, rheological and diffusive characteristics, has been undersized with Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Received 28th March 2019 respect to a pure biological-functional analysis. In this review, we propose a description of the mucus as Accepted 9th May 2019 a biomaterial, including a presentation of its chemical and structural complexity, and of its main DOI: 10.1039/c9ra02368b viscoelastic-diffusive properties, in order to provide a synthesis of the characteristics necessary for the rsc.li/rsc-advances engineering of more advanced mucus models. Introduction The European Union has moved towards increasing Replacement, Reduction and Rening (3Rs principle) of animal The intestinal microbial species, present in both physiological studies with other scientically validated alternatives, such as in This article is licensed under a and pathological conditions, affect multiple districts of the vitro models,10 as tools for high throughput screening, limiting human body. -
VIRVĖ SAVO KARTUVĖMS Kapitalistų Sandėriai Su Komunistais Vytautas Meškauskas
T e oc. oi' 5 □ TL i r. s t r c ba š' 7243 So» Albanv fk., ' yi Chiccęp, III, ‘ 304.29 ; I0TEKA Į -----THE LITHUANIAN NATIONAL NEVVSPAPER -------- P.O. BOX 03206 > 6116 ST. CLAIR AVENUE > CLEVELAND, OHIO 44103 Vol.LXIV Balandis - April 19, 1979 Nr.16 *< TAUTINES MINTIES LIETUVIŲ LAIKRAŠTIS VIRVĖ SAVO KARTUVĖMS Kapitalistų sandėriai su komunistais Vytautas Meškauskas Turiu pasakyti, kad Leninas išpranašavo visą proce Konkrečiai kalbant, pereitų są. Leninas, kuris didesnę savo gyvenimo dalį praleido metų prekybos su sovietais Vakaruose, bet ne Rusijoje, kuris geriau pažinojo Vaka apyvarta siekė tik 2.8 biijonus rus kaip Rusiją, visados rašė ir sakė, jog Vakarų kapi dolerių, t.y. tik trečdalį pre talistai padarys viską, kad sustiprintų SSSR ekonomiją. kybos su ... Taiwanu. Biznie Jie konkuruos savo tarpe, kad mums parduoti gerybes rius tačiau vilioja ne tiek da pigiau ir greičiau, tik tam, kad sovietai jas pirktų ne iš bartinės, kiek ateities galimy bės. Šiaip ar taip, Sovietiją vieno, bet iš kito. Jis sakė: jie taip darys negalvodami sudaro rinką su 250 milijonų apie savo pačių ateitį. Vienu sunkiu momentu partijos gyventojų. posėdyje Maskvoje jis drąsino: "Draugai, nepasiduokit Nepaisant to, kad bolševi panikai, jei mums pasidarys labai sunku, mes duosime kai konfiskavo visus užsienie virvę buržuazijai, ir buržuazija pati pasikars." čių kapitalus, buvusius caro Tada, Kari Radek,... kuris buvo labai sąmojingas, Rusijoje - vien Singerio kom paklausė: Vladimire Iličiau, bet iš kur mes paimsime tiek panija prieš karą ten turėjo daug virvės buržuazijos pasikorimui?” Leninas nerūpes 27,000 tarnautojų. Vakarų tingai atsakė: "Jie mus ja aprūpins." kapitalistai padėjo sovietų (Iš Aleksandro Solženicyno 1975 m. -
I Identification and Characterization of Martian Acid-Sulfate Hydrothermal
Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies by Sarah Rose Black B.A., State University of New York at Buffalo, 2004 M.S., State University of New York at Buffalo, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2018 i This thesis entitled: Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies written by Sarah Rose Black has been approved for the Department of Geological Sciences ______________________________________ Dr. Brian M. Hynek ______________________________________ Dr. Alexis Templeton ______________________________________ Dr. Stephen Mojzsis ______________________________________ Dr. Thomas McCollom ______________________________________ Dr. Raina Gough Date: _________________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Black, Sarah Rose (Ph.D., Geological Sciences) Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
The Sustainability of Habitability on Terrestrial Planets
PUBLICATIONS Journal of Geophysical Research: Planets REVIEW ARTICLE The sustainability of habitability on terrestrial planets: 10.1002/2016JE005134 Insights, questions, and needed measurements from Mars Special Section: for understanding the evolution of Earth-like worlds JGR-Planets 25th Anniversary B. L. Ehlmann1,2, F. S. Anderson3, J. Andrews-Hanna3, D. C. Catling4, P. R. Christensen5, B. A. Cohen6, C. D. Dressing1,7, C. S. Edwards8, L. T. Elkins-Tanton5, K. A. Farley1, C. I. Fassett6, W. W. Fischer1, Key Points: 2 2 3 9 10 11 2 • Understanding the solar system A. A. Fraeman , M. P. Golombek , V. E. Hamilton , A. G. Hayes , C. D. K. Herd , B. Horgan ,R.Hu , terrestrial planets is crucial for B. M. Jakosky12, J. R. Johnson13, J. F. Kasting14, L. Kerber2, K. M. Kinch15, E. S. Kite16, H. A. Knutson1, interpretation of the history and J. I. Lunine9, P. R. Mahaffy17, N. Mangold18, F. M. McCubbin19, J. F. Mustard20, P. B. Niles19, habitability of rocky exoplanets 21 22 2 1 23 24 25 • Mars’ accessible geologic record C. Quantin-Nataf , M. S. Rice , K. M. Stack , D. J. Stevenson , S. T. Stewart , M. J. Toplis , T. Usui , extends back past 4 Ga and possibly B. P. Weiss26, S. C. Werner27, R. D. Wordsworth28,29, J. J. Wray30, R. A. Yingst31, Y. L. Yung1,2, and to as long ago as 5 Myr after solar K. J. Zahnle32 system formation • Mars is key for testing theories of 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Jet Propulsion planetary evolution and processes 3 that sustain habitability -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te . -
The Mars 2020 Candidate Landing Sites: a Magnetic Field Perspective
The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mittelholz, Anna et al. “The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective.” Earth and Space Science 5, 9 (September 2018): 410-424 © 2018 The Authors As Published http://dx.doi.org/10.1029/2018EA000420 Publisher American Geophysical Union (AGU) Version Final published version Citable link http://hdl.handle.net/1721.1/118846 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ Earth and Space Science RESEARCH ARTICLE The Mars 2020 Candidate Landing Sites: A Magnetic 10.1029/2018EA000420 Field Perspective Key Points: • Mars 2020 offers the opportunity Anna Mittelholz1 , Achim Morschhauser2 , Catherine L. Johnson1,3, to acquire samples that record the Benoit Langlais4 , Robert J. Lillis5 , Foteini Vervelidou2 , and Benjamin P. Weiss6 intensity and direction of the ancient Martian magnetic field 1 • Laboratory paleomagnetic Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, 2 3 measurements of returned samples Canada, GFZ German Research Center for Geosciences, Potsdam, Germany, Planetary Science Institute, Tucson, AZ, USA, can address questions about the 4Laboratoire de Planétologie et Geodynamique, UMR 6112 CNRS & Université de Nantes, Nantes, France, 5Space Science history of the