I Identification and Characterization of Martian Acid-Sulfate Hydrothermal

Total Page:16

File Type:pdf, Size:1020Kb

I Identification and Characterization of Martian Acid-Sulfate Hydrothermal Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies by Sarah Rose Black B.A., State University of New York at Buffalo, 2004 M.S., State University of New York at Buffalo, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2018 i This thesis entitled: Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies written by Sarah Rose Black has been approved for the Department of Geological Sciences ______________________________________ Dr. Brian M. Hynek ______________________________________ Dr. Alexis Templeton ______________________________________ Dr. Stephen Mojzsis ______________________________________ Dr. Thomas McCollom ______________________________________ Dr. Raina Gough Date: _________________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Black, Sarah Rose (Ph.D., Geological Sciences) Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies Thesis directed by Associate Professor Brian M. Hynek Abstract Hydrothermal acid-sulfate alteration is a common process in volcanic systems on Earth, and it may be inferred that this process played an important role in Mars’ geologic history as well. Several areas have been identified on Mars with minerals which are characteristic of acid-sulfate alteration: hydrated silica, sulfates, phyllosilicates, and Fe-oxides. Relic hydrothermal systems will play a key role in future investigations of Mars and the search for biosignatures. It is necessary to develop a detailed understanding of the mineral assemblages which form in these environment, and the geochemical processes by which they arise. This dissertation work addresses our ability to confidently and thoroughly characterize hydrothermal acid-sulfate mineral assemblages using rover-deployed instrumentation methods, and the role of high Fe parent basalts on secondary mineralogy. Analysis of hydrothermal deposits was completed using Mars analog instrumentation to identify strengths and weaknesses for each method. VNIR, XRD, and Raman laser spectrometers analyzed 100 hydrothermally altered terrestrial samples. Results indicate phyllosilicates may be detected in XRD without any additional sample preparation when present at ≥ 10 wt %. VNIR was particularly useful for the identification of phyllosilicates and silica; however, these deposits are easily missed when observed with limited rover VNIR. For more robust phyllosilicate detection iii and “ground truthing” of orbital data, VNIR spectrometers on future rover payloads should cover the entire 300 – 2500 nm range. Previous work has shown that parent rock composition plays a significant role in secondary mineral assemblage, and Icelandic basalts are among the closest terrestrial analogs for Mars. Our examination of the role of primary Fe content on secondary mineralogy found ~60 % Fe natroalunite forming in Iceland, adding to the growing list of natural systems containing intermediate alunite group minerals. There is a direct correlation between parent Fe and the abundance of Fe-bearing secondary minerals. Projected trends from our laboratory investigations indicate 20 – 32 wt % Fe-bearing mineralogy should form in Martian systems, similar to products from our terrestrial basalts. Alteration of crystalline “Mars” basalt produced both Fe-sulfates and Fe-oxides while all others contained only Fe-sulfates, indicating a transition to co-precipitation at > 17.0 wt % parent FeOT. iv Acknowledgements Many thanks to Brian Hynek for his support and making this project possible, as well as the current and former members of the mighty SPACECATS lab, fellow LASP-ians, and friends for their never ending support, encouragement, and laughs: LG Beckerman, John Gemperline, Rachael Hoover, Kara Brugman, Kaitlyn Garifi, Katie Rempfert, Stephanie Junior, Meredith Hazelton, Molly DiCroce, Zarah Brown, Morgan Rehnberg, Marek Slipski, Courtney Peck, Emma Marcucci, Mike Lotto, Will Nelson, Becca Thomas, and Ramy El-Maarry. Numerous people have contributed to my knowledge and growth as a scientist throughout this program, to whom I am extremely grateful: my committee (Alexis Templeton, Tom McCollom, Steve Mojzsis, and Raina Gough), Kathy Kierian-Young, Aileen Yingst and the members of the GHOST team, Matt Chojnacki, Tracy Gregg, Graham Lau, Chris Donaldson, Eric Ellison, Julien Allaz, Jess Larsen, and the truly outstanding CU Boulder geology faculty. And of course, nothing would have been possible without my incredible family: Kathy, Steve, Julie, Dan, and Ryan, and my truly wonderful partner, Jake Aho. Thank you all. I could not have done it without you. Chapters 2 – 4 have been published, submitted, or will soon be submitted in peer-reviewed scientific journals. The acknowledgements for each section are as follows: Chapter 2: This work was funded by a Geological Society of America Graduate Student Research Grant, the Lewis and Clark Fund for Exploration and Field Research in Astrobiology, a NASA Early Career Fellowship to B. M. Hynek, and NASA awards NNX14AN36G and NNX14AG90G. Many thanks to Rebecca Thomas for providing valuable feedback, Kathy Kierian-Young, Emma Marcucci, Kara Brugman, Thomas McCollom, Eric Ellison, LG Beckerman, Rachael Hoover, Stephanie Junior, and Jordan Ludyan for their assistance with v gathering and processing data, and Guillermo Alvarado, and Geoffroy Avard for their assistance in the field. Chapter 3: This work was supported by a Geological Society of America Graduate Student Grant; the American Philosophical Society Lewis and Clark Fund for Exploration and Field Research in Astrobiology, and NASA Habitable Worlds grant NNX15AP15G to LJM and BMH. Many thanks to Jordan Ludyan for assistance with XRF analysis at UWM. Chapter 4: This work was supported by a Geological Society of America Graduate Student Grant; the American Philosophical Society Lewis and Clark Fund for Exploration and Field Research in Astrobiology, and NASA Habitable Worlds grant NNX15AP15G to BMH. Many thanks to Jordan Ludyan for assistance with XRF analysis of parent rocks at UWM. vi Table of Contents 1. Introduction …………………………………………………………………..…………….. 1 1.1. Observation of Mars: A History …………………….……………………..……….….. 2 1.1.1. Telescopic observations ………………………………………………………..… 2 1.1.2. Orbital and in situ spacecraft observations …………………………...………..… 3 1.1.3. Upcoming missions ………………………………………………..…………..… 6 1.2. The geology of Mars ……………………………..……………………...…...………..… 7 1.2.1. A brief geologic history …………..………………………………..…………..… 7 1.2.2. Volcanism and iron-rich basalts ……………….……………………….………… 9 1.2.3. Evidence for surface and subsurface water ………………………..…….……… 11 1.2.3.1. Geomorphological evidence ………………………………………..…….... 11 1.2.3.1.1. Valley networks and deltas ………………………………………..…. 11 1.2.3.1.2. Outflow channels ……………………………………………….....… 12 1.2.3.1.3. Gullies ……………………………………………………………..… 13 1.2.3.2. Mineralogical evidence ………………………………………………….… 13 1.2.3.2.1. Phyllosilicates ……………………………………………………..… 14 1.2.3.2.2. Sulfates …………………………………………………………..…... 15 1.2.3.2.3. Fe-oxides/hydroxides ……………………………………………..…. 16 1.2.3.2.4. Hydrated silica ……………………………………………………..... 17 1.3. Hydrothermal systems on Mars …………..……………………….……..…………… 17 1.3.1. Home Plate, Gusev crater …………………………………………………......… 18 1.3.2. Eastern Coprates Chasma, Valles Marineris ……………………………..…..… 19 1.3.3. Noctis Labyrinthus, Valles Marineris ……………………………….....……..… 19 1.3.4. Cross crater, Terra Sirenum …………………………………………..…..…..… 19 1.3.5. Nili Patera, Syrtis Major ……………………………………………….....…..… 20 1.4. Acid-sulfate alteration: Processes and products ……..……………………...……..… 20 1.5. Dissertation research ………………………………….…………………..…….…..… 22 2. Characterization of terrestrial hydrothermal alteration products with Mars analog instrumentation: Implications for current and future rover investigations …..…..….......... 25 2.1. Introduction ………………………………………………………………….…...…… 25 2.1.1. Hydrothermal alteration on Mars ……………………………………….…..…… 25 2.1.2. Instrumentation ……………………………………………………………......… 28 2.1.2.1. Visible Near-Infrared (VNIR) and Short Wave Infrared (SWIR) Reflectance Spectroscopy ……………………………………………………………………..… 28 2.1.2.2. X-Ray Diffraction (XRD) ………………………………………………..... 32 2.1.2.3. Raman Laser Spectroscopy ………………………………….…………..… 33 2.1.3. Characterization of terrestrial hydrothermal deposits …………………..……...… 35 2.1.4. Field sites ………………………………………………………………...……… 38 2.1.4.1. Poás Volcano, Costa Rica ……………………………………………..…... 40 2.1.4.2. Turrialba Volcano, Costa Rica ………………………………………..…… 41 2.1.4.3. Cerro Negro Volcano, Nicaragua ……………………………………..…… 41 2.1.4.4. Momotombo Volcano, Nicaragua ……………………………….…..…….. 42 2.1.4.5. Telica Volcano, Nicaragua ……………………………………….…..……. 42 2.1.4.6. Krafla Volcano, Iceland ……………………………………………..…….. 43 vii 2.1.4.7. Landmannalaugar Volcano, Iceland …………………………….……..…..
Recommended publications
  • A Step Toward Mars University of Dayton
    University of Dayton eCommons News Releases Marketing and Communications 4-26-2017 A Step Toward Mars University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/news_rls Recommended Citation University of Dayton, "A Step Toward Mars" (2017). News Releases. 10986. https://ecommons.udayton.edu/news_rls/10986 This News Article is brought to you for free and open access by the Marketing and Communications at eCommons. It has been accepted for inclusion in News Releases by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Wednesday April 26, 2017 R E L A T E D A STEp TOWARD MARS A R T I C L E S A highly successful test of a prototype power generator Come on at the University of Dayton Research Institute bodes well for NASA's plans to expand its exploration of Mars over Mars with the next rover mission. Rover In early February, NASA scientists narrowed down potential landing sites for Mars 2020 to three — Northeast Syrtis, Jezero Crater and Columbia Hills — at least one of which is likely to be warmer than sites where previous rovers landed. Simultaneously, researchers in Dayton performed a high-temperature qualifying test on a power generator prototype to see if it would operate successfully at the higher temperatures that may be experienced by the generator powering the next rover. The Mars 2020 rover will be powered by a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) — similar to the unit currently providing power to Curiosity in Gale Crater — which converts heat created by naturally decaying plutonium radioisotopes into electricity to power the rover's instruments, computers, wheels, robotic arm and radio.
    [Show full text]
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • General Vertical Files Anderson Reading Room Center for Southwest Research Zimmerman Library
    “A” – biographical Abiquiu, NM GUIDE TO THE GENERAL VERTICAL FILES ANDERSON READING ROOM CENTER FOR SOUTHWEST RESEARCH ZIMMERMAN LIBRARY (See UNM Archives Vertical Files http://rmoa.unm.edu/docviewer.php?docId=nmuunmverticalfiles.xml) FOLDER HEADINGS “A” – biographical Alpha folders contain clippings about various misc. individuals, artists, writers, etc, whose names begin with “A.” Alpha folders exist for most letters of the alphabet. Abbey, Edward – author Abeita, Jim – artist – Navajo Abell, Bertha M. – first Anglo born near Albuquerque Abeyta / Abeita – biographical information of people with this surname Abeyta, Tony – painter - Navajo Abiquiu, NM – General – Catholic – Christ in the Desert Monastery – Dam and Reservoir Abo Pass - history. See also Salinas National Monument Abousleman – biographical information of people with this surname Afghanistan War – NM – See also Iraq War Abousleman – biographical information of people with this surname Abrams, Jonathan – art collector Abreu, Margaret Silva – author: Hispanic, folklore, foods Abruzzo, Ben – balloonist. See also Ballooning, Albuquerque Balloon Fiesta Acequias – ditches (canoas, ground wáter, surface wáter, puming, water rights (See also Land Grants; Rio Grande Valley; Water; and Santa Fe - Acequia Madre) Acequias – Albuquerque, map 2005-2006 – ditch system in city Acequias – Colorado (San Luis) Ackerman, Mae N. – Masonic leader Acoma Pueblo - Sky City. See also Indian gaming. See also Pueblos – General; and Onate, Juan de Acuff, Mark – newspaper editor – NM Independent and
    [Show full text]
  • Evidence for Thermal-Stress-Induced Rockfalls on Mars Impact Crater Slopes
    Icarus 342 (2020) 113503 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes P.-A. Tesson a,b,*, S.J. Conway b, N. Mangold b, J. Ciazela a, S.R. Lewis c, D. M�ege a a Space Research Centre, Polish Academy of Science, Wrocław, Poland b Laboratoire de Plan�etologie et G�eodynamique UMR 6112, CNRS, Nantes, France c School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK ARTICLE INFO ABSTRACT Keywords: Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which Mars, surface they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these Thermal stress tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill Ices topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in Solar radiation � � turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15 N and 15 S) Weathering exhibit higher frequencies of rockfall on their north-south oriented slopes compared to their east-west ones. � Craters >15 N/S have notably higher frequencies on their equator-facing slopes as opposed to the other ori­ entations. We computed solar radiation on the surface of crater slopes to compare insolation patterns with the spatial distribution of rockfalls, and found statistically significant correlations between maximum diurnal inso­ lation and rockfall frequency.
    [Show full text]
  • Kevin Gill ‘11G
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 14, NUMBER 1, FALL 2018 EXPLORING THE UNIVERSE: Meet Kevin Gill ‘11G Michelle Marrone (From Rivier Today, Fall 2018) From the comfort of his lab chair in sunny, southern California, Kevin Gill ’11G has a view into outer space. As a Science Data Software Engineer at NASA’s Jet Propulsion Laboratory (JPL), he spends his time planning and designing technology in support of environmental science and space exploration, as well as data visualization and planetary imaging. His recent work not only produced the first-ever close views of Saturn, but also contributed to NASA’s team winning an Emmy Award. Kevin earned his M.S. in Computer Science at Rivier and has been designing software to render the unique images he gathers ever since. He used an algorithm he developed during his program at Rivier to generate hypothetical images portraying Mars as a vibrant planet with oceans, an oxygen-rich atmosphere, and a green biosphere. The images went viral and within a week his work was featured on major media networks—Discovery News, Fox News, Universe Today, and the Huffington Post. His work captured NASA’s attention and paved the way for his career move. “Rivier taught me many of the algorithms and development practices I still use today at NASA,” says Kevin. “In fact, I can trace the lineage of code currently running on NASA systems directly to my final master’s project at the University.” The systems and tools he develops support a range of scientists specializing in the areas of climate, oceanography, asteroids, planetary science, and others.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Discovery of Silica-Rich Deposits on Mars by the Spirit Rover
    Ancient Aqueous Environments at Endeavour Crater, Mars Authors: R.E. Arvidson1, S.W. Squyres2, J.F. Bell III3, J. G. Catalano1, B.C. Clark4, L.S. Crumpler5, P.A. de Souza Jr.6, A.G. Fairén2, W.H. Farrand4, V.K. Fox1, R. Gellert7, A. Ghosh8, M.P. Golombek9, J.P. Grotzinger10, E. A. Guinness1, K. E. Herkenhoff11, B. L. Jolliff1, A. H. Knoll12, R. Li13, S.M. McLennan14,D. W. Ming15, D.W. Mittlefehldt15, J.M. Moore16, R. V. Morris15, S. L. Murchie17, T.J. Parker9, G. Paulsen18, J.W. Rice19, S.W. Ruff3, M. D. Smith20, M. J. Wolff4 Affiliations: 1 Dept. Earth and Planetary Sci., Washington University in Saint Louis, St. Louis, MO, 63130, USA. 2 Dept. Astronomy, Cornell University, Ithaca, NY, 14853, USA. 3 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. 4Space Science Institute, Boulder, CO 80301, USA. 5 New Mexico Museum of Natural History & Science, Albuquerque, NM 87104, USA. 6 CSIRO Computational Informatics, Hobart 7001 TAS, Australia. 7 Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada. 8 Tharsis Inc., Gaithersburg MD 20877, USA. 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. 10 Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA. 11 U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001, USA. 12 Botanical Museum, Harvard University, Cambridge MA 02138, USA. 13 Dept. of Civil & Env. Eng. & Geodetic Science, Ohio State University, Columbus, OH 43210, USA. 14 Dept. of Geosciences, State University of New York, Stony Brook, NY 11794, USA.
    [Show full text]
  • PUTTING LIFE on MARS: Using Computer Graphics to Render a Living Mars
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 9, NUMBER 1, SPRING 2013 PUTTING LIFE ON MARS: Using Computer Graphics to Render a Living Mars Kevin M. Gill ‘11G* Senior Software Engineer, Thunderhead.com, Manchester, NH Keywords: Computer Graphics, Mars, Life, Planetary Science, OpenGL Abstract This article describes the software, algorithms & decisions that went into the development of the Living Mars image project. This includes topics related to computer graphics, software development, astronomy, & planetary science. The purpose of the project was to create a visualization of the planet Mars as could look with a living biosphere. This makes no distinction as to whether this biosphere would represent an ancient or future, possibly terraformed planet. 1 Background Mars, named for the Roman god of war. Ancient civilizations have forever associated the planet with fear, war, and destruction. It is the color of blood, and “one of a handful of planets visible to the naked eye, and the only one of marked color, so the planet demanded attention (Pyle, 2012).” Ever since man has noticed it, there have been dreams and visions of life on Mars, from Giovanni Schiaparelli and Percival Lowell describing channels and canals to Robert A. Heinlein’s science fiction. Lowell, in particular famous for fantastic writings of Mars, asked “are physical forces alone at work there, or has evolution begotten something more complex, something not unakin to what we know on Earth as life?” (Lowell, 1895) Even more recent discoveries by NASA’s Curiosity rover have found proof that liquid water once flowed billions of years ago positing an environment that could have served host to life (Brown, 2013).
    [Show full text]
  • The Deposition and Alteration History of the Northeast Syrtis Major Layered Sulfates
    The deposition and alteration history of the northeast Syrtis Major layered sulfates Daven P. Quinn1 and B.L. Ehlmann1,2 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA October 12, 2018 Abstract The ancient stratigraphy on the western margin of the Isidis basin records the history of wateron early Mars. Noachian units are overlain by layered, basaltic-composition sedimentary rocks that are enriched in polyhydrated sulfates and capped by more resistant units. The layered sulfates – uniquely exposed at northeast Syrtis Major – comprise a sedimentary sequence up to 600-m thick that has undergone a multi-stage history of deposition, alteration, and erosion. Siliciclastic sed- iments enriched in polyhydrated sulfates are bedded at m-scale and were deposited on slopes up to 10°, embaying and thinning against pre-existing Noachian highlands around the Isidis basin rim. The layered sulfates were then modified by volume-loss fracturing during diagenesis, and the fractures hosted channelized flow and jarosite mineral precipitation to form resistant ridges upon erosion. The depositional form and diagenetic volume-loss recorded by the layered sulfates suggest deposition in a deepwater basin. After their formation, the layered sulfates were first capped by a “smooth capping unit” and then eroded to form paleovalleys. Hesperian Syrtis Ma- jor lavas were channelized by this paleotopography, capping it in some places and filling it in others. Later fluvial features and phyllosilicate-bearing lacustrine deposits, which share a con- sistent regional base level (~-2300 m), were superimposed on the sulfate-lava stratigraphy.
    [Show full text]
  • METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 Meteor Csillagászati Évkönyv 2019
    METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 meteor csillagászati évkönyv 2019 Szerkesztette: Benkő József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2018 Az évkönyv kalendárium részének összeállításában közreműködött: Tartalom Bagó Balázs Görgei Zoltán Kaposvári Zoltán Kiss Áron Keve Kovács József Bevezető ....................................................................................................... 7 Molnár Péter Sánta Gábor Kalendárium .............................................................................................. 13 Sárneczky Krisztián Szabadi Péter Cikkek Szabó Sándor Szőllősi Attila Zsoldos Endre: 100 éves a Nemzetközi Csillagászati Unió ........................191 Zsoldos Endre Maria Lugaro – Kereszturi Ákos: Elemkeletkezés a csillagokban.............. 203 Szabó Róbert: Az OGLE égboltfelmérés 25 éve ........................................218 A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Beszámolók Mizser Attila: A Magyar Csillagászati Egyesület Szakmailag ellenőrizte: 2017. évi tevékenysége .........................................................................242 Szabados László Kiss László – Szabó Róbert: Az MTA CSFK Csillagászati Intézetének 2017. évi tevékenysége .........................................................................248 Petrovay Kristóf: Az ELTE Csillagászati Tanszékének működése 2017-ben ............................................................................ 262 Szabó M. Gyula: Az ELTE Gothard Asztrofi zikai Obszervatórium
    [Show full text]