Built-Up Edge Formation in Stainless Steel Milling
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN MATERIALS SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Built-up edge formation in stainless steel milling AXEL ANDERSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Examensarbete MSE MH210X 2017 Löseggsbildning vid fräsning av rostfritt stål Axel Andersson Godkänt Examinator Handledare Joakim Odqvist Joakim Odqvist Uppdragsgivare Kontaktperson Sandvik Coromant Roland Bejjani Sammanfattning Fräsningstest utfördes I rostfritt stål för att undersöka bildande av lösegg. Tre testvarianter gjordes, uppdelade i hög-, medium-, och låg frästemperatur. Dessa prov kördes i austenitiskt rosfritt stål, SS2343. Fräsning vid mediumtemperatur gjordes även i duplexa SS2377 och utskiljningshärdade CORRAX. Lösegg bildades vid alla tester. Med undantag för högtemperaturstesterna bildades lösegg lokalt på huvudskäreggen. Vid hög temperastur täckte i stället löseggen hela eggen. Alla skär, med olika skärteknologier hade samma mängd bildad lösegg. Den initiala verktygsförlitningen var samma för alla skär, med undantag av det PVD-beläggda skäret, som hade mindre lossnande av beläggning på skäreggen. Tvärsnitt visade att förutom lösegg hade även smearing inträffat på skärens arbetssida, vilket visade att vidhäftande inträffade i flera lager på skäret.Tvärsnitten visade även att skären hade slitits likartat för de olika fräsmtoderna, trots att det var känt att verktygsfel skulle orsakas av olika förslitningstyper. Mikrohårdhetstester av löseggarna gav resultat där det austenitiska-, och duplexa rostfria stålet hade fördubblat sin hårdhet i jämförelse med arbetsmaterialet. Deformationshärdning av CORRAX var lägre i genomsnitt, där dess hårdhet hade ökat med midre än 9 procent. Då CORRAX gav samma mängd löseggsbildning som de andra stålen kunde slutsatsen dras att arbetshärdning inte påverkade BUE-bildningen. För ett prov fräsat vid hög temperatur hade en ny fas bildats på skärytan. Analys i EPMA och EDS indikerade att den innehöll krom, mangan och syre. Detta indikerade att det rostfria stålet oxiderades vid fräsning vid högre temperatur. Jämförelse av kompositionen, visade att den var likartad för lösegg och arbetsmaterialet SS2343. Det enda undantaget var att titan kunde hittas i löseggens bulk, vid högre temperatur. Detta indikerade att löseggen hade interagerat med beläggningen, då det var den enda titankällan Master of Science Thesis MSE MH210X 2017 Built-up edge formation when milling stainless steel Axel Andersson Approved Examiner Supervisor Joakim Odqvist Joakim Odqvist Commissioner Contact person Sandvik Coromant Roland Bejjani Abstract Milling tests were performed in stainless steel to investigate the formation of built-up edge (BUE). Three variants of tests were conducted which were divided as high-, medium, and low temperature milling tests. These tests were run in the austenitic stainless steel SS2343. The medium temperature milling tests were run in duplex SS2343 and precipitation hardened CORRAX. BUE was found for all tests. With the exception of the high temperature milling tests, BUE was formed locally on the main cutting edge. When milling at higher temperature the BUE covered the entire edge. All inserts used, each with different technologies had the same amount of BUE formation. The tool wear was similar for the CVD-coated inserts used, while the PVD-coated insert suffered less coating detachment along the edge. Cross sections showed that in addition to BUE, smearing had occurred on the rake face of the inserts, showing that multiple layers of material adhered to the tool surface. Cross sections also showed that the tool wear was similar for the different milling methods, even though it was known that tool failure eventually would be caused by different wear types. Microhardness tests of the BUE gave results where the austenitic- and duplex stainless steel had in average almost doubled their hardness. Work hardening for CORRAX was lower with an average hardness increase below 9 percent. As CORRAX gave the same amount of BUE formation as the other steels it could be concluded that work hardening did not affect the amount of BUE formation. For one sample milled at high temperature a new phase had formed on the insert surface. Analysis in EPMA and EDS indicated that it contained chromium, manganese and oxygen. This indicated that the stainless steel had oxidized when milled at higher temperature. When comparing the composition, it was similar for both BUE and the workpiece material SS2343. The only exception was that titanium could be found in the bulk of the BUE, having higher amount when milled at higher temperature. This indicated that the BUE had interacted with the coating, as this was the only source of titanium. Foreword I would like to give my thanks to my supervisor at Sandvik Coromant, Roland Bejjani for all the support throughout this entire work. This was invaluable as tool wear was a new area of work for me. I would also like to thank Sandvik Coromant for giving me the opportunity and support to make this master’s thesis for them. All the help that I received from the people at Sandvik Coromant has been invaluable and this work would be impossible without it. Lastly I would like to thank my KTH supervisor and examiner Joakim Odqvist. Axel Andersson Stockholm, August 2017 Nomenclature Notations Symbol Description vc Cutting speed fz Feed rate Dc Cutter diameter ap Axial cutting depth ae Radial cutting depth γ Rake angle φ Shear plane angle Abbreviations BUE Built-up edge BUL Built-up layer CVD Chemical vapour deposition PVD Physical vapour deposition LOM Light optical microscope SEM Scanning electron microscope EDS Energy-dispersive X-ray spectroscopy EPMA Electron probe micro-analyzer WDS Wavelength-dispersive X-ray spectroscopy HV Vickers hardness HB Brinell hardness Dp Delprov (Subsample) Table of contents 1. INTRODUCTION ................................................................................ 1 1.1 Objectives .................................................................................................................... 2 1.2 Thesis layout ............................................................................................................... 2 2. BACKGROUND .................................................................................. 4 2.1 Stainless steel ............................................................................................................. 4 2.2 Milling and machining .................................................................................................. 4 2.3 Milling parameters ....................................................................................................... 5 2.4 Machining of stainless steel ......................................................................................... 5 2.5 Cemented carbide tools ............................................................................................... 6 2.6 Wear types .................................................................................................................. 6 2.6.1 Built up edge ......................................................................................................... 6 2.6.2 Cutting edge chipping ........................................................................................... 6 2.6.3 Thermal cracking .................................................................................................. 6 2.7 Characterization equipment ......................................................................................... 7 2.7.1 Optical microscope ............................................................................................... 7 2.7.2 Scanning electron microscope (SEM) ................................................................... 7 2.7.3 Energy-dispersive X-ray spectroscopy (EDS) ....................................................... 7 2.7.4 Electron probe micro-analyzer (EPMA) ................................................................. 7 2.7.5 Focus variation ...................................................................................................... 8 2.7.6 Microhardness ...................................................................................................... 8 3. LITERATURE STUDY ........................................................................ 9 3.1 BUE formation when machining stainless steel ............................................................ 9 3.1.1 Formation .............................................................................................................. 9 3.1.2 Affecting factors .................................................................................................... 9 3.1.3 Effects on tool wear ............................................................................................ 10 3.1.4 Effects on machined surface ............................................................................... 10 3.2 Previous work ............................................................................................................ 10 3.2.1 Milling of stainless steel ...................................................................................... 10 3.2.2 Machining with BUE formation ............................................................................ 11 3.2.3 Effect of coating surface roughness on adhesion ................................................ 13 3.2.4 Previous tests performed at Sandvik Coromant .................................................