Α1-Adrenoceptor Subtypes and Signal Transduction Mechanisms in the Rat

Total Page:16

File Type:pdf, Size:1020Kb

Α1-Adrenoceptor Subtypes and Signal Transduction Mechanisms in the Rat ai-Adrenoceptor subtypes and signal transduction mechanisms in the rat thoracic aorta A thesis submitted by Dean Wenham for the degree of Doctor of Philosophy in the University of London 1994 Department of Pharmacology University College London Gower Street London WC1E6BT ProQuest Number: 10045753 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10045753 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract The a i-adrenoceptors are a heterogeneous family of receptors consisting of the cloned ttia/d-» otib-, ttic-adrenoceptors and the ‘classical’ tissue aiA- and aie-subtypes. This thesis describes a [^H]-prazosin binding study comparing the pharmacological profiles of the cloned mammalian awd-, otib- or aic-adrenoceptors to those of the proposed tissue aiA-,cxib - and ttjc-subtypes described in rat and rabbit tissues. On the basis of agonist and antagonist binding affinities, the cloned aia/d-subtype did not resemble the tissue aiA-subtype. The cloned aib-adrenoceptor closely matched its tissue counterpart and the cloned aic-subtype correlated well to the proposed tissue aic-adrenoceptor and also correlated closely with the rat tissue aiA-subtype indicating that this cloned receptor may represent the ‘classical’ aiA- subtype. The a1 -adrenoceptor agonist-induced contractions of the rat aorta have been suggested to be mediated via either a homogeneous or heterogeneous population of a r adrenoceptors. In this thesis, the subtype(s) of ai-adrenoceptor involved in the contraction of isolated rat thoracic aortic rings has been investigated by using a range of ai-adrenoceptor agonists and selective antagonists. Contractions to noradrenaline were highly sensitive to the ttiA/aic-selective antagonists (WB-4101 and 5-methyl-urapidil) and the aie/aic-alkylating agent CEC. However, contractions to oxymetazoline were insensitive to CEC but highly sensitive to WB-4101. It was concluded that a heterogeneous population of ai-adrenoceptors are responsible for the contractile response in the rat thoracic aorta. The source of Ca^"^ mobilised during ai-adrenoceptor mediated contractions of the rat thoracic aorta was also investigated. Noradrenaline- and oxymetazoline-induced contractions were differentially affected by the L-type Ca^^-channel blocker, nifedipine or by extracellular Ca"^ removal, since the responses to noradrenaline were partially sensitive to these treatments and those to oxymetazoline were almost totally abolished. Further, the initial phasic component of the noradrenaline-induced contraction was least sensitive to extracellular Ca^^ removal compared to the latter tonic component and in addition, IP3 production only occurred during this early component of the contraction. These results suggest that noradrenaline and oxymetazoline may couple differentially to different sources of Ca^^ mobilisation and that intracellular Ca^^ mobilisation might be primarily involved in the rapid phasic component of the contraction to noradrenaline. These studies suggest that the pharmacology of the cloned rat aia/d-adrenoceptor does not correlate to that of the ‘classical’ aiA-subtype but instead, the cloned aic-subtype may represent the recombinant counterpart to this receptor. The a 1-adrenoceptor agonist-induced contractions of the rat thoracic aorta appear to be mediated by a heterogeneous population of a I-adrenoceptors and further, both intracellular and extracellular sources of Ca^"^ seem to be involved with the contractile response. For my parents Contents Page Title 1 Abstract 2 Contents 3 Acknowledgements 8 Publications 9 Abbreviations 10 List of tables 12 List of figures 13 Chapter 1: Introduction 17 1.1 Adrenergic receptors 17 1.2 Pharmacological subdivision of a 1-adrenoceptors 19 1.2.1 Early subdivision of ai-adrenoceptor 19 1.2.2 Subdivision of the ai-adrenoceptor based on ligand binding 19 studies 1.2.3 ai-Adrenoceptor subtype selective antagonists 21 1.2.4 Subdivision of the ai-adrenoceptor based on functional studies 22 1.2.5 ttiH, otiL and an alternative nomenclature for 23 a 1-adrenoceptor subtypes 1.3 Molecular biology of the ai-adrenoceptors 24 1.3.1 Cloning of the a i-adrenoceptor 24 1.3.2 Protein structure of the ai-adrenoceptor 25 1.3.3 Cloning of additional ai-adrenoceptors 25 1.3.4 Correlations between the cloned and the pharmacologically 27 characterised tissue a i-adrenoceptors 1.4 tt|-Adrenoceptor tissue distribution: atypical tissues 29 1.4.1 tti-Adrenoceptor tissue distribution 29 1.4.2 The rat aorta: an atypical ai-adrenoceptor tissue 30 1.5 ai-Adrenoceptor signal transduction mechanisms 31 1.5.1 tt]- Adrenoceptor coupling to G-proteins 31 1.5.2 a 1-Adrenoceptors and the elevation of intracellular Ca^^ levels 33 1.5.3 Other signalling pathways activated by ai-adrenoceptors 36 1.6 Aims of project 38 Chapter 2: Materials and methods 2.1 Materials 39 2.2 Radioligand binding studies 40 2.2.1 Membrane preparation 40 2.2.2 Chlorethylclonidine (CEC)-pretreatments of membrane 41 homogenates 2.2.3 Protein concentration determinations 41 2.2.4 [^H]-Prazosin binding assays 42 2.3 Functional studies 44 2.3.1 Dissection 44 2.3.2 Isometric recording 44 2.3.3 Experimental protocol 44 2.4 Mass measurement of inositol 1,4,5-trisphosphate (IP 3) levels in rat 45 thoracic aortic rings using a radio-receptor binding assay 2.4.1 Preparation of cell extracts from rat thoracic aortic rings 45 2.4.2 Preparation of bovine adrenalcortical binding protein 46 2.4.3 [^H]-IP3 Binding assay 46 2.5 Data analysis 49 Chapter 3: [^H]-Prazosin binding studies of native tti-adrenoceptor subtypes using selective antagonists 3.1 Introduction 50 3.2 Experimental protocol 52 3.2.1 Data analysis 52 3.3 Results 54 3.3.1 Saturation studies and CEC-pretreatments 54 3.3.2 Competition studies 55 3.4 Discussion 71 Chapter 4: Agonist binding affinities: A comparison of the cloned and tissue ai-adrenoceptor subtypes 4.1 Introduction 79 4.2 Experimental protocol 81 4.3 Results 82 4.3.1 Saturation studies 82 4.3.2 Effect of Gpp[NH]p and EDTA on the binding of agonists to 82 the tissue a i-adrenoceptors 4.3.3 Comparison of the affinities of ai-adrenoceptor agonists for 83 the cloned and tissue ai-adrenoceptor subtypes 4.4 Discussion 102 Chapter 5: Functional studies: homogeneity or heterogeneity amongst ai-adrenoceptors mediating contractions of the rat thoracic aorta to ai-adrenoceptor agonists? 5.1 Introduction 108 5.2 Experimental protocol 109 5.2.1 Data analysis 110 5.3 Results 111 5.3.1 Types of responses evoked by the aradrenoceptor agonists 111 5.3.2 Effect of uptake blockade on noradrenaline-induced 112 contractions of the rat thoracic aorta 5.3.3 Effect of antagonists on ai-adrenoceptor agonist-induced 113 contractions of the rat thoracic aorta 5.3.4 Effect of abanoquil and CEC on noradrenaline-induced 114 contractions of rat spleen and epididymal vas deferens 5.3.5 Effect of abanoquil on KCl and 5-hydroxytryptamine-induced 115 contractions of the rat thoracic aorta 5.4 Discussion 135 Chapter 6: The role of extracellular Ca^^ and inositol-1,4,5- trisphosphate in the -adrenoceptor mediated contractions of the rat thoracic aorta 6.1 Introduction 144 6.2 Experimental protocol 146 6.3 Results 147 6.3.1 Effect of nifedipine and Ca^"^-free Krebs treatment on the 147 noradrenaline-induced contractions of rat epididymal vas deferens and spleen 6.3.2 Effect of nifedipine and Ca^'^-free Krebs treatment on 147 noradrenaline- and oxymetazoline-induced contractions of the rat thoracic aorta 6.3.3 Effect of nifedipine and Ca^^-free Krebs treatment on the 148 phasic and tonic components of the noradrenaline-induced contractions of the rat thoracic aorta 6.3.4 Time course for IP 3 production during noradrenaline- 149 and oxymetazoline induced contractions of the rat thoracic aorta 6.4 Discussion 163 Chapter 7:General discussion 172 Appendix 1 178 Appendix 2 181 Appendix 3 183 References 201 Acknowledgements I wish to express my gratitude to my supervisor, Dr. Ian Marshall, for the continued encouragement and advice he has given me during the last three years and especially for the support he has provided by being available for discussions at all the right times. I am also indebted to Dr. Pam Greengrass and all of the staff in the binding laboratories at Pfizer Central Research for giving me the opportunity to work in their lab. and for putting up with me. Thanks also to Dr. Peter Bungay, also at Pfizer, for supplying the [^H]-IP3. I also wish to thank Mark Coller for being a good friend during my numerous visits to Pfizer. My special thanks to Sonia Sooch, Franca Wisskirchen, Sam Masters and Richard Burt for their friendly support and for making day to day life in F28 a memorable experience. I extend my gratitude to Richard for partaking in many interesting debates and for supplying me with some of the latest references and to Sam for photography. I would also like to express my appreciation to Dr. Paul Brickel, Dr. Geoff Swanson, Dr. Ijsbrand Kramer and all members of his lab. for their assistance with some of the molecular studies described in this thesis and also to Dr.
Recommended publications
  • Characterisation of the Α1b-Adrenoceptor by Modeling, Dynamics and Virtual Screening Kapil Jain B.Pharm, M.S.(Pharm.)
    Characterisation of the α1B-Adrenoceptor by Modeling, Dynamics and Virtual Screening Kapil Jain B.Pharm, M.S.(Pharm.) A Thesis submitted for the degree of Master of Philosophy at The University of Queensland in 2018 Institute for Molecular Bioscience 0 Abstract G protein-coupled receptors (GPCRs) are the largest druggable class of proteins yet relatively little is known about the mechanism by which agonist binding induces the conformational changes necessary for G protein activation and intracellular signaling. Recently, the Kobilka group has shown that agonists, neutral antagonists and inverse agonists stabilise distinct extracellular surface (ECS) conformations of the β2-adrenergic receptor (AR) opening up new possibilities for allosteric drug targeting at GPCRs. The goal of this project is to extend these studies to define how the ECS conformation of the α1B-AR changes during agonist binding and develop an understanding of ligand entry and exit mechanisms that may help in the design of specific ligands with higher selectivity, efficacy and longer duration of action. Two parallel approaches were initiated to identify likely functional residues. The role of residues lining the primary binding site were predicted by online web server (Q-Site Finder) while secondary binding sites residues were predicted from molecular dynamics (MD) simulations. Predicted functionally significant residues were mutated and their function was established using FLIPR, radioligand and saturation binding assays. Despite the α1B-AR being pursued as a drug target for over last few decades, few specific agonists and antagonists are known to date. In an attempt to address this gap, we pursued ligand-based approach to find potential new leads.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • Metabolism and Pharmacokinetics in the Development of New Therapeutics for Cocaine and Opioid Abuse
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2012 Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse Pradeep Kumar Vuppala University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Vuppala, Pradeep Kumar, "Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse" (2012). Electronic Theses and Dissertations. 731. https://egrove.olemiss.edu/etd/731 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. METABOLISM AND PHARMACOKINETICS IN THE DEVELOPMENT OF NEW THERAPEUTICS FOR COCAINE AND OPIOID ABUSE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences in the Department of Pharmaceutics The University of Mississippi by PRADEEP KUMAR VUPPALA April 2012 Copyright © 2012 by Pradeep Kumar Vuppala All rights reserved ABSTRACT Cocaine and opioid abuse are a major public health concern and the cause of significant morbidity and mortality worldwide. The development of effective medication for cocaine and opioid abuse is necessary to reduce the impact of this issue upon the individual and society. The pharmacologic treatment for drug abuse has been based on one of the following strategies: agonist substitution, antagonist treatment, or symptomatic treatment. This dissertation is focused on the role of metabolism and pharmacokinetics in the development of new pharmacotherapies, CM304 (sigma-1 receptor antagonist), mitragynine and 7-hydroxymitragynine (µ-opioid receptor agonists), for the treatment of drug abuse.
    [Show full text]
  • Alpha^ and Beta^Blocking Agents: Pharmacology and Properties
    CURRENT DRUG THERAPY DONALD G. VIDT, MD AND ALAN BAKST, PharmD, EDITORS Alpha^ and beta^blocking agents: pharmacology and properties PROFESSOR B.N.C. PRICHARD • Adrenergic receptors have been separated into alpha and beta groups, which have then been further subdivided. Agents have been developed that block each type of receptor with varying degrees of specificity between the sub-types, leading to differences in pharmacodynamic profile. A more recent innovation has been the development of multiple action beta-blocking drugs, ie, those not only blocking the beta receptors but also posessing a peripheral vasodilator effect that may be due to alpha blockade, beta-2 stimulation, or a vasodilator action independent of either alpha or beta receptors. • INDEX TERMS: ALPHA BLOCKERS; BETA BLOCKERS; HYPERTENSION • CLEVE CLIN ] MED 1991; 58:33 7-350 HE CONCEPT that binding of Rosenblueth suggested that a transmitter released at catecholamines to receptors leads to differ- sympathetic nerve endings produced either inhibitory ing responses was first described by Langley, or excitatory responses as a result of combination with who in 1905 noted that a cell may make sympathin I or sympathin E at the receptor.3 Tmotor or inhibitory substances or both, and that "the The current classification of alpha and beta respon- effect of a nerve impulse depends upon the proportion ses is based on the classic work of Ahlquist,4 who of the two kinds of receptive substance which is af- studied six sympathomimetic amines and found two fected by the impulse."1 In 1906, Dale reported that patterns of reactivity. One group of actions, mediated ergot blocked the excitatory but not the inhibitory ac- by what were termed "alpha receptors," were principally tions of adrenaline.2 In 1933, Cannon and excitatory.
    [Show full text]
  • M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Defic
    M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Deficits in Sprague–Dawley and Wistar Rats Geoffrey B. Varty, Ph.D., Vaishali P. Bakshi, Ph.D., and Mark A. Geyer, Ph.D. a In a recent study using Wistar rats, the serotonergic 5-HT2 1 receptor agonist cirazoline disrupts PPI. As risperidone a receptor antagonists ketanserin and risperidone reduced the and M100907 have affinity at the 1 receptor, a final study disruptive effects of the noncompetitive N-methyl-D- examined whether M100907 would block the effects of aspartate (NMDA) antagonist dizocilpine on prepulse cirazoline on PPI. Risperidone partially, but inhibition (PPI), suggesting that there is an interaction nonsignificantly, reduced the effects of dizocilpine in Wistar between serotonin and glutamate in the modulation of PPI. rats, although this effect was smaller than previously In contrast, studies using the noncompetitive NMDA reported. Consistent with previous studies, risperidone did antagonist phencyclidine (PCP) in Sprague–Dawley rats not alter the effects of dizocilpine in Sprague–Dawley rats. found no effect with 5-HT2 antagonists. To test the hypothesis Most importantly, M100907 pretreatment fully blocked the that strain differences might explain the discrepancy in effect of dizocilpine in both strains; whereas SDZ SER 082 these findings, risperidone was tested for its ability to had no effect. M100907 had no influence on PPI by itself reduce the PPI-disruptive effects of dizocilpine in Wistar and did not reduce the effects of cirazoline on PPI. These and Sprague–Dawley rats. Furthermore, to determine studies confirm the suggestion that serotonin and glutamate which serotonergic receptor subtype may mediate this effect, interact in modulating PPI and indicate that the 5-HT2A the 5-HT2A receptor antagonist M100907 (formerly MDL receptor subtype mediates this interaction.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,469,065 B1 Garvey Et Al
    USOO6469.065B1 (12) United States Patent (10) Patent No.: US 6,469,065 B1 Garvey et al. (45) Date of Patent: Oct. 22, 2002 (54) NITROSATED AND NITROSYLATED 5,612,314 A 3/1997 Stamler et al. C-ADRENERGIC RECEPTOR ANTAGONIST, 5,635,204 A 6/1997 Gevirtz et al. .............. 424/449 COMPOSITIONS AND METHODS OF USE 5,646,181 A 7/1997 Fung et al. 5,648,393 A 7/1997 Stamler et al. 5,698,589 A 12/1997 Allen (75) Inventors: David S. Garvey, Dover; Joseph D. 5,731,339 A 3/1998 Lowrey Schroeder, Dedham, both of MA (US); 5,767,160 A 6/1998 Kaesemeyer Inigo Saenez de Tejada, Madrid (ES); 5,773,457 A 6/1998 Nahoum Ricky D. Gaston, Malden, MA (US); 5,789.442 A 8/1998 Garfield et al. Tatiana E. Shelekhin, Acton, MA 5,877,216 A 3/1999 Place et al. (US); Tiansheng Wang, Concord, MA (US) FOREIGN PATENT DOCUMENTS EP O346297 12/1989 (73) Assignee: NitroMed, Inc., Bedford, MA (US) EP O357581 3/1990 EP O432199 6/1991 (*) Notice: Subject to any disclaimer, the term of this FR 2547SO1 12/1984 patent is extended or adjusted under 35 JP 8O26962 1/1998 U.S.C. 154(b) by 0 days. WO 97/27749 * 8/1997 WO 97.27749 8/1997 WO 97.42.946 11/1997 (21) Appl. No.: 09/387,724 WO 9852569 11/1998 Filed: Sep. 1, 1999 WO 99.01132 1/1999 (22) WO 9907353 2/1999 WO 99.07695 2/1999 Related U.S.
    [Show full text]
  • Adrenoceptor Subtype 1Ian Marshall, Richard P
    Brifish Journal of Pharmacology (I995) 115, 781 - 786 1995 Stockton Press All rights reserved 0007-1188/95 $12.00 X Noradrenaline contractions of human prostate mediated by aClA- (cxlc) adrenoceptor subtype 1Ian Marshall, Richard P. Burt & *Christopher R. Chapple Department of Pharmacology, University College London, Gower Street, London WC1E 6BT and *Department of Urology, The Royal Hallamshire Hospital, Glossop Road, Sheffield SlO 2JF 1 The subtype of a1-adrenoceptor mediating contractions of human prostate to noradrenaline was characterized by use of a range of competitive and non-competitive antagonists. 2 Contractions of the prostate to either noradrenaline (pD2 5.5), phenylephrine (pD2 5.1) or methoxamine (pD2 4.4) were unaltered by the presence of neuronal and extraneuronal uptake blockers. Noradrenaline was about 3 and 10 times more potent than phenylephrine and methoxamine respectively. Phenylephrine and methoxamine were partial agonists. 3 Pretreatment with the alkylating agent, chlorethylclonidine (10-4 M) shifted the noradrenaline concentration-contraction curve about 3 fold to the right and depressed the maximum response by 31%. This shift is 100 fold less than that previously shown to be produced by chlorethylclonidine under the same conditions on OlB-adrenoceptor-mediated contractions. 4 Cumulative concentration-contraction curves for noradrenaline were competitively antagonized by WB 4101 (pA2 9.0), 5-methyl-urapidil (pA2 8.6), phentolamine (pA2 7.6), benoxathian (pA2 8.5), spiperone (pA2 7.3), indoramin (pA2 8.2) and BMY 7378 (pA2 6.6). These values correlated best with published pKi values for their displacement of [3H]-prazosin binding on membranes expressing cloned oczc-adrenoceptors and poorly with values from cloned lb- and cld-adrenoceptors.
    [Show full text]
  • United States Patent (19) (11) 4,310,524 Wiech Et Al
    United States Patent (19) (11) 4,310,524 Wiech et al. 45 Jan. 12, 1982 (54) TCA COMPOSITION AND METHOD FOR McMillen et al., Fed. Proc., 38,592 (1979). RAPD ONSET ANTDEPRESSANT Sellinger et al., Fed. Proc., 38,592 (1979). THERAPY Pandey et al., Fed. Proc., 38,592 (1979). 75) Inventors: Norbert L. Wiech; Richard C. Ursillo, Primary Examiner-Stanley J. Friedman both of Cincinnati, Ohio Attorney, Agent, or Firm-Millen & White 73) Assignee: Richardson-Merrell, Inc., Wilton, Conn. (57 ABSTRACT A method is provided for treating depression in a pa (21) Appl. No.: 139,498 tient therefrom and requiring rapid symptomatic relief, (22 Filed: Apr. 11, 1980 which comprises administering to said patient concur 51) Int. Cl. .................... A61K 31/33; A61K 31/135 rently (a) an effective antidepressant amount of a tricy clic antidepressant or a pharmaceutically effective acid (52) ...... 424/244; 424/330 addition salt thereof, and (b) an amount of an a-adrener 58) Field of Search ................................ 424/244, 330 gic receptor blocking agent effective to achieve rapid (56) References Cited onset of the antidepressant action of (a), whereby the PUBLICATIONS onset of said antidepressant action is achieved within Chemical Abst., vol. 66-72828m, (1967), Kellett. from 1 to 7 days. Chemical Abst, vol. 68-94371a, (1968), Martelli et al. A pharmaceutical composition is also provided which is Chemical Abst., vol. 74-86.048j, (1971), Dixit et al. especially adapted for use with the foregoing method. Holmberg et al., Psychopharm., 2,93 (1961). Svensson, Symp. Med. Hoechst., 13, 245 (1978). 17 Claims, No Drawings 4,310,524 1.
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin Et Al
    US 201201.15729A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin et al. (43) Pub. Date: May 10, 2012 (54) PROCESS FOR FORMING FILMS, FIBERS, Publication Classification AND BEADS FROM CHITNOUS BOMASS (51) Int. Cl (75) Inventors: Ying Qin, Tuscaloosa, AL (US); AOIN 25/00 (2006.01) Robin D. Rogers, Tuscaloosa, AL A6II 47/36 (2006.01) AL(US); (US) Daniel T. Daly, Tuscaloosa, tish 9.8 (2006.01)C (52) U.S. Cl. ............ 504/358:536/20: 514/777; 426/658 (73) Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF 57 ABSTRACT ALABAMA, Tuscaloosa, AL (US) (57) Disclosed is a process for forming films, fibers, and beads (21) Appl. No.: 13/375,245 comprising a chitinous mass, for example, chitin, chitosan obtained from one or more biomasses. The disclosed process (22) PCT Filed: Jun. 1, 2010 can be used to prepare films, fibers, and beads comprising only polymers, i.e., chitin, obtained from a suitable biomass, (86). PCT No.: PCT/US 10/36904 or the films, fibers, and beads can comprise a mixture of polymers obtained from a suitable biomass and a naturally S3712). (4) (c)(1), Date: Jan. 26, 2012 occurring and/or synthetic polymer. Disclosed herein are the (2), (4) Date: an. AO. films, fibers, and beads obtained from the disclosed process. O O This Abstract is presented solely to aid in searching the sub Related U.S. Application Data ject matter disclosed herein and is not intended to define, (60)60) Provisional applicationpp No. 61/182,833,sy- - - s filed on Jun.
    [Show full text]
  • An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
    AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support.
    [Show full text]