6.3 Advanced Current Mirrors: Wide-Swing Q3 and Q4 Acts Like a Single-Diode Connected Transistor to Create the Gate Source Voltage for Q3

Total Page:16

File Type:pdf, Size:1020Kb

6.3 Advanced Current Mirrors: Wide-Swing Q3 and Q4 Acts Like a Single-Diode Connected Transistor to Create the Gate Source Voltage for Q3 6.3 Advanced current mirrors: wide-swing Q3 and Q4 acts like a single-diode connected transistor to create the gate source voltage for Q3. Including Q4 helps lower the Vds3 so that it matches Vds2. Other than that, Q4 has little effect on the circuit’s operation. Assume ID2=ID3=ID5 VGS1=VGS4 If n=1 Also we need Chapter 6 Figure 12 6.3 Advanced current mirrors: wide-swing In most applications, it is desirable to make (W/L)5 smaller than that given in the Figure so that Q2 and Q3 can be biased with a slightly larger Vds. This would help counter the body effect of Q1 an Q4, which have their Vt increased. To save power consumption, Ibias and Q5 size can be scaled down a little bit while keeping the same gate voltage. Also, it may be wise to make the length of Q3 and Q2 larger than the minimum and that of Q1 and Q4 even larger since Q1 often sees a larger voltage Vout. This helps reduce short- channel effects. Chapter 6 Figure 12 6.3.2 Enhanced output impedance CM and Gain boosting The basic idea is to use a feedback amplifier to keep the drain-source voltage across Q2 as stable as possible, irrespective of the output voltage. From small-signal analysis, Ix=gmvgs+(Vx-Vs)/rds1, Vgs+Vs=A(0-Vs), Vx=Ix*rds2 Note that the stability of the feedback loop comprised of A and Q1 must be verified. Chapter 6 Figure 13 6.3.2 Enhanced output impedance CM and Gain boosting This technique can also be applied to increase the Rout of a cascode gain stage (the small signal current –gm2vin must go through Rout and CL). Comparing the DC gain only, it can be seen that it is a factor of (1+A) larger than the conventional cascode amplifier discussed in Chapter 3. To realize this gain, note that the Ibias current source must be similarly enhanced to achieve comparable output impedance as Rout. Chapter 3 Figure 16 Chapter 6 Figure 14 6.3.2 Sackinger’s design The feedback amplifier in this case is realized by transistor Q3 and Q1. Note that Q3 is a CS amplifier, therefore the gain is gm3rds3/2 if IB1 has an output impedance of rds3. So the total output impedance from the drain of Q1 is: The circuit consisting of Q4, Q5 and Q6, Iin and IB2 operates likes a diode-connected transistor, but its main purpose is to match those transistors in the output circuitry so that all transistors are biased accurately and Iout=Iin. One major limitation is that the signal swing is significantly reduced due to Q2 ad Q5 being biased to have drain-source voltages much larger ( ) Chapter 6 Figure 15 6.3.3. Wide-swing current mirror with enhanced output impedance Such a circuit is very similar to the Sachinger’s design, except that diode-connected transistors used as level shifters Q4 have been added in front of the CS amplifiers. The current density of most transistors (except Q3 and Q7) are about the same, Veff, and that of Q3, Q7, 2Veff. So Two issues with this circuit: 1. power consumption may be large, 2 additional poles introduced by the enhanced circuitry may be at lower frequencies. Chapter 6 Figure 16 6.3.3. Wide-swing current mirror with enhanced output impedance A variation of the previous circuit is shown below. It reduces the power, but matching is poorer. Note that Q2 in previous circuit is split to Q2 and Q5 in this circuit. It is predicted that this current mirror may be more used when power supply voltage is smaller or larger gains are desired. Chapter 6 Figure 17 6.3.4 Summary of improved current mirrors When using the OpAmp-enhanced current mirrors, it may be necessary to add local compensation capacitors to the enhancement loops to prevent ringing during transients. Also, the settling time may be increased (to tradeoff with large gain). Many other current mirrors exist, each having its own advantages and disadvantages. Which one to use depends on the requirements of the specific application. OpAmps may be designed using any of the current mirrors, therefore we can use the following symbol without showing the specific implementation of the current mirror. Just one specific implementation of the current mirror in (a) Chapter 6 Figure 18 6.4 Folded-cascode OpAmp Many modern OpAmps are designed to drive only capacitive loads. In this case, it is not necessary to use a voltage buffer to obtain a low output impedance. So it is possible to realize OpAmps with higher speeds and larger signal swings than those that drive resistive loads. These OpAmps are possible by having only a single high-impedance node at the output. The admittance seen at all other nodes in these OpAmps are on the order of 1/gm, and in this way the speed of OpAmp is maximized. With these OpAmps, compensation is usually achieved by the load capacitance CL. As CL gets larger, these OpAmps gets more stable but also slower. One of the most important parameters of these modern OpAmps is gm (ratio of output current over input voltage), therefore they are sometimes referred to as Operational Transconductance Amplifiers (OTA). A simple first order small-signal model for an OTA may be shown below: Chapter 6 Figure 19 Folded-cascode OpAmp A differential-input single-ended output folded-cascode OpAmp is shown below. The current mirror in the output side is a wide-swing cascode one, which increases the gain. The basic idea of the FC-OpAmp is to apply cascode transistors to the input differential pair but using transistors opposite in type from those used in the input stage. (i.e. Q1, Q2 nMOS and Q5, Q6 pMOS). This arrangement allows the output to be the same as the input bias voltage. The gain could be large due to large output impedance. If even larger gain is desired, one can use gain-enhancement techniques to Q5-Q8 as described in 6.3.2. Chapter 6 Figure 20 Folded-cascode OpAmp The single-ended output FC-OpAmp can be converted to a fully-differential one (to be detailed later). A biasing circuit can be included to replace Ibias1, Ibias2 and connect to VB1 and VB2. The two extra transistors Q12 and Q13 can increase slew rate performance and prevent the drain voltages of Q1 and Q2 from having large transients thus allowing the OpAmp to recover faster following a slew rate condition. Chapter 6 Figure 20 The compensation is realized by the load capacitor CL (dominant pole compensation). DC biasing: note ID3/4=ID1/2+ID5/6 When CL is small, it may be necessary to add additional capacitors in parallel with the load. If lead compensation is to be used, then a resistor is in series with CL. 6.4.1 Small-signal analysis In small-signal analysis, the small-signal current from Q1 goes directly from source to drain and to CL, while that of Q2 indirectly through Q5 and current mirror of Q7-Q10 to CL. (assuming 1/gm5/6 much larger than rds3 and rds4). Note that these small-signal currents go through different path to the output, therefore their transfer function are different (due to the pole/zero caused by the current mirror for small-signal current of Q2). However, usually, these pole/zero are much larger than the unity-gain frequency of OpAmp and may be ignored. So an approximate gain transfer function is: ZL is the parallel of impedance at drain of Q6, Q8, and CL. At high frequencies, Av is approximated as Chapter 6 Figure 20 6.4.1 Small-signal analysis The first-order model shows close to 90 degrees of phase margin. To maximize bandwidth, it is desirable to increase gm by using nMOS transistors, which means larger DC current on Q1/2 (Having large gm for Q1/2 also help reduce noise). Smaller currents on Q5/6 helps increase rout, which increases the DC gain. (the current ratio between them has a practical limit of 4 to 5.) For more detailed analysis, the second pole is associated with the time constants at the source terminals of Q5/Q6. At high frequencies, the impedance is on the order of 1/gm5/6, which in this case is relatively large due to smaller current. (so one can have larger currents in order to push this pole away and minimizing the capacitance is important too). Chapter 6 Figure 20 C. Lead compensation 6.4.2 Slew rate Diode-connected transistors Q12/13 are turned off during normal operation (as Vgd3/4=Vgs12<|Vtp|) and have almost no effect on the OpAmp. However, they improve the operation during slew rate limiting. If they are not present, then when slew rate occurs, all bias current of Q4 go to Q5 and out of CL through the mirror (at the same time Q6 conducts zero current in most cases). At this time, since all Ibias2 is diverted through Q1 and it is usually larger than ID3, both Q1 and Ibias2 go into triode region, causing Ibias2 to decrease until it is equal to ID3. As a result, the drain voltage of Q1 approaches ground. When OpAmp is back to normal operation, drain voltage of Q1 must slew back to the original biasing voltage, and this additional slewing increases distortion and transient delay. If Q12/13 were included, then when slew rate occurs (as the above case), Q12 conducts extra current from Q11 and also the current on Q3/4 increases, which eventually makes the sum of ID12 and ID3 equal to Ibias2.
Recommended publications
  • A Low Voltage Very High Impedance Current Mirror Circuit and Its Application
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 8, Issue 2, February 2019 A Low Voltage Very High Impedance Current Mirror Circuit and Its Application Priya M.K.1, V.K.Vanitha Rugmoni2 M.Tech Scholar, Dept. of ECE, VJCET, Kerala, India1 Asst. Professor, Dept. of ECE, VJCET, Kerala, India2 ABSTRACT: Current mirror circuit has served as the basicbuilding block in analog circuit design since the introduction of integrated circuits. In this paper, “A Very high impedance current mirror, operating in reduced power supply which does not use any additional biasing circuit and its application” is proposed. The design uses a high swing super Wilson current mirror which has negative feedback. A feedback action is used to force the input and output currents to be equal. The output current is expected to be mirrored with a transfer error less than 1% when the input current is increased from 5μA to 40μ A. As an application, the current mirror circuit has been used in the design of a high gain, improved output swing differential amplifier. A telescopic differential amplifier is chosen for designing since it is used in low power application. A comparative study of different current mirror circuits and amplifier is also made. The output swing of the circuit is improved than what is expected. KEYWORDS: Current mirror, Wilson current mirror, Output Impedance, CMRR,Telescopic Differential Amplifier I. INTRODUCTION In the early 1980s many experts predicted the demise of analog circuits.
    [Show full text]
  • Current Mirrors
    Current mirrors Current mirrors are important blocks in electronics. They are widely used in several applications and chips, the operational amplifier being one of them. Current mirrors consist of two branches that are parallel to each other and create two approximately equal currents. This is why these circuits are called current mirrors. These currents are used to load other stages in circuits and they are designed in such a way so that current is constant and independent of loading. Current mirrors come in different varieties: Simple current mirror (BJT and MOSFET) Base current corrected simple current mirror Widlar current source Wilson current mirror (BJT and MOSFET) Cascoded current mirror (BJT and MOSFET) For best performance, transistors should be matched, temperature should be the same for all devices and collector-base/drain-gate voltages should also be matched. This will provide equal currents on both sides of the current mirror. All of the circuits have a compliance voltage which is the minimum output voltage required to maintain correct circuit operation: the BJT should be in the active/linear region and the MOSFET should be in the active/saturation region. 1 www.ice77.net Simple current mirror Two implementations exist for the simple current mirror: BJT and MOSFET. BJT The BJT implementation of the simple current mirror is used as a block in the operational amplifier. VCC Vo 3.600V 1.472mA R1 VCC Vo IREF Io I 2k 3.600V 650.0mV V1 V2 Q1 3.6Vdc 0.65Vdc 1.425mA Q2 1.425mA 1.425mA 1.472mA 0V 23.47uA 0V I 23.47uA 655.3mV
    [Show full text]
  • EE 508 OTA Laboratory Experiment
    EE 508 OTA Laboratory Experiment The Operational Transconductance Amplifier is widely used in integrated amplifier and filter applications. There are also some specific discrete applications where the device can be used. Irrespective whether used in integrated or discrete applications, issues surrounding design and performance are mostly common. There are several discrete OTAs on the market. The CA 3080 and 3092, introduced by RCA, were the first. More recent, the NE 5517 has become quite popular. It is a DUAL OTA with tail bias current control. Another useful OTA is the LM13700 manufactured by National Semiconductor. These devices are particularly useful in the design of voltage or current controlled applications. One of the particularly attractive applications of the OTA is in the design of voltage-controller or current-controlled amplifiers and filters where by a dc voltage or a dc current can be used to control or adjust key characteristics of a filter such as the band edges, the mid-band gain, or the bandwidth. An attached article written a number of years ago is useful at describing some of the signal conditioning strategies needed to used the OTA along with methods of building voltage controlled filters. Part 1 Design and test a voltage controlled amplifier. The gain of the amplifier should be adjustable from +1 to +10 as a control voltage is changed between 1V and 2V Part 2 Design and test a voltage controlled bandpass filter. The bandpass filter should have a Q of 5 and the resonant frequency should be adjustable between 1KHz and 20KHz as the dc control voltage changes between 1V and 2V.
    [Show full text]
  • Electronically Tunable Multi-Terminal Floating Nullor and Its Applications
    RADIOENGINEERING, VOL. 17, NO. 4, DECEMBER 2008 3 Electronically Tunable Multi-Terminal Floating Nullor and Its Applications Worapong TANGSRIRAT Faculty of Engineering , King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chlongkrung Rd., Ladkrabang, Bangkok 10520, Thailand [email protected] Abstract. A realization scheme of an electronically tun- conventional operational amplifier (op-amp) and the com- able multi-terminal floating nullor (ET-MTFN) is de- mercial operational transconductance amplifier (OTA) as scribed in this paper. The proposed circuit mainly employs the major active component, these configurations are less a transconductance amplifier, an improved translinear appropriate for high-frequency applications and uneco- cell, two complementary current mirrors with variable nomical for applying to an IC fabrication. Recently, there current gain and improved Wilson current mirrors, which has been much effort to construct the FTFN with multi- provide an electronic tuning of the current gain. The va- output terminals [11]. In general, if the multi-output type lidity of the performance of the scheme is verified through active components are employed, the number of compo- PSPICE simulation results. Example applications nents that constitutes a configuration may be reduced and employing the proposed ET-MTFN as an active element the resulting circuit may be miniaturized [12]. demonstrate that the circuit properties can be varied by This paper describes an alternative realization scheme electronic means. for realizing a monolithically integrable multi-output FTFN or multi-terminal floating nullor (MTFN), which provides electronically variable current gain. The proposed circuit is Keywords based on the use of a transconductance amplifier, an im- proved translinear cell and some current mirrors.
    [Show full text]
  • Widlar Current Mirror Design Using BJT-Memristor Circuits
    1 Widlar Current Mirror Design Using BJT-Memristor Circuits Amanzhol Daribay and Irina Dolzhikova, Electrical and Computer Engineering Department, Nazarbayev University, Astana, Kazakhstan [email protected], [email protected] Abstract—This paper presents a description of basic current is calculated to be Rout = V=I = 100=1mA = 100kOhm. mirror (CM), Widlar current mirror, fourth circuit element It is known that Basic BJT CM is aimed to supply nearly (memristor) and an analysis of Widlar Configuration with integrated memristor. The analysis has been performed by comparing a modified configuration with a simple circuit of Widlar CM. The focus of analysis were a power dissipation, a Total Harmonic Distortion and a chip-surface. The results has shown that a presence of memristor in the Widlar CM decreases the chip-surface area and the deviation of the signal in the circuit from a fundamental frequency. Although the analysis of power dissipation has also been conducted, there is no definite conclusion about the power losses in the circuit because of the memristor model. Index Terms—current mirror, Widlar current source, bjt- memristor circuit, power analysis, noise analysis, total harmonic distortion. Figure 2. Basic BJT CM schematic I. INTRODUCTION constant current to a load over a wide range of load resistances. A. Basic Current Mirror Since in LTSpice it is more convenient to change some output over varying DC voltage with specified increment in Basically, current mirrors (CMs) are used to mirror a LTSpice, in order to observe mirrored current Ic(Q2) , it has reference current multiple times from one designated source been established different loading conditions by changing load into another consuming circuits.
    [Show full text]
  • Section G2: Current Sources and Active Loads
    Section G2: Current Sources and Active Loads The transistor biasing techniques introduced in earlier sections are not suitable for the design of IC amplifiers since, even for a relatively simple multistage amplification system, many resistors and large capacitors are required. This is problematic for a couple of reasons, most importantly the cost of chip “real-estate” and fabrication concerns. However, fabrication of simple transistors has become cheap and easy, as well as providing the ability to have a large number of transistors with matched characteristics. Therefore, biasing in integrated circuit (IC) design is based on the use of transistors configured to act as constant current sources. On a multistage amplifier IC chip, a constant dc current source is generated at one location and is then reproduced at different locations for biasing the various amplification stages. The major advantages to this approach include: ¾ the requirement for resistors, coupling capacitors and bypass capacitors is removed; and ¾ the biasing of the multiple stages track each other in case of parameter changes, such as voltage supply or temperature fluctuations. In this section, we will be looking at several methods of providing a constant dc current source for amplifier biasing using simple transistor configurations. Many of the circuits used to generate bias currents are also used for providing large resistances for IC applications. The active loads created in this manner, as well as the dc current sources, are small and easy to fabricate on IC chips. Diode Connected Transistors Before we get into current sources, let’s take a little bit to look at the details of the diode-connected transistor.
    [Show full text]
  • 1. Current Mirrors
    Analog Integrated Circuits – Fundamental Building Blocks Current mirrors 1. Current mirrors All the circuits studied in the previous paragraphs were simple, controlled current sources. Their ana- lysis has been done under the assumption that all the transistors are correctly biased in the saturation region. The issue, that has not been discussed, is the method used to insure the correct biasing of the transistors. Practically the biasing conditions are reduced to the generation of all the constant voltages in the circuit. The vast majority of the gate potentials are generated by injecting a reference current in one or more diodes con- nected in series. The voltage drop on these diodes will serve for stabilizing the gate-source voltages of the transistors in the current source. The resulting class of sub-circuits is called current mirrors. The current mir- rors are particularly useful for the distribution of bias currents in larger circuits. They can also be employed as current amplifiers. The basic parameter that describes the functionality of a current mirror is its current gain or reflection coefficient. The current gain is defined as a ratio between the generated output current and the input refe- rence current. I n out (1) Iin The performance requirements for current mirrors are similar as for current sources: the output resistance must be as large as possible in order to reduce the dependence of the output current on the output voltage; the input resistance must be as small as possible; the minimum allowed output voltage must be as small as possible; the minimum input voltage must be also as small as possible; the current gain must be precisely defined, constant with the supply voltage and temperature independent.
    [Show full text]
  • Current Mirrors
    Chapter 20 Current Mirrors In this chapter we turn our attention towards the design, layout, and simulation of current mirrors (a circuit that sources [or sinks] a constant current). As we observed back in Fig. 9.1, and the associated discussion, the ideal output resistance, r0, of a current source is infinite. Achieving high output resistance (meaning that the output current doesn't vary much with the voltage across the current source) will be the main focus of this chapter. It's very important that the reader first understand the material in Ch. 9 concerning the selection of biasing currents and device sizes and how they affect the gain/speed of the analog circuits. We'll use the parameters found in Tables 9.1 and 9.2 in many of the examples in this chapter. 20.1 The Basic Current Mirror The basic NMOS current mirror, made using Ml and M2, is seen in Fig. 20.1. Let's assume that Ml and M2 have the same width and length and note that VGSl = VDSI = VGS2. Because the MOSFETs have the same gate-source voltages, we expect (neglecting channel-length modulation) them to have the same drain current. If the two resistors in the drains of M1/M2 are equal, the drain of M2 will be at the same potential as the drain of Ml (this is important). By matching the size, Vcs , and ID of two transistors, we are assured that the two MOSFETs have the same drain-source voltage, (VGS\ = VDS\ = VGSI = VDSI)- VDD VDD S S Figure 20.1 A basic current mirror.
    [Show full text]
  • Current Mirrors
    Current mirrors An often-used circuit applying the bipolar junction transistor is the so-called current mirror, which serves as a simple current regulator, supplying nearly constant current to a load over a wide range of load resistances. We know that in a transistor operating in its active mode, collector current is equal to base current multiplied by the ratio β. We also know that the ratio between collector current and emitter current is called α. Because collector current is equal to base current multiplied by β, and emitter current is the sum of the base and collector currents, α should be mathematically derivable from β. If you do the algebra, you'll find that α = β/(β+1) for any transistor. We've seen already how maintaining a constant base current through an active transistor results in the regulation of collector current, according to the β ratio. Well, the α ratio works similarly: if emitter current is held constant, collector current will remain at a stable, regulated value so long as the transistor has enough collector-to-emitter voltage drop to maintain it in its active mode. Therefore, if we have a way of holding emitter current constant through a transistor, the transistor will work to regulate collector current at a constant value. Remember that the base-emitter junction of a BJT is nothing more than a PN junction, just like a diode, and that the “diode equation” specifies how much current will go through a PN junction given forward voltage drop and junction temperature: If both junction voltage and temperature are held constant, then the PN junction current will be constant.
    [Show full text]
  • Current Mirror Circuit with Accurate Mirror Gain For
    CURRENT MIRROR CIRCUIT WITH ACCURATE MIRROR GAIN FOR LOW β TRANSISTORS∗ Huiting Chen∗∗, Frank Whiteside∗∗∗, Randall Geiger∗∗ ∗∗Iowa State University *** Dallas Semiconductor Corp. Ames, IA 50011, USA Dallas, TX 75244, USA ABSTRACT across the base-emitter terminals of Q2. If Q1 and Q2 are matched, the emitter currents of Q1 and Q2 will be the same. If A new current mirror with accurate mirror gain for low β the base currents of Q1 and Q2 are negligibly small, it follows transistors is presented. The new current mirror employs a that the output current Iout will be the same as the input current. If cascoded output stage to provide high output impedance. High the base currents are not negligibly small, this current mirror has mirror gain accuracy is achieved by using a split-collector an output current Iout that is smaller than the input current transistor to compensate for base currents of the source-coupled because a current whose value is equal to the sum of base transistor pair. The split factor is dependent on the desired mirror currents of Q1 and Q2 is subtracted from the input current before gain and the nominal β value. it reaches the collector of Q1. Taking these two base currents into account and assuming Q1 and Q2 are perfectly matched, the 1. INTRODUCTION current mirror gain is given by I 1 (1) The current mirror is one of the most basic building blocks used A = out = I 2 in linear IC design. Although CMOS process have become in 1+ β dominant in applications requiring a large amount of digital circuitry on a chip, BJT circuits in either Bi-MOS or bipolar where β is the transistor current gain of Q1 and Q2.
    [Show full text]
  • Operational Transconductance Amplifier
    Operational transconductance amplifier Operational transconductance amplifier (OTA) is a monolithic direct coupled differential voltage controlled current source. They have a differential input and an output that is single-ended. OTA are described by transconductance gain gm instead of voltage-gain. They are very suitable for a broad variety of applications because they are similar to op-amp. As opposed to the operational amplifier, OTA has an ability to change gain which provides greater flexibility in design of analog circuits . The transconductance of an OTA can be linearly controlled by changing bias current (Ib) or voltage (Vb) through an extra control terminal. ANALOGNA ELEKTRONSKA KOLA Operational transconductance amplifier Differences between OTA and operational amplifier: OTA has an adjustable gain in contrast to the OP-amp. Network equations of the OTA circuits contain besides the values of passive elements, transconductance gm as an additional unknown. The output impedance of an OTA is very high in contrast to the operational amplifier . Consequently, OTA behaves as a current source at the output. As opposed to the linear OP-amp circuits, linear OTA circuits does not necessary use external negative feedback ANALOGNA ELEKTRONSKA KOLA Operational transconductance amplifier Characteristics of an ideal OTA Infinite input resistance Rin →∞ Infinite output resistance Ro→∞ Infinite frequency bandwidth ω0→∞ The amplifier is ideally balanced: I 0=0 when V1=V 2 Transconductance gm is finite and controllable with the bias current IB ANALOGNA ELEKTRONSKA KOLA Operational transconductance amplifier Characteristics of a real OTA Finite input resistance Rin Finite output resistance R O Offset voltage Amplifies common mode signal Finite bandwidth gm0 ⋅ωa gm (s) = s +ωa Open loop transconductance is constant at lower frequencies.
    [Show full text]
  • Implementation and Applications of Current Sources and Current Receivers
    ®APPLICATION BULLETIN Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (602) 746-1111 • Twx: 910-952-111 • Telex: 066-6491 • FAX (602) 889-1510 • Immediate Product Info: (800) 548-6132 IMPLEMENTATION AND APPLICATIONS OF CURRENT SOURCES AND CURRENT RECEIVERS This application guide is intended as a source book for the This is not an exhaustive collection of circuits, but a com- design and application of: pendium of preferred ones. Where appropriate, suggested ● Current sources part numbers and component values are given. Where added ● Current sinks components may be needed for stability, they are shown. ● Floating current sources Experienced designers may elect to omit these components ● Voltage-to-current converters in some applications, but less seasoned practitioners will be (transconductance amplifiers) able to put together a working circuit free from the frustra- ● Current-to-current converters (current mirrors) tion of how to make it stable. ● Current-to-voltage converters The applications shown are intended to inspire the imagina- (transimpedance amplifiers) tion of designers who will move beyond the scope of this work. R. Mark Stitt (602) 746-7445 CONTENTS DEAD BAND CIRCUITS USING CURRENT REFERENCE ....... 14 DESIGN OF FIXED CURRENT SOURCES BIDIRECTIONAL CURRENT SOURCES .................................... 16 REF200 IC CURRENT SOURCE DESCRIPTION PIN STRAPPING REF200 FOR 50µA—400µA..2 LIMITING CIRCUITS USING RESISTOR PROGRAMMABLE CURRENT SOURCES BIDIRECTIONAL CURRENT SOURCES .................................... 16 AND SINKS USING REF200 AND ONE EXTERNAL OP AMP: PRECISION TRIANGLE WAVEFORM GENERATOR Current Source or Sink With Compliance to USING BIDIRECTIONAL CURRENT SOURCES ....................... 17 Power Supply Rail and Current Out >100µA .......................... 4 DUTY CYCLE MODULATOR USING Current Source or Sink With Any Current Out .....................
    [Show full text]