bioRxiv preprint doi: https://doi.org/10.1101/2020.09.27.315804; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Synthetic auxotrophy remains stable after continuous evolution and in co-culture with 2 mammalian cells 3 Authors: Aditya M. Kunjapur1,2†*, Michael G. Napolitano1,3†, Eriona Hysolli1†, Karen 4 Noguera1, Evan M. Appleton1, Max G. Schubert1, Michaela A. Jones2, Siddharth Iyer4, Daniel J. 5 Mandell1,5 & George M. Church1* 6 Affiliations: 7 1Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, 8 MA 02115, USA. 9 2Present Address: Department of Chemical and Biomolecular Engineering, University of 10 Delaware, 150 Academy Street, CLB 215, Newark, DE 19716, USA 11 3Present Address: Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, MA 02210, USA. 12 4Present Address: Johns Hopkins University, 3101 Wyman Park Drive, Baltimore, MD 21218, 13 USA 14 5Present Address: GRO Biosciences, 700 Main Street North, Cambridge, MA 02139, USA. 15 *Corresponding authors: AMK (
[email protected]) or GMC 16 (
[email protected]). 17 †These authors contributed equally to this work. 18 19 Abstract: 20 Understanding the evolutionary stability and possible context-dependence of biological 21 containment techniques is critical as engineered microbes are increasingly under consideration 22 for applications beyond biomanufacturing. While batch cultures of synthetic auxotrophic 23 Escherichia coli previously exhibited undetectable escape throughout 14 days of monitoring, the 24 long-term effectiveness of synthetic auxotrophy is unknown.