Current Development in Genetic Engineering Strategies of Bacillus Species Huina Dong1,2 and Dawei Zhang1,2,3*

Total Page:16

File Type:pdf, Size:1020Kb

Current Development in Genetic Engineering Strategies of Bacillus Species Huina Dong1,2 and Dawei Zhang1,2,3* Dong and Zhang Microbial Cell Factories 2014, 13:63 http://www.microbialcellfactories.com/content/13/1/63 REVIEW Open Access Current development in genetic engineering strategies of Bacillus species Huina Dong1,2 and Dawei Zhang1,2,3* Abstract The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species. Keywords: Bacillus species, Genetic engineering strategies, Counter-selection marker, Operator-repressor system, Toxin gene, Site-specific recombination Introduction Bacillus species (Bacillus licheniformis,GenBankac- Bacillus subtilis and some related Bacillus species are cession number CP000560 and Bacillus amyloliquefa- non-pathogenic, free of exotoxins and endotoxins, and ciens, GenBank accession number AE017333) revealed have a recognized history of safe use in foods. These ahighdegreeofhomologytoB. subtilis [8-10]. These species are also useful for fermentation and large-scale complete genome sequences not only enhance our un- cultivation. Despite these natural advantages, protocols derstanding of these strains, but also allow advances in using Bacillus species lag far behind those for Escherichia genetic manipulations in other Bacillus species [6]. coli and Saccharomyces cerevisiae, which are the most With rapid developments in post-genomic studies, widely used cellular factories for producing industrially- simple and efficient genetic tools are required to con- important enzymes and biochemicals [1,2]. Therefore, veniently enable multiple modifications of the genomes efficient genetic manipulation and highly developed of Bacillus species. systems-level strategies for developing Bacillus species Classical chromosomal modification is based on the in- as microbial cell factories are needed. Recently, Bacillus sertion of a selectable marker, usually a drug resistance species have received increased attention for their use in gene, into the chromosome of a bacterial strain [11]. Using genetic engineering and production of heterologous pro- this strategy, a second selective maker gene is required to teins [3], valuable enzymes, vitamins, platform chemicals, introduce another chromosomal modification, so the and antibiotics [4-6]. number of available selection genes limits the feasibility The complete genome sequences of several B. subtilis of multiple chromosomal modifications. Moreover, the strains have been determined and annotated, stimulating selectable gene should be removed by single-crossover novel methods for interpreting metabolic pathways and recombination if the strain is to be used for further gen- supplying an overview of protein machinery [7]. The com- etic manipulation. In addition, the chance of obtaining a pletion of the genome sequences of industrially-important positive strain is relatively low, and the selection process is laborious. To overcome these problems, methods that * Correspondence: [email protected] can eliminate marker cassettes in the primary transfor- 1 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, mants are desperately needed. Tianjin 300308, China 2Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Recently, useful tools for genetic modification of Bacillus Sciences, Tianjin 300308, China species have emerged from the fields of systems and Full list of author information is available at the end of the article © 2014 Dong and Zhang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Dong and Zhang Microbial Cell Factories 2014, 13:63 Page 2 of 11 http://www.microbialcellfactories.com/content/13/1/63 synthetic biology. Thus, it is necessary to summarize re- [13-15]. Similarly, Uotsu-Tomita et al. [16] developed a cent progress, current obstacles, and future goals to in- double cI-Pr method for positive selection of B. subtilis spire more research interest and advance studies in this recombinants, and Tsuge et al. [17] obtained markerless field. First, we summarize the progress in genetic modifi- deletion of sfp, degQ, and ppsABCDE using the cI-Pr sys- cation strategies of Bacillus species, including several tem. This method can be repeatedly used by changing kinds of marker-free genetic modification methods and the location of the cI gene [18]. site-specific recombination strategies. Next, we discuss some strategies developed in other species that could also araR as a counter-selection marker be used in Bacillus species. Lastly, we compare current araR encodes a negative regulator of the ara operon that genetic engineering strategies, analyze their challenges can be induced by L-arabinose in B. subtilis [19]. Liu et al. and limitations, and discuss future research goals for de- [20] developed a method in which the chromosomal araR veloping novel and useful tools for genetic modification of locus was replaced by Para-neo, which confers neomycin re- Bacillus species. sistance. By adding L-arabinose to the growth medium, the expression of Para-neo canbeinducedbasedonthepres- Operator-repressor system-based genetic engineering ence of araR in the chromosome. First, the selection strategies marker cassette cat-araR is inserted upstream of the target The development of various inducible promoter systems gene via recombination, and then selected for with chlor- has played an important role in the analysis of gene amphenicol. Next, single-crossover recombination between expression and function. Promoters responsive to an as- two downstream regions removes the cat-araR cassette, to- sortment of inducing agents, including heavy metals, gether with the target gene. The remaining Para-neo in the hormones, and heat shock, as well as several viral, cellu- genome can be used again for further genetic modification. lar, and bacterial regulatory factors, have been success- The authors obtained 3.8-kb and 41.8-kb deletion strains fully used to manipulate gene expression. Some systems using this system that left no selective marker gene in the have been applied to genetically engineer Bacillus spe- targeted loci. cies, and the selection and counter-selection marker cassettes are shown in Figure 1. Pyrimidine metabolism-based genetic engineering strategies Common approaches for counter-selection exploit genes cI as a counter-selection marker involved in purine or pyrimidine metabolism and are The CI repressor gene (cI857 or cI) from E. coli bacterio- based on the fact that purine or pyrimidine analogs can phage lambda encodes the CI repressor, which can bind be converted to toxic compounds. Plating cells on media to the Pr promoter of lambda phage to suppress its pro- containing the analog leads to a strong selection for moter activity. Itaya [12] developed a counter-selection clones that have lost the chromosomally-integrated copy method in which a neomycin-resistance gene is regu- of the gene encoding the converting enzyme. Therefore, lated by Pr. This system, controlled by the presence/ab- parental strains used for genome modification must lack sence of the CI repressor, allows precise selection for the respective gene for purine or pyrimidine nucleotide marker-free genetic modification of the chromosome biosynthesis. Recently, upp and pyrF, encoding uracil Figure 1 Operator-repressor system-based genetic engineering strategy. (A) In the presence of the R gene, the constitutively expressed R protein specifically binds to the Pr promoter and represses promoter activity. (B) When the R gene is excised from the genome, the Pr promoter is activated and mutants can be selected by antibiotic resistance. (C) Diagrams of selection and counter-selection marker cassettes. R: Repressor, R S R S AR: Antibiotic resistance, Pr: Promoter. [AR1 ], [AR1 ], [AR2 ], and [AR2 ] are AR1-resistant, AR1-sensitive, AR2-resistant, and AR2-sensitive bacterial phenotypes, respectively. Dong and Zhang Microbial Cell Factories 2014, 13:63 Page 3 of 11 http://www.microbialcellfactories.com/content/13/1/63 phosphoribosyltransferase (UPRTase) and orotidine 5′- knock out genes. Compared with the parental B. subtilis phosphate decarboxylase (OMPdecase), respectively, have 168 genome, the genome of strain MGB874 is depleted by been used as counter-selection markers in Bacillus species. 874 kb (20.7%), including 865 genes. The relevant pyrimidine metabolism pathway and mecha- Tanaka et al. [27] developed an improved counter- nisms of action of pyrimidine analogs are shown in selection system that combines the upp and cI-Pr sys- Figure 2. tems. In
Recommended publications
  • Relationship Between Nicotinamide Adenine Dinucleotide (Nad+) Metabolism and Inositol Biosynthesis
    RELATIONSHIP BETWEEN NICOTINAMIDE ADENINE DINUCLEOTIDE (NAD+) METABOLISM AND INOSITOL BIOSYNTHESIS A Dissertation Presented to the Faulty of the Graduate School of Cornell University in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy by Sojin Lee August 2009 © 2009 Sojin Lee RELATIONSHIP BETWEEN NICOTINAMIDE ADENINE DINUCLEOTIDE (NAD+) METABOLISM AND INOSITOL BIOSYNTHESIS Sojin Lee, Ph.D Cornell University 2009 I found that the presence of the phospholipid precursor, inositol, in the growth medium alters NAD+ levels, as well as, expression levels of genes involved in NAD+ metabolism. NAD+ levels increased in the absence of inositol compared to the levels in the presence of inositol. My initial discovery of a relatively weak Ino- phenotype at 37oC associated with the npt1∆ mutant in the NAD+ salvage pathway and the fact that this phenotype is partially suppressed by removal of nicotinic acid (NA) from the growth medium added further evidence of a connection between NAD+ and inositol metabolism. Changes in the level of INO1 expression and phospholipid composition in npt1∆ were restored to wild type levels when NA was removed from the growth medium. The fact that the Ino- phenotype of the npt1∆ mutant was strongest when NA was present was surprising because the npt1∆ mutant is unable to use NA as a precursor for NAD+ biosynthesis. Consistent with the nature of the metabolic defect in the npt1∆ mutant, I subsequently found that the effect of NA on the Ino- phenotype of npt1∆ was not correlated to changes in either intracellular NAD+ or NA levels. Moreover, deletion of the gene encoding the sirutins, Hst1p, in the genetic background, npt1∆, and/or addition of nicotinamide (NAM), an inhibitor of sirtuins, to the growth medium resulted in a stronger Ino- phenotype.
    [Show full text]
  • Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
    Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy.
    [Show full text]
  • Piggybac Transposase Tools for Genome Engineering.Pdf
    piggyBac transposase tools for genome engineering PNAS PLUS Xianghong Lia,b, Erin R. Burnightc, Ashley L. Cooneyd, Nirav Malanie, Troy Bradye, Jeffry D. Sanderf,g, Janice Staberd, Sarah J. Wheelanh, J. Keith Joungf,g, Paul B. McCray, Jr.c,d, Frederic D. Bushmane, Patrick L. Sinnd,1, and Nancy L. Craiga,b,1 aHoward Hughes Medical Institute and bDepartment of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; cGenetics Program, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242; dDepartment of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242; eDepartment of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; fMolecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129; gDepartment of Pathology, Harvard Medical School, Boston, MA 02115; and hDivision of Biostatistics and Bioinformatics, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Richard A. Young, Massachusetts Institute of Technology, Cambridge, MA, and approved May 1, 2013 (received for review December 30, 2012) The transposon piggyBac is being used increasingly for genetic stud- site-directed mutagenesis of the PB catalytic domain and isolated − ies. Here, we describe modified versions of piggyBac transposase an excision competent/integration defective (Exc+Int ) PB. We − that have potentially wide-ranging applications, such as reversible also find that introduction of the Exc+Int mutations into a hy- − transgenesis and modified targeting of insertions. piggyBac is dis- peractive version of PB (5, 8, 15) yields an Exc+Int transposase tinguished by its ability to excise precisely, restoring the donor site whose excision frequency is five- to six-fold higher than that of to its pretransposon state.
    [Show full text]
  • A Homologous Recombination-Based Method of Genetic Engineering
    PROTOCOL Recombineering: a homologous recombination-based method of genetic engineering Shyam K Sharan1, Lynn C Thomason2, Sergey G Kuznetsov1 & Donald L Court3 1Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA. 2SAIC-Frederick Inc., Gene Regulation and Chromosome Biology Laboratory, Basic Research Program, Frederick, Maryland, 21702, USA. 3Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA. Correspondence should be addressed to S.K.S. ([email protected]) or D.L.C. ([email protected]). Published online 29 January 2009; doi:10.1038/nprot.2008.227 Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in Escherichia coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-stranded linear DNA substrates, natureprotocols so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene / m tags can be inserted and regions of bacterial artificial chromosomes or the E. coli genome can be subcloned by gene retrieval using o c . recombineering. Most of these constructs can be made within about 1 week’s time. e r u t a n . INTRODUCTION w w Recombineering is an in vivo method of genetic engineering used This protocol will emphasize modification of bacterial artificial w / / 1–5 : primarily in Escherichia coli that uses short 50 base homologies .
    [Show full text]
  • Arginine Auxotrophy Affects Siderophore Biosynthesis And
    G C A T T A C G G C A T genes Article Arginine Auxotrophy Affects Siderophore Biosynthesis and Attenuates Virulence of Aspergillus fumigatus Anna-Maria Dietl 1, Ulrike Binder 2 , Ingo Bauer 1 , Yana Shadkchan 3, Nir Osherov 3 and Hubertus Haas 1,* 1 Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] (A.-M.D.); [email protected] (I.B.) 2 Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 3 Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, 69978 Tel-Aviv, Israel; [email protected] (Y.S.); [email protected] (N.O.) * Correspondence: [email protected] Received: 2 April 2020; Accepted: 9 April 2020; Published: 15 April 2020 Abstract: Aspergillus fumigatus is an opportunistic human pathogen mainly infecting immunocompromised patients. The aim of this study was to characterize the role of arginine biosynthesis in virulence of A. fumigatus via genetic inactivation of two key arginine biosynthetic enzymes, the bifunctional acetylglutamate synthase/ornithine acetyltransferase (argJ/AFUA_5G08120) and the ornithine carbamoyltransferase (argB/AFUA_4G07190). Arginine biosynthesis is intimately linked to the biosynthesis of ornithine, a precursor for siderophore production that has previously been shown to be essential for virulence in A. fumigatus. ArgJ is of particular interest as it is the only arginine biosynthetic enzyme lacking mammalian homologs. Inactivation of either ArgJ or ArgB resulted in arginine auxotrophy. Lack of ArgJ, which is essential for mitochondrial ornithine biosynthesis, significantly decreased siderophore production during limited arginine supply with glutamine as nitrogen source, but not with arginine as sole nitrogen source.
    [Show full text]
  • An Optimized Preparation Method for Long Ssdna Donors to Facilitate Quick Knock-In Mouse Generation
    cells Article An Optimized Preparation Method for Long ssDNA Donors to Facilitate Quick Knock-In Mouse Generation Yukiko U. Inoue 1,* , Yuki Morimoto 1, Mayumi Yamada 2, Ryosuke Kaneko 3, Kazumi Shimaoka 1, Shinji Oki 4, Mayuko Hotta 1, Junko Asami 1, Eriko Koike 1, Kei Hori 1, Mikio Hoshino 1, Itaru Imayoshi 2,5 and Takayoshi Inoue 1,* 1 Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan; [email protected] (Y.M.); [email protected] (K.S.); [email protected] (M.H.); [email protected] (J.A.); [email protected] (E.K.); [email protected] (K.H.); [email protected] (M.H.) 2 Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; [email protected] (M.Y.); [email protected] (I.I.) 3 KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; [email protected] 4 Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan; [email protected] 5 Department of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan * Correspondence: [email protected] (Y.U.I.); [email protected] (T.I.) Abstract: Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles Citation: Inoue, Y.U.; Morimoto, Y.; in investigating various molecular functions in vivo.
    [Show full text]
  • Transposon Based Mutagenesis and Mapping of Transposon Insertion Sites Within the Ehrlichia Chaffeensis Genome Using Semi Random Two-Step Pcr
    TRANSPOSON BASED MUTAGENESIS AND MAPPING OF TRANSPOSON INSERTION SITES WITHIN THE EHRLICHIA CHAFFEENSIS GENOME USING SEMI RANDOM TWO-STEP PCR by VIJAYA VARMA INDUKURI B.S., ANDHRA UNIVERSITY, India, 2008 A THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Approved by: Major Professor Roman Reddy Ganta Copyright VIJAYA VARMA INDUKURI 2013 Abstract Ehrlichia chaffeensis a tick transmitted Anaplasmataceae family pathogen responsible for human monocytic ehrlichiosis. Differential gene expression appears to be an important pathogen adaptation mechanism for its survival in dual hosts. One of the ways to test this hypothesis is by performing mutational analysis that aids in altering the expression of genes. Mutagenesis is also a useful tool to study the effects of a gene function in an organism. Focus of my research has been to prepare several modified Himar transposon mutagenesis constructs for their value in introducing mutations in E. chaffeensis genome. While the work is in progress, research team from our group used existing Himar transposon mutagenesis plasmids and was able to create mutations in E. chaffeensis. Multiple mutations were identified by Southern blot analysis. I redirected my research efforts towards mapping the genomic insertion sites by performing the semi-random two step PCR (ST-PCR) method, followed by DNA sequence analysis. In this method, the first PCR is performed with genomic DNA as the template with a primer specific to the insertion segment and the second primer containing an anchored degenerate sequence segment. The product from the first PCR is used in the second PCR with nested transposon insertion primer and a primer designed to bind to the known sequence portion of degenerate primer segment.
    [Show full text]
  • The Evolutionary History of Chromosomal Super-Integrons Provides an Ancestry for Multiresistant Integrons
    The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons Dean A. Rowe-Magnus*, Anne-Marie Guerout*, Pascaline Ploncard*, Broderick Dychinco†, Julian Davies†, and Didier Mazel*‡ *Unite´de Programmation Mole´culaire et Toxicologie Ge´ne´ tique, Centre National de la Recherche Scientifique Unite´de Recherche Associe´e 1444, De´partement des Biotechnologies, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris, France; and †Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3 Communicated by Allan Campbell, Stanford University, Stanford, CA, November 2, 2000 (received for review August 1, 2000) Integrons are genetic elements that acquire and exchange exog- located downstream of a resident promoter internal to the intI enous DNA, known as gene cassettes, by a site-specific recombi- gene, drives expression of the encoded proteins (13). Most of the nation mechanism. Characterized gene cassettes consist of a target attC sites of the integron cassettes identified to date are unique. recombination sequence (attC site) usually associated with a single Their length and sequence vary considerably (from 57 to 141 bp) open reading frame coding for an antibiotic resistance determi- and their similarities are primarily restricted to their boundaries, nant. The affiliation of multiresistant integrons (MRIs), which which correspond to the inverse core site (RYYYAAC) and the contain various combinations of antibiotic resistance gene cas- core site [G2TTRRRY; 2, recombination point (11, 14)]. settes, with transferable elements underlies the rapid evolution of More than 60 different antibiotic-resistance genes, covering multidrug resistance among diverse Gram-negative bacteria. Yet most antimicrobials presently in use, have been characterized in the origin of MRIs remains unknown.
    [Show full text]
  • Electroporation-Mediated and EBV LMP1-Regulated Gene Therapy in A
    Cancer Gene Therapy (2003) 10, 626–636 r 2003 Nature Publishing Group All rights reserved 0929-1903/03 $25.00 www.nature.com/cgt Electroporation-mediated and EBV LMP1-regulated gene therapy in a syngenic mouse tumor model Yu-hua Hsieh,1 Chang-jer Wu,2 Kai-ping Chow,3 Chia-lung Tsai,1 and Yu-sun Chang3 1Institute of Microbiology and Immunology, National Yang-Ming University, Shih-pai, Taipei 112, Republic of China; 2Institute of Preventive Medicine, National Defense Medical Center, Taipei 114, Republic of China; and 3Graduate Institute of Basic Medical Sciences, Chang-Gung University, Kwei-shan, Taoyuan 333, Taiwan, Republic of China. Latent membrane protein 1 (LMP1) is an Epstein–Barr virus (EBV)-encoded oncogene expressed in EBV-associated nasopharyngeal carcinoma (NPC). Previous studies indicate that a strategy combining LMP1-mediated NF-kB activation and the HSV thymidine kinase/Ganciclovir (HSVtk/GCV) prodrug system leads to regression of tumor growth in nude mice. To improve the efficacy of this strategy in immunocompetent hosts, we developed a therapeutic cassette, p6kB-EDL1E-tk, containing six copies of the NF-kB binding motif and an epithelial-specific EBV promoter, ED-L1E. The cassette was tested in a murine CT-26 carcinoma model in syngenic Balb/c mice. Coinjection of an LMP1-expressing vector and p6kB-EDL1E-tk by in vivo electroporation in mouse muscle revealed at least two-fold higher TK enzymatic activity than that of previously tested pLTR-tk. Furthermore, growth was attenuated in a group of mice containing LMP1-positive tumors that were intratumorally injected with the p6kB-EDL1E-tk cassette and GCV via in vivo electroporation, but not in mice treated with p6kB-EDL1E-tk or GCV alone.
    [Show full text]
  • Evaluation on Reprogramed Biological Processes in Transgenic Maize
    www.nature.com/scientificreports OPEN Evaluation on reprogramed biological processes in transgenic maize varieties using transcriptomics and metabolomics Wei Fu1, Pengyu Zhu1, Mingnan Qu2, Wang Zhi1, Yongjiang Zhang1, Feiwu Li3* & Shuifang Zhu1* Genetic engineering (GM) has great potential to improve maize productivity, but rises some concerns on unintended efects, and equivalent as their comparators. There are some limitations through targeted analysis to detect the UE in genetically modifed organisms in many previous studies. We here reported a case-study on the efects of introducing herbicides and insect resistance (HIR) gene cassette on molecular profling (transcripts and metabolites) in a popular maize variety Zhengdan958 (ZD958) in China. We found that introducing HIR gene cassette bring a limited numbers of diferential abundant genes (DAGs) or diferential abundant metabolites (DAMs) between transgenic events and non-transgenic control. In contrast, averaged 10 times more DAGs and DAMs were observed when performed comparison under diferent growing environments in three diferent ecological regions of China than the numbers induced by gene efects. Major biological pathways relating to stress response or signaling transduction could explain somehow the efects of growing environments. We further compared two transgenic events mediated ZD958 (GM-ZD958) with either transgenic parent GM-Z58, and other genetic background nonGM-Z58, nonGM-ZD958, and Chang7-2. We found that the numbers of DAGs and DAMs between GM-ZD958 and its one parent maize variety, Z58 or GM-Z58 is equivalent, but not Chang7-2. These fndings suggest that greater efects due to diferent genetic background on altered molecular profling than gene modifcation itself. This study provides a case evidence indicating marginal efects of gene pleiotropic efects, and environmental efects should be emphasized.
    [Show full text]
  • Bacterial Evolution on Demand
    INSIGHT ANTIBIOTIC RESISTANCE Bacterial evolution on demand Bacteria carry antibiotic resistant genes on movable sections of DNA that allow them to select the relevant genes on demand. PA˚ L J JOHNSEN, JOA˜ O A GAMA AND KLAUS HARMS genes known as gene cassettes. The ones Related research article Souque C, Escu- located at the start of the integron produce dero JA, MacLean RC. 2021. Integron activ- more proteins than the ones closer to the end ity accelerates the evolution of antibiotic (Collis and Hall, 1995). During stress situations resistance. eLife 10:e62474. doi: 10.7554/ – such as exposure to antibiotics – an enzyme eLife.62474 called integrase is produced, allowing the microbes to shuffle the order of the cassettes in the integron (Guerin et al., 2009). Conse- quently, gene cassettes encoding the appropri- ate adaptive response to an antibiotic will be acteria are the most abundant form of moved closer to the start, where expression lev- life and inhabit virtually every environ- els are higher (Figure 1). It has been proposed B ment on Earth, from the soil to the that this mechanism allows bacteria to adapt to human body. They display remarkable genetic fluctuating environmental conditions ‘on flexibility and can respond rapidly to environ- demand’, but this hypothesis has never been mental changes. Bacteria have developed differ- experimentally tested (Escudero et al., 2015). ent strategies to increase their genetic diversity, Now, in eLife, Ce´lia Souque, Jose´ A. Escu- including the use of mobile genetic elements, dero and Craig MacLean of the University of which can either move around the genome or be Oxford and the Universidade Complutense de transferred to a different bacterium.
    [Show full text]
  • Protein Moonlighting Revealed by Non-Catalytic Phenotypes of Yeast Enzymes
    Genetics: Early Online, published on November 10, 2017 as 10.1534/genetics.117.300377 Protein Moonlighting Revealed by Non-Catalytic Phenotypes of Yeast Enzymes Adriana Espinosa-Cantú1, Diana Ascencio1, Selene Herrera-Basurto1, Jiewei Xu2, Assen Roguev2, Nevan J. Krogan2 & Alexander DeLuna1,* 1 Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, 36821 Irapuato, Guanajuato, Mexico. 2 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, 94158, USA. *Corresponding author: [email protected] Running title: Genetic Screen for Moonlighting Enzymes Keywords: Protein moonlighting; Systems genetics; Pleiotropy; Phenotype; Metabolism; Amino acid biosynthesis; Saccharomyces cerevisiae 1 Copyright 2017. 1 ABSTRACT 2 A single gene can partake in several biological processes, and therefore gene 3 deletions can lead to different—sometimes unexpected—phenotypes. However, it 4 is not always clear whether such pleiotropy reflects the loss of a unique molecular 5 activity involved in different processes or the loss of a multifunctional protein. Here, 6 using Saccharomyces cerevisiae metabolism as a model, we systematically test 7 the null hypothesis that enzyme phenotypes depend on a single annotated 8 molecular function, namely their catalysis. We screened a set of carefully selected 9 genes by quantifying the contribution of catalysis to gene-deletion phenotypes 10 under different environmental conditions. While most phenotypes were explained 11 by loss of catalysis, slow growth was readily rescued by a catalytically-inactive 12 protein in about one third of the enzymes tested. Such non-catalytic phenotypes 13 were frequent in the Alt1 and Bat2 transaminases and in the isoleucine/valine- 14 biosynthetic enzymes Ilv1 and Ilv2, suggesting novel "moonlighting" activities in 15 these proteins.
    [Show full text]