Safety Aspects of Genetically Modified Lactic Acid Bacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Relationship Between Nicotinamide Adenine Dinucleotide (Nad+) Metabolism and Inositol Biosynthesis
RELATIONSHIP BETWEEN NICOTINAMIDE ADENINE DINUCLEOTIDE (NAD+) METABOLISM AND INOSITOL BIOSYNTHESIS A Dissertation Presented to the Faulty of the Graduate School of Cornell University in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy by Sojin Lee August 2009 © 2009 Sojin Lee RELATIONSHIP BETWEEN NICOTINAMIDE ADENINE DINUCLEOTIDE (NAD+) METABOLISM AND INOSITOL BIOSYNTHESIS Sojin Lee, Ph.D Cornell University 2009 I found that the presence of the phospholipid precursor, inositol, in the growth medium alters NAD+ levels, as well as, expression levels of genes involved in NAD+ metabolism. NAD+ levels increased in the absence of inositol compared to the levels in the presence of inositol. My initial discovery of a relatively weak Ino- phenotype at 37oC associated with the npt1∆ mutant in the NAD+ salvage pathway and the fact that this phenotype is partially suppressed by removal of nicotinic acid (NA) from the growth medium added further evidence of a connection between NAD+ and inositol metabolism. Changes in the level of INO1 expression and phospholipid composition in npt1∆ were restored to wild type levels when NA was removed from the growth medium. The fact that the Ino- phenotype of the npt1∆ mutant was strongest when NA was present was surprising because the npt1∆ mutant is unable to use NA as a precursor for NAD+ biosynthesis. Consistent with the nature of the metabolic defect in the npt1∆ mutant, I subsequently found that the effect of NA on the Ino- phenotype of npt1∆ was not correlated to changes in either intracellular NAD+ or NA levels. Moreover, deletion of the gene encoding the sirutins, Hst1p, in the genetic background, npt1∆, and/or addition of nicotinamide (NAM), an inhibitor of sirtuins, to the growth medium resulted in a stronger Ino- phenotype. -
Administration of L. Salivarius Expressing 3D8 Scfv As a Feed Additive Improved the Growth Performance, Immune Homeostasis, and Gut Microbiota of Chickens
Received: 22 January 2020 | Revised: 2 April 2020 | Accepted: 24 April 2020 DOI: 10.1111/asj.13399 ORIGINAL ARTICLE Administration of L. salivarius expressing 3D8 scFv as a feed additive improved the growth performance, immune homeostasis, and gut microbiota of chickens Shanmugam Sureshkumar1,2 | Sun Keun Jung1 | Dongjun Kim3 | Keon Bong Oh1 | Hyeon Yang1 | Hwi Cheul Lee1 | Yong Jin Jo1 | Hae Sun Lee1 | Sukchan Lee3 | Sung June Byun1 1Animal Biotechnology Division, National Institute of Animal Science, Rural Abstract Development Administration, Wanju-gun, Probiotics have been defined as live microorganisms that are administered in an ap- Republic of Korea propriate amount to provide health benefits to the host animal. In this study, we in- 2Department of Animal Resource and Science, Dankook University, Cheonan, vestigated the effect of L. salivarius DJ-sa-01 secreting the 3D8 single-chain variable Republic of Korea fragment (3D8 scFv) on the growth performance, cytokine secretion, and intestinal 3Department of Integrative Biotechnology, Sungkyunkwan University, Gyeonggi-do, microbial flora of chickens. The experiment was divided into the control group and Republic of Korea L. salivarius expressing 3D8 scFv experimental group. Chicken was fed 109 colony- Correspondence forming units (CFUs) of wild-type (WT) L. salivarius or 3D8 scFv-secreting L. salivarius Sung June Byun, Animal Biotechnology daily for 35 days. The administration of L. salivarius expressing 3D8 scFv signifi- Division, National Institute of Animal Science, Rural Development Administration, cantly improved the body weight of chickens compared with the administration of 1500, Wanju-gun, 441-706, Republic of WT L. salivarius. A 16S ribosomal RNA metagenomic analysis showed that Firmicutes, Korea. -
Guide to Probiotics
Department of Nutrition and Dietetics 01935 384250 Guide to Probiotics If you would like this leaflet in another format or in a different language, please contact the hospital’s communications Department of Nutrition department on 01935 384233 or email and Dietetics— 01935 384250 [email protected] Leaflet No: 88061014 Date: 12/14 Review by: 12/16 www.yeovilhospital.nhs.uk Bio-Kult Bacillus subtilis Minimum 2 Tablet Online Bifidobacterium bifidum billion live www.bio-kult.com Bifidobacterium breve microorganisms Bifidobacterium infantis per capsule Also available in some Bifidobacterium longum shops. Lactobacillus acidophilus L.delbrueckii ssp. Bulgaricus L. casei L. plantarum L. rhamnosus L. Helveticus L. Salivarius Lactococcus lactis ssp. Lactis Streptococcus thermophiles Biogaia Lactobacillus reu- Minimum 200 Lozenge Online teri Protectis million live www.biogaia.co.uk bacteria in 1 lozenge Recommended use: Please note that some patients experience a slight increase in their symptoms in the first week of us- ing a high dose probiotic. Just bear with it but if you are concerned, please contact us. Introduction The human gut contains millions of bacteria living in balance with each other. This balance can be upset for various reasons including antibiotic use or following an upset stomach when certain bacteria grow in higher numbers than usual. What are probiotics? Available Available from Hollandand Barrett Online www.symprove.com Or via telephone 01252 413600 Available from Probiotics are live bacteria often referred to as ‘good’ or ‘friendly’ bacteria, which may have health benefits by improving the balance of our gut bacteria. They may help if suffering with wind, bloating or constipation or if affected by antibiotic associated bacteria. -
Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy. -
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Effect of 17Β-Estradiol on a Human Vaginal Lactobacillus Crispatus Strain
www.nature.com/scientificreports OPEN Efect of 17β‑estradiol on a human vaginal Lactobacillus crispatus strain Maximilien Clabaut1, Amandine Suet2, Pierre‑Jean Racine1, Ali Tahrioui1, Julien Verdon3, Magalie Barreau1, Olivier Maillot1, Agathe Le Tirant4, Madina Karsybayeva5, Coralie Kremser6, Gérard Redziniak7, Cécile Duclairoir‑Poc1, Chantal Pichon2, Sylvie Chevalier1 & Marc G. J. Feuilloley1* Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct efect of 17β‑estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17β‑estradiol (10–6 to 10–10 M) had no efect on L. crispatus growth, but markedly afected the membrane dynamics of this bacterium. This efect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unafected by exposure to 17β‑estradiol, but its mean size was signifcantly reduced. 17β‑estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little efect on bacterial bioflm formation activity. Bioinformatic analysis of L. crispatus identifed a membrane lipid raft–associated stomatin/prohibitin/fotillin/HfK domain containing protein as a potential 17β‑estradiol binding site. Overall, our results reveal direct efects of 17β‑estradiol on L. crispatus. These efects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens. Te human microbiota has a dynamic structure that difers among organs and populations 1. It evolves con- stantly, in response to local and environmental factors 1–3. Te vaginal microbiota is less diverse than other microbiota4 but evolves rapidly with changes in female physiology over time 5. -
Table S5. Components of the Probiotics in Each Included Clinical and Preclinical Literature
Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2021 Table S5. Components of the probiotics in each included clinical and preclinical literature. Study Type of strains Randomized controlled trials Ebrahim Kouchaki Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and Lactobacillus (2017) fermentum Mahmoud Salami Bifidobacterium infantis, Bifidobacterium lactis, Lactobacillus reuteri, Lactobacillus casei, (2019) Lactobacillus plantarum and Lactobacillus fermentum Mehran Bacillus subtilis PXN 21, Bifidobacterium bifidum PXN 23, Bifidobacterium breve PXN 25, Rahimlou(2020) Bifidobacterium infantis PXN 27, Bifidobacterium longum PXN 30, Lactobacillus acidophilus PXN 35, Lactobacillus delbrueckii ssp. bulgaricus PXN 39, Lactobacillus casei PXN 37, Lactobacillus plantarum PXN 47, Lactobacillus rhamnosus PXN 54, Lactobacillus helveticus PXN 45, Lactobacillus salivarius PXN 57, Lactococcus lactis ssp. lactis PXN 63, Streptococcus thermophilus PXN 66 Preclinical studies Kobayashi et al Lactobacillus casei strain Shirota, Bifidobacterium breve strain Yakult (2009) Lavasani et al Lactobacillus paracasei, DSM 13434; Lactobacillus plantarum, DSM 15312 (HEAL9); (2010) Lactobacillus plantarum, DSM 15313 (HEAL19); Lactobacillus paracasei, PCC (Probi Culture Collection) 101 and Lactobacillus delbrueckii, subsp. bulgaricus, DSM 20081 Ochoa-Repáraz et al Bacteroides fragilis (2010) Takata et al Pediococcus acidilactici R037 (2011) Kobayashi et al Lactobacillus casei strain -
Irritable Bowel Syndrome and Probiotics: from Rationale to Clinical Use Elena F
Irritable bowel syndrome and probiotics: from rationale to clinical use Elena F. Verdu and Stephen M. Collins Purpose of review Introduction Few therapies are of proven efficacy in irritable bowel In this review we discuss the gut-driven pathophysiologic syndrome. Thus, there is great interest in the development pathways involved in gut dysfunction and symptom gen- of a natural therapy that can be both safe and effective. An eration in irritable bowel syndrome (IBS), including immune understanding that probiotics are heterogeneous, with activation, dysmotility, altered mucosal barrier function, multiple targets and mechanisms of action, is fundamental and visceral perception. This allows us to logically review to the development of clinical trials. the possible targets of probiotic therapy in IBS. Finally, we Recent findings evaluate the relevant clinical trials published to date on A bidirectional model for the pathogenesis of irritable bowel probiotics and IBS. syndrome is proposed in which gut-driven and brain-driven mechanisms contribute to the genesis of gut dysfunction and symptoms. In-vitro and animal studies have generated Gut dysfunction in irritable bowel syndrome most of the mechanistic rationale for the use of probiotics The current goal of treatment in IBS is to alleviate symp- in functional bowel disorders. A MEDLINE search of toms and improve quality of life. The gut-driven patho- publications from 1989 to date revealed only eight physiologic mechanisms believed to be involved in the placebo-controlled clinical trials on the subject of origin or maintenance of IBS symptoms include intestinal probiotics and irritable bowel syndrome. All these studies infection and immune activation, dysmotility, abnormal • suffer from methodologic problems. -
Antimicrobial Activity of Lactococcus Lactis Subsp. Lactis Isolated
microorganisms Article Antimicrobial Activity of Lactococcus lactis subsp. lactis Isolated from a Stranded Cuvier’s Beaked Whale (Ziphius cavirostris) against Gram-Positive and -Negative Bacteria Akihiko Suzuki and Miwa Suzuki * Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-4668-43677 Abstract: In the present study, we isolated and characterized Lactococcus lactis (L. lactis) subsp. lactis from a female Cuvier’s beaked whale (Ziphius cavirostris) stranded in Shizuoka, Japan. Only five isolates (CBW1-5), grown on Lactobacilli de Man Rogosa Sharpe (MRS) agar plates prepared using 50% artificial seawater, were positive in L. lactis species-specific primer PCR. Their 16S rRNA sequences were highly similar to those of L. lactis subsp. lactis JCM 5805T. The Gram reaction, motility, gas production from glucose, catalase production, and growth conditions were consistent with those of the type strain. Additionally, carbohydrate utilization of the strains was consistent with previously reported marine organism-derived strains. The pH-neutralized cell-free culture supernatant of strain CBW2 inhibited the growth of Bacillus subtilis subsp. subtilis ATCC 6051 and Vibrio alginolyticus ATCC 17749, whereas protease treatment eliminated or diminished its inhibitory Citation: Suzuki, A.; Suzuki, M. activity. The strain possesses a precursor of the nisin structural gene (nisA), which showed 100% Antimicrobial Activity of Lactococcus homology with nisin Z, and nisin biosynthesis-related genes (nisB, nisC, nisT, nisP, nisF, nisI, and lactis subsp. lactis Isolated from a nisRK), suggesting that the strain produces a nisin-like substance. -
Probiotic L. Gasseri Strain (LG21) for the Upper Gastrointestinal Tract Acting Through Improvement of Indigenous Microbiota
BMJ Open Gastroenterol: first published as 10.1136/bmjgast-2019-000314 on 12 August 2019. Downloaded from Review Probiotic L. gasseri strain (LG21) for the upper gastrointestinal tract acting through improvement of indigenous microbiota Yasuhiro Koga, 1 Toshihiro Ohtsu,2 Katsunori Kimura,2 Yukio Asami2 To cite: Koga Y, Ohtsu T, ABSTRACT adequate amounts, confers a health benefit Kimura K, et al. Probiotic Objective To describe probiotics including a Lactobacillus on the host’. The International Scientific strain (LG21) for L. gasseri gasseri strain LG21 used for the upper gastrointestinal Association for Probiotics and Prebiotics the upper gastrointestinal tract, which are considered to act through improvement of tract acting through consensus statements recently reported in indigenous microbiota inhabiting there. 3 improvement of indigenous 2014 also retained the main body of these Background and design Because the early definition microbiota. BMJ Open Gastro definitions. of probiotics emphasized their effects on improving 2019;6:e000314. doi:10.1136/ The gut contains a complex and dynamic bmjgast-2019-000314 the intestinal microbial ecology, their effects on the intestinal tract and its immunity have been considered microbial ecosystem with a high density of common general benefits associated with probiotics. bacteria whose cell number can reach as Received 24 May 2019 12 Revised 29 June 2019 This conclusion was also based on a body of successful high as approximately 10 /g faeces, the Accepted 16 July 2019 clinical trials whose endpoints were the prevention or total number of which is thus estimated to be treatment of intestinal diseases. In contrast to intestinal 10-fold larger than the total number of eukary- by copyright. -
Arginine Auxotrophy Affects Siderophore Biosynthesis And
G C A T T A C G G C A T genes Article Arginine Auxotrophy Affects Siderophore Biosynthesis and Attenuates Virulence of Aspergillus fumigatus Anna-Maria Dietl 1, Ulrike Binder 2 , Ingo Bauer 1 , Yana Shadkchan 3, Nir Osherov 3 and Hubertus Haas 1,* 1 Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] (A.-M.D.); [email protected] (I.B.) 2 Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 3 Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, 69978 Tel-Aviv, Israel; [email protected] (Y.S.); [email protected] (N.O.) * Correspondence: [email protected] Received: 2 April 2020; Accepted: 9 April 2020; Published: 15 April 2020 Abstract: Aspergillus fumigatus is an opportunistic human pathogen mainly infecting immunocompromised patients. The aim of this study was to characterize the role of arginine biosynthesis in virulence of A. fumigatus via genetic inactivation of two key arginine biosynthetic enzymes, the bifunctional acetylglutamate synthase/ornithine acetyltransferase (argJ/AFUA_5G08120) and the ornithine carbamoyltransferase (argB/AFUA_4G07190). Arginine biosynthesis is intimately linked to the biosynthesis of ornithine, a precursor for siderophore production that has previously been shown to be essential for virulence in A. fumigatus. ArgJ is of particular interest as it is the only arginine biosynthetic enzyme lacking mammalian homologs. Inactivation of either ArgJ or ArgB resulted in arginine auxotrophy. Lack of ArgJ, which is essential for mitochondrial ornithine biosynthesis, significantly decreased siderophore production during limited arginine supply with glutamine as nitrogen source, but not with arginine as sole nitrogen source.