Antarctic Marine Benthic Invertebrates: Chemical Ecology, Bioactivity and Biodiversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intertidal and Subtidal Benthic Seaweed Diversity of South Georgia
Intertidal and Subtidal Benthic Seaweed Diversity of South Georgia Report for the South Georgia Heritage Trust Survey September 2011 Shallow Marine Survey Group E Wells1, P Brewin and P Brickle 1 Wells Marine, Norfolk, UK Executive Summary South Georgia is a highly isolated island with its marine life influenced by the circumpolar currents. The local seaweed communities have been researched sporadically over the last two centuries with most species collections and records documented for a limited number of sites within easy access. Despite the harsh conditions of the shallow marine environment of South Georgia a unique and diverse array of algal flora has become well established resulting in a high level of endemism. Current levels of seaweed species diversity were achieved along the north coast of South Georgia surveying 15 sites in 19 locations including both intertidal and subtidal habitats. In total 72 species were recorded, 8 Chlorophyta, 19 Phaeophyta and 45 Rhodophyta. Of these species 24 were new records for South Georgia, one of which may even be a new record for the Antarctic/sub-Antarctic. Historic seaweed studies recorded 103 species with a new total for the island of 127 seaweed species. Additional records of seaweed to the area included both endemic and cosmopolitan species. At this stage it is unknown as to the origin of such species, whether they have been present on South Georgia for long periods of time or if they are indeed recent additions to the seaweed flora. It may be speculated that many have failed to be recorded due to the nature of South Georgia, its sheer isolation and inaccessible coastline. -
Antarctic Starfish (Echinodermata, Asteroidea) from the ANDEEP3 Expedition
A peer-reviewed open-access journal ZooKeys 185: 73–78Antarctic (2012) Starfish (Echinodermata: asteroidea) from the ANDEEP3 expedition 73 doi: 10.3897/zookeys.185.3078 DATA PAPER www.zookeys.org Launched to accelerate biodiversity research Antarctic Starfish (Echinodermata, Asteroidea) from the ANDEEP3 expedition Bruno Danis1, Michel Jangoux2, Jennifer Wilmes2 1 ANTABIF, 29, rue Vautier, 1000, Brussels, Belgium 2 Université Libre de Bruxelles, 50, av FD Roosevelt, 1050, Brussels, Belgium Corresponding author: Bruno Danis ([email protected]) Academic editor: Vishwas Chavan | Received 13 March 2012 | Accepted 18 April 2012 | Published 23 April 2012 Citation: Danis B, Jangoux M, Wilmes J (2012) Antarctic Starfish (Echinodermata: asteroidea) from the ANDEEP3 expedition. ZooKeys 185: 73–78. doi: 10.3897/zookeys.185.3078 Abstract This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea. Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf). The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens. -
Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected]
Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected] EDUCATION: Ph.D. Biological Sciences. University of Alabama at Birmingham (1994); Doctoral Dissertation: A comparative study of population structure and chemical defenses in the soft corals Alcyonium paessleri May, Clavularia frankliniana Roule, and Gersemia antarctica Kukenthal in McMurdo Sound, Antarctica. M.A. Marine Biology. San Jose State University at the Moss Landing Marine Laboratories (1987); Masters Thesis: Settlement and metamorphosis of red abalone (Haliotis rufescens) larvae: A critical examination of mucus, diatoms, and γ-aminobutyric acid (GABA) as inductive substrates. B.S. Biology. Loyola Marymount University (1981); Senior Thesis: The ecology of sympatric species of octopuses (Octopus fitchi and O. diguetti) at Coloraditos, Baja Ca. RESEARCH INTERESTS: Chemical defenses/natural products chemistry of marine & freshwater invertebrates, and microbes. Evolutionary ecology, and ecophysiological adaptations of organisms in aquatic communities; including coral reef, cave, sea grass, kelp forest, and polar ecosystems. Chemical signals in reproductive biology and larval ecology/recruitment, and their applications to aquaculture and biomedical sciences. Cnidarian, Sponge, Molluscan, and Echinoderm biology/ecology, population structure, symbioses and photobiological adaptations. Marine microbe competition and culture. Environmental toxicology. EMPLOYMENT: Professor of Pharmacognosy and -
Antarctic Sessile Marine Benthos: Colonisation and Growth on Artificial Substrata Over Three Years
MARINE ECOLOGY PROGRESS SERIES Vol. 316: 1–16, 2006 Published July 3 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years David A. Bowden*, Andrew Clarke, Lloyd S. Peck, David K. A. Barnes Natural Environment Research Council, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: The development of sessile invertebrate assemblages on hard substrata has been studied exten- sively in temperate and tropical latitudes. Such studies provide insights into a range of ecological processes, and the global similarity of taxa recruiting to these assem- blages affords the potential for regional-scale com- parisons. However, few data exist for high latitude assemblages. This paper presents the first regularly resur- veyed study of benthic colonisation from within the Antarctic Circle. Acrylic panels were deployed horizon- tally on the seabed at 8 and 20 m depths at each of 3 loca- tions in Ryder Bay, Adelaide Island, SW Antarctic Peninsula (67° 35’ S, 68° 10’ W). Assemblages colonising upward- and downward-facing panel surfaces were photographed in situ from February 2001 to March 2004. Assemblages were dominated by bryozoans and spiror- Bowden and co-workers present the first successful benthic bid polychaetes. Total coverage after 3 yr ranged from 6 to colonisation study from within the Antarctic Circle. They 100% on downward-facing surfaces but was <10% on all describe a system governed by extremely slow and highly upward-facing surfaces. Overall colonisation rates were seasonal growth, and a range of post-settlement disturbances in which succession is more predictable than in comparable up to 3 times slower than comparable temperate latitude temperate or tropical assemblages. -
Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement. -
Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick -
Reproductive Success in Antarctic Marine Invertebrates
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF SCIENCE School of Ocean and Earth Science Reproductive Success in Antarctic Marine Invertebrates By Laura Joanne Grange (BSc. Hons) Thesis for the degree of Doctor of Philosophy July 2005 Dedicated to my Mum, Dad, Sam and my one and only Mike. UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF SCIENCE SCHOOL OF OCEAN AND EARTH SCIENCE Doctor of Philosophy REPRODUCTIVE SUCCESS IN ANTARCTIC MARINE INVERTEBRATES By Laura Joanne Grange The nearshore Antarctic marine environment is unique, characterised by low but constant temperatures that contrast with an intense peak in productivity. As a result of this stenothermal environment, energy input has a profound ecological effect. These conditions have developed over several millions of years and have resulted in an animal physiology that is highly stenothermal and sometimes closely coupled with the seasonal food supply, e.g. -
Annelida: Dorvilleidae) Associated with the Coral Lophelia Pertusa (Anthozoa: Caryophylliidae)
ARTICLE A new species of Ophryotrocha (Annelida: Dorvilleidae) associated with the coral Lophelia pertusa (Anthozoa: Caryophylliidae) Vinicius da Rocha Miranda¹²; Andrielle Raposo Rodrigues¹³ & Ana Claudia dos Santos Brasil¹⁴ ¹ Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Ciências Biológicas e da Saúde (ICBS), Departamento de Biologia Animal, Laboratório de Polychaeta. Seropédica, RJ, Brasil. ² ORCID: http://orcid.org/0000-0002-4591-184X. E-mail: [email protected] (corresponding author) ³ ORCID: http://orcid.org/0000-0001-9152-355X. E-mail: [email protected] ⁴ ORCID: http://orcid.org/0000-0002-0611-9948. E-mail: [email protected] Abstract. Ophryotrocha is the most speciose genus within Dorvilleidae, with species occurring in a great variety of environments around the globe. In Brazil, records of Ophryotrocha are scarce and no specific identification is provided for any of the records. Herein we describe a new species of Dorvilleidae, Ophryotrocha zitae sp. nov. Adult and larval specimens were found in the axis of a fragment of the cold-water coral Lophelia pertusa, sampled off São Paulo’s coast, at a depth of 245 m. Both forms are described and illustrated. This new species resembles O. puerilis, O. adherens and O. eutrophila, but can be distinguished based on differences in its mandible and on chaetae shape and arrangement. Key-Words. Epibiont; Cold-water Coral; Deep-sea; Eunicida, Associated fauna. INTRODUCTION sette glands on the posterior region of the body (Ockelmann & Åkesson, 1990; Heggoy et al., 2007; The Family Dorvilleidae is comprised of 38 val‑ Paxton & Åkesson, 2011). These species also bear id genera, many of which are monospecific (Read, a complex buccal apparatus comprising a pair of 2016) and others, despite more specious, pres‑ mandibles and maxillae, the latter being either ent evident morphological homogeny (Rouse & “P‑type” or “K‑type”, and the presence of one or Pleijel, 2001). -
The Antarctic Treaty
The Antarctic Treaty Measures adopted at the Thirty-ninth Consultative Meeting held at Santiago, Chile 23 May – 1 June 2016 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty November 2017 Cm 9542 © Crown copyright 2017 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH ISBN 978-1-5286-0126-9 CCS1117441642 11/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK by the APS Group on behalf of the Controller of Her Majestyʼs Stationery Office MEASURES ADOPTED AT THE THIRTY-NINTH ANTARCTIC TREATY CONSULTATIVE MEETING Santiago, Chile 23 May – 1 June 2016 The Measures1 adopted at the Thirty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents. -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
MOLLUSCA Nudibranchs, Pteropods, Gastropods, Bivalves, Chitons, Octopus
UNDERWATER FIELD GUIDE TO ROSS ISLAND & MCMURDO SOUND, ANTARCTICA: MOLLUSCA nudibranchs, pteropods, gastropods, bivalves, chitons, octopus Peter Brueggeman Photographs: Steve Alexander, Rod Budd/Antarctica New Zealand, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva Philipp, Rob Robbins, Steve Rupp/National Science Foundation, Dirk Schories, M Dale Stokes, and Norbert Wu The National Science Foundation's Office of Polar Programs sponsored Norbert Wu on an Artist's and Writer's Grant project, in which Peter Brueggeman participated. One outcome from Wu's endeavor is this Field Guide, which builds upon principal photography by Norbert Wu, with photos from other photographers, who are credited on their photographs and above. This Field Guide is intended to facilitate underwater/topside field identification from visual characters. Organisms were identified from photographs with no specimen collection, and there can be some uncertainty in identifications solely from photographs. © 1998+; text © Peter Brueggeman; photographs © Steve Alexander, Rod Budd/Antarctica New Zealand Pictorial Collection 159687 & 159713, 2001-2002, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva -
The Role of Body Size in Complex Food Webs: a Cold Case
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.