Robust Scalable Sorting

Total Page:16

File Type:pdf, Size:1020Kb

Robust Scalable Sorting Robust Scalable Sorting Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der KIT-Fakultät für Informatik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Michael Axtmann Tag der mündlichen Prüfung: 17. Mai 2021 1. Referent: Prof. Dr. Peter Sanders Karlsruher Institut für Technologie Deutschland 2. Referent: Prof. Guy E. Blelloch Carnegie Mellon University Vereinigte Staaten von Amerika To my parents, my sister, and my wife. Abstract Sorting is one of the most important basic algorithmic problems. Thus, it is not a surprise that sorting algorithms are needed in a very large number of applications. These applications are executed on a wide range of different machines—from smartphones with energy-efficient multi-core processors to supercomputers with thousands of machines interconnected by a high-performance network. Since single-core performance has stagnated, parallel applications have become an indispensable part of our everyday lives. Efficient and scalable algorithms are key to take advantage of this immense availability of (parallel) computing power. In this thesis, we study sequential and parallel sorting algorithms aiming at robust performance for a diverse set of input sizes, input distributions, data types, and machines. In the first part of this thesis, we study sequential sorting as well as parallel sorting on shared-memory machines. We propose In-place Parallel Super Scalar Samplesort (IPS4o), a new comparison-based algorithm that is provably in-place, i.e., the amount of additional memory does not depend on the size of the input. An essential result is that the in-place property improves the performance of IPS4o compared to similar non-in-place algorithms. Until now, the in-place feature has usually been associated with a loss of speed for most algorithms. IPS4o is also provably cache-efficient and performs O(푛~푡 log 푛) work per thread when executed with 푡 threads. Additionally, IPS4o incorporates a branchless decision tree to minimize the number of branch mispredictions, takes advantage of memory locality, and handles many elements with equal keys—so-called duplicated keys—by separating them into “equality buckets”. For the special case of sorting integer keys, we use the algorithmic framework of IPS4o to implement In-place Parallel Super Scalar Radix Sort (IPS2Ra). We validate the performance of our algorithms in an extensive experimental study involving 21 state-of-the-art sorting algorithms, six data types, ten input distributions, four machines, four memory allocation strategies, and input sizes varying over seven orders of magnitude. On the one hand, the study shows that our algorithms have consistently good performance. On the other hand, it reveals that many competitors have large performance issues: With IPS4o, we obtain a robust comparison-based sorting algorithm that outperforms other parallel in-place comparison-based sorting algorithms by almost a factor of three. In the large majority of the cases, IPS4o is the fastest comparison-based algorithm. At this point, it is irrelevant whether we compare IPS4o to sequential or parallel, in-place or non-in-place algorithms. IPS4o even outperforms competing implementations of integer sorting algorithms in many cases. The remaining cases mainly include uniformly distributed inputs and inputs with keys containing only few bits. These inputs are usually “easy” for integer sorting algorithms. Our integer sorter IPS2Ra outperforms other integer sorting algorithms for these inputs in the large majority of v Abstract the cases. Exceptions are some very small inputs for which most of the algorithms are very inefficient. However, algorithms dedicated for these input sizes are usually much slower for the remaining range of input sizes. In the second part of this thesis, we study sorting algorithms for distributed systems and their robust scalability with regard to the number of processors, the input size, duplicated keys, and the distribution of input keys to processors. Our main contributions are four robust scalable sorting algorithms that allow us to cover the entire range of input sizes. Three of the four are new fast algorithms that implement low overhead mechanisms to make them scale robustly regardless of “difficult” inputs, e.g., inputs where the location of the input elements is correlated to the key values—so-called skewed element distributions—or inputs with duplicated keys. The fourth algorithm is simple and may be considered as folklore. Previous algorithms for inputs of medium and large size have an unacceptably large com- munication volume or an unacceptably large number of message exchanges. For these input sizes, we describe a robust multi-level generalization of samplesort that represents a feasible compromise between a moderate communication volume and a moderate number of message exchanges. We overcome these previously incompatible goals with scalable approximate splitter selection and a new data routing algorithm. As an alternative, we present a generalization of mergesort with the advantage of perfect load balance. For small inputs, we design a variant of quicksort that overcomes the problem of skewed element distributions and duplicated keys with fast high-quality pivot selection, element randomization, and low overhead duplicate handling. Previous practical approaches with polylogarithmic latency either have at least a logarithmic factor more communication or only consider uniform input. For very small inputs, we propose a practical and fast, yet work-inefficient algorithm with logarithmic latency. For these inputs, previous efficient approaches are theoretical algorithms mostly with prohibitively large constant factors. For the smallest inputs, we recommend an algorithm that sorts the data while the input is routed to a single processor. An important contribution of this thesis to the practical side of algorithm engineering is a communication library that we call RangeBasedComm (RBC). RBC allows an efficient implementation of recursive algorithms with sublinear running time by providing scalable and efficient communication primitives on processor subsets. The RBC library significantly speeds up the algorithms, e.g., one competitor even by more than two orders of magnitude. We present an extensive experimental study involving two supercomputers with up to 262 144 cores, 11 algorithms, 10 input distributions, and input sizes varying over nine orders of magnitude. For all but the largest input sizes, we are the only ones performing benchmarks on these large machine instances. The study also shows that our algorithms have a robust per- formance and outperform competing implementations significantly. Whereas our algorithms provide consistent performance on all inputs, our competitors’ performance breaks down on “difficult” inputs or they literally break. vi Deutsche Zusammenfassung Sortieren ist eines der wichtigsten algorithmischen Grundlagenprobleme. Es ist daher nicht verwunderlich, dass Sortieralgorithmen in einer Vielzahl von Anwendungen benötigt werden. Diese Anwendungen werden auf den unterschiedlichsten Geräten ausgeführt – angefangen bei Smartphones mit leistungseffizienten Multi-Core-Prozessoren bis hin zu Supercomputern mit Tausenden von Maschinen, die über ein Hochleistungsnetzwerk miteinander verbunden sind. Spätestens seitdem die Single-Core-Leistung nicht mehr signifikant steigt, sind parallele Anwendungen in unserem Alltag nicht mehr wegzudenken. Daher sind effiziente und skalier- bare Algorithmen essentiell, um diese immense Verfügbarkeit von (paralleler) Rechenleistung auszunutzen. Diese Arbeit befasst sich damit, wie sequentielle und parallele Sortieralgorithmen auf möglichst robuste Art maximale Leistung erzielen können. Dabei betrachten wir einen großen Parameterbereich von Eingabegrößen, Eingabeverteilungen, Maschinen sowie Datenty- pen. Im ersten Teil dieser Arbeit untersuchen wir sowohl sequentielles Sortieren als auch paralle- les Sortieren auf Shared-Memory-Maschinen. Wir präsentieren In-place Parallel Super Scalar Samplesort (IPS4o), einen neuen vergleichsbasierten Algorithmus, der mit beschränkt viel Zusatzspeicher auskommt (die sogenannte „in-place“ Eigenschaft). Eine wesentliche Erkennt- nis ist, dass unsere in-place-Technik die Sortiergeschwindigkeit von IPS4o im Vergleich zu ähnlichen Algorithmen ohne in-place-Eigenschaft verbessert. Bisher wurde die Eigenschaft, mit beschränkt viel Zusatzspeicher auszukommen, eher mit Leistungseinbußen verbunden. IPS4o ist außerdem cache-effizient und führt O(푛~푡 log 푛) Arbeitsschritte pro Thread aus, um ein Array der Größe 푛 mit 푡 Threads zu sortieren. Zusätzlich berücksichtigt IPS4o Speicherlokalität, nutzt einen Entscheidungsbaum ohne Sprungvorhersagen und verwendet spezielle Partitionen für Elemente mit gleichem Schlüssel. Für den Spezialfall, dass ausschließlich ganzzahlige Schlüs- sel sortiert werden sollen, haben wir das algorithmische Konzept von IPS4o wiederverwendet, um In-place Parallel Super Scalar Radix Sort (IPS2Ra) zu implementieren. Wir bestätigen die Performance unserer Algorithmen in einer umfangreichen experimentel- len Studie mit 21 State-of-the-Art-Sortieralgorithmen, sechs Datentypen, zehn Eingabevertei- lungen, vier Maschinen, vier Speicherzuordnungsstrategien und Eingabegrößen, die über sieben Größenordnungen variieren. Einerseits zeigt die Studie die robuste Leistungsfähigkeit unserer Algorithmen. Andererseits deckt sie auf, dass viele konkurrierende Algorithmen Performance- Probleme haben: Mit IPS4o
Recommended publications
  • An Evolutionary Approach for Sorting Algorithms
    ORIENTAL JOURNAL OF ISSN: 0974-6471 COMPUTER SCIENCE & TECHNOLOGY December 2014, An International Open Free Access, Peer Reviewed Research Journal Vol. 7, No. (3): Published By: Oriental Scientific Publishing Co., India. Pgs. 369-376 www.computerscijournal.org Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms PRAMOD KADAM AND Sachin KADAM BVDU, IMED, Pune, India. (Received: November 10, 2014; Accepted: December 20, 2014) ABstract This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms (Root to Fruit (1): An Evolutionary Study of Sorting Problem) [1]and concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. Key words: Evolutionary study of sorting, History of sorting Early Sorting algorithms, list of inventors for sorting. IntroDUCTION name and their contribution may skipped from the study. Therefore readers have all the rights to In spite of plentiful literature and research extent this study with the valid proofs. Ultimately in sorting algorithmic domain there is mess our objective behind this research is very much found in documentation as far as credential clear, that to provide strength to the evolutionary concern2. Perhaps this problem found due to lack study of sorting algorithms and shift towards a good of coordination and unavailability of common knowledge base to preserve work of our forebear platform or knowledge base in the same domain. for upcoming generation. Otherwise coming Evolutionary study of sorting algorithm or sorting generation could receive hardly information about problem is foundation of futuristic knowledge sorting problems and syllabi may restrict with some base for sorting problem domain1.
    [Show full text]
  • Algoritmi Za Sortiranje U Programskom Jeziku C++ Završni Rad
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the University of Rijeka SVEUČILIŠTE U RIJECI FILOZOFSKI FAKULTET U RIJECI ODSJEK ZA POLITEHNIKU Algoritmi za sortiranje u programskom jeziku C++ Završni rad Mentor završnog rada: doc. dr. sc. Marko Maliković Student: Alen Jakus Rijeka, 2016. SVEUČILIŠTE U RIJECI Filozofski fakultet Odsjek za politehniku Rijeka, Sveučilišna avenija 4 Povjerenstvo za završne i diplomske ispite U Rijeci, 07. travnja, 2016. ZADATAK ZAVRŠNOG RADA (na sveučilišnom preddiplomskom studiju politehnike) Pristupnik: Alen Jakus Zadatak: Algoritmi za sortiranje u programskom jeziku C++ Rješenjem zadatka potrebno je obuhvatiti sljedeće: 1. Napraviti pregled algoritama za sortiranje. 2. Opisati odabrane algoritme za sortiranje. 3. Dijagramima prikazati rad odabranih algoritama za sortiranje. 4. Opis osnovnih svojstava programskog jezika C++. 5. Detaljan opis tipova podataka, izvedenih oblika podataka, naredbi i drugih elemenata iz programskog jezika C++ koji se koriste u rješenjima odabranih problema. 6. Opis rješenja koja su dobivena iz napisanih programa. 7. Cjelokupan kôd u programskom jeziku C++. U završnom se radu obvezno treba pridržavati Pravilnika o diplomskom radu i Uputa za izradu završnog rada sveučilišnog dodiplomskog studija. Zadatak uručen pristupniku: 07. travnja 2016. godine Rok predaje završnog rada: ____________________ Datum predaje završnog rada: ____________________ Zadatak zadao: Doc. dr. sc. Marko Maliković 2 FILOZOFSKI FAKULTET U RIJECI Odsjek za politehniku U Rijeci, 07. travnja 2016. godine ZADATAK ZA ZAVRŠNI RAD (na sveučilišnom preddiplomskom studiju politehnike) Pristupnik: Alen Jakus Naslov završnog rada: Algoritmi za sortiranje u programskom jeziku C++ Kratak opis zadatka: Napravite pregled algoritama za sortiranje. Opišite odabrane algoritme za sortiranje.
    [Show full text]
  • Sorting Algorithm 1 Sorting Algorithm
    Sorting algorithm 1 Sorting algorithm In computer science, a sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Efficient sorting is important for optimizing the use of other algorithms (such as search and merge algorithms) that require sorted lists to work correctly; it is also often useful for canonicalizing data and for producing human-readable output. More formally, the output must satisfy two conditions: 1. The output is in nondecreasing order (each element is no smaller than the previous element according to the desired total order); 2. The output is a permutation, or reordering, of the input. Since the dawn of computing, the sorting problem has attracted a great deal of research, perhaps due to the complexity of solving it efficiently despite its simple, familiar statement. For example, bubble sort was analyzed as early as 1956.[1] Although many consider it a solved problem, useful new sorting algorithms are still being invented (for example, library sort was first published in 2004). Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide and conquer algorithms, data structures, randomized algorithms, best, worst and average case analysis, time-space tradeoffs, and lower bounds. Classification Sorting algorithms used in computer science are often classified by: • Computational complexity (worst, average and best behaviour) of element comparisons in terms of the size of the list . For typical sorting algorithms good behavior is and bad behavior is .
    [Show full text]
  • Arxiv:1812.03318V1 [Cs.SE] 8 Dec 2018 Rived from Merge Sort and Insertion Sort, Designed to Work Well on Many Kinds of Real-World Data
    A Verified Timsort C Implementation in Isabelle/HOL Yu Zhang1, Yongwang Zhao1 , and David Sanan2 1 School of Computer Science and Engineering, Beihang University, Beijing, China [email protected] 2 School of Computer Science and Engineering, Nanyang Technological University, Singapore Abstract. Formal verification of traditional algorithms are of great significance due to their wide application in state-of-the-art software. Timsort is a complicated and hybrid stable sorting algorithm, derived from merge sort and insertion sort. Although Timsort implementation in OpenJDK has been formally verified, there is still not a standard and formally verified Timsort implementation in C programming language. This paper studies Timsort implementation and its formal verification using a generic imperative language - Simpl in Isabelle/HOL. Then, we manually generate an C implementation of Timsort from the verified Simpl specification. Due to the C-like concrete syntax of Simpl, the code generation is straightforward. The C implementation has also been tested by a set of random test cases. Keywords: Program Verification · Timsort · Isabelle/HOL 1 Introduction Formal verification has been considered as a promising way to the reliability of programs. With development of verification tools, it is possible to perform fully formal verification of large and complex programs in recent years [2,3]. Formal verification of traditional algorithms are of great significance due to their wide application in state-of-the-art software. The goal of this paper is the functional verification of sorting algorithms as well as generation of C source code. We investigated Timsort algorithm which is a hybrid stable sorting algorithm, de- arXiv:1812.03318v1 [cs.SE] 8 Dec 2018 rived from merge sort and insertion sort, designed to work well on many kinds of real-world data.
    [Show full text]
  • How to Sort out Your Life in O(N) Time
    How to sort out your life in O(n) time arel Číže @kaja47K funkcionaklne.cz I said, "Kiss me, you're beautiful - These are truly the last days" Godspeed You! Black Emperor, The Dead Flag Blues Everyone, deep in their hearts, is waiting for the end of the world to come. Haruki Murakami, 1Q84 ... Free lunch 1965 – 2022 Cramming More Components onto Integrated Circuits http://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf He pays his staff in junk. William S. Burroughs, Naked Lunch Sorting? quicksort and chill HS 1964 QS 1959 MS 1945 RS 1887 quicksort, mergesort, heapsort, radix sort, multi- way merge sort, samplesort, insertion sort, selection sort, library sort, counting sort, bucketsort, bitonic merge sort, Batcher odd-even sort, odd–even transposition sort, radix quick sort, radix merge sort*, burst sort binary search tree, B-tree, R-tree, VP tree, trie, log-structured merge tree, skip list, YOLO tree* vs. hashing Robin Hood hashing https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf xs.sorted.take(k) (take (sort xs) k) qsort(lotOfIntegers) It may be the wrong decision, but fuck it, it's mine. (Mark Z. Danielewski, House of Leaves) I tell you, my man, this is the American Dream in action! We’d be fools not to ride this strange torpedo all the way out to the end. (HST, FALILV) Linear time sorting? I owe the discovery of Uqbar to the conjunction of a mirror and an Encyclopedia. (Jorge Luis Borges, Tlön, Uqbar, Orbis Tertius) Sorting out graph processing https://github.com/frankmcsherry/blog/blob/master/posts/2015-08-15.md Radix Sort Revisited http://www.codercorner.com/RadixSortRevisited.htm Sketchy radix sort https://github.com/kaja47/sketches (thinking|drinking|WTF)* I know they accuse me of arrogance, and perhaps misanthropy, and perhaps of madness.
    [Show full text]
  • Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of Sorting Algorithms
    International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86 ISSN 2229-5518 Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of sorting Algorithms Sapram Choudaiah P Chandu Chowdary M Kavitha ABSTRACT:Sorting is an important data structure in many real life applications. A number of sorting algorithms are in existence till date. This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. An extensive analysis has been done compared with the traditional mathematical methods of ―Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. Observations have been obtained on comparing with the existing approaches of All Sorts. An “Empirical Analysis” consists of rigorous complexity analysis by various sorting algorithms, in which comparison and real swapping of all the variables are calculatedAll algorithms were tested on random data of various ranges from small to large. It is an attempt to compare the performance of various sorting algorithm, with the aim of comparing their speed when sorting an integer inputs.The empirical data obtained by using the program reveals that Quick sort algorithm is fastest and Bubble sort is slowest. Keywords: Bubble Sort, Insertion sort, Quick Sort, Merge Sort, Selection Sort, Heap Sort,CPU Time. Introduction In spite of plentiful literature and research in more dimension to student for thinking4. Whereas, sorting algorithmic domain there is mess found in this thinking become a mark of respect to all our documentation as far as credential concern2.
    [Show full text]
  • Gsoc 2018 Project Proposal
    GSoC 2018 Project Proposal Description: Implement the project idea sorting algorithms benchmark and implementation (2018) Applicant Information: Name: Kefan Yang Country of Residence: Canada University: Simon Fraser University Year of Study: Third year Major: Computing Science Self Introduction: I am Kefan Yang, a third-year computing science student from Simon Fraser University, Canada. I have rich experience as a full-stack web developer, so I am familiar with different kinds of database, such as PostgreSQL, MySQL and MongoDB. I have a much better understand of database system other than how to use it. In the database course I took in the university, I implemented a simple SQL database. It supports basic SQL statements like select, insert, delete and update, and uses a B+ tree to index the records by default. The size of each node in the B+ tree is set the disk block size to maximize performance of disk operation. Also, 1 several kinds of merging algorithms are used to perform a cross table query. More details about this database project can be found here. Additionally, I have very solid foundation of basic algorithms and data structure. I’ve participated in division 1 contest of 2017 ACM-ICPC Pacific Northwest Regionals as a representative of Simon Fraser University, which clearly shows my talents in understanding and applying different kinds of algorithms. I believe the contest experience will be a big help for this project. Benefits to the PostgreSQL Community: Sorting routine is an important part of many modules in PostgreSQL. Currently, PostgreSQL is using median-of-three quicksort introduced by Bentley and Mcllroy in 1993 [1], which is somewhat outdated.
    [Show full text]
  • View Publication
    Patience is a Virtue: Revisiting Merge and Sort on Modern Processors Badrish Chandramouli and Jonathan Goldstein Microsoft Research {badrishc, jongold}@microsoft.com ABSTRACT In particular, the vast quantities of almost sorted log-based data The vast quantities of log-based data appearing in data centers has appearing in data centers has generated this interest. In these generated an interest in sorting almost-sorted datasets. We revisit scenarios, data is collected from many servers, and brought the problem of sorting and merging data in main memory, and show together either immediately, or periodically (e.g. every minute), that a long-forgotten technique called Patience Sort can, with some and stored in a log. The log is then typically sorted, sometimes in key modifications, be made competitive with today’s best multiple ways, according to the types of questions being asked. If comparison-based sorting techniques for both random and almost those questions are temporal in nature [7][17][18], it is required that sorted data. Patience sort consists of two phases: the creation of the log be sorted on time. A widely-used technique for sorting sorted runs, and the merging of these runs. Through a combination almost sorted data is Timsort [8], which works by finding of algorithmic and architectural innovations, we dramatically contiguous runs of increasing or decreasing value in the dataset. improve Patience sort for both random and almost-ordered data. Of Our investigation has resulted in some surprising discoveries about particular interest is a new technique called ping-pong merge for a mostly-ignored 50-year-old sorting technique called Patience merging sorted runs in main memory.
    [Show full text]
  • Sorting Algorithm 1 Sorting Algorithm
    Sorting algorithm 1 Sorting algorithm A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Efficient sorting is important for optimizing the use of other algorithms (such as search and merge algorithms) which require input data to be in sorted lists; it is also often useful for canonicalizing data and for producing human-readable output. More formally, the output must satisfy two conditions: 1. The output is in nondecreasing order (each element is no smaller than the previous element according to the desired total order); 2. The output is a permutation (reordering) of the input. Since the dawn of computing, the sorting problem has attracted a great deal of research, perhaps due to the complexity of solving it efficiently despite its simple, familiar statement. For example, bubble sort was analyzed as early as 1956.[1] Although many consider it a solved problem, useful new sorting algorithms are still being invented (for example, library sort was first published in 2006). Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide and conquer algorithms, data structures, randomized algorithms, best, worst and average case analysis, time-space tradeoffs, and upper and lower bounds. Classification Sorting algorithms are often classified by: • Computational complexity (worst, average and best behavior) of element comparisons in terms of the size of the list (n). For typical serial sorting algorithms good behavior is O(n log n), with parallel sort in O(log2 n), and bad behavior is O(n2).
    [Show full text]
  • From Merge Sort to Timsort Nicolas Auger, Cyril Nicaud, Carine Pivoteau
    Merge Strategies: from Merge Sort to TimSort Nicolas Auger, Cyril Nicaud, Carine Pivoteau To cite this version: Nicolas Auger, Cyril Nicaud, Carine Pivoteau. Merge Strategies: from Merge Sort to TimSort. 2015. hal-01212839v2 HAL Id: hal-01212839 https://hal-upec-upem.archives-ouvertes.fr/hal-01212839v2 Preprint submitted on 9 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Merge Strategies: from Merge Sort to TimSort Nicolas Auger, Cyril Nicaud, and Carine Pivoteau Universit´eParis-Est, LIGM (UMR 8049), F77454 Marne-la-Vall´ee,France fauger,nicaud,[email protected] Abstract. The introduction of TimSort as the standard algorithm for sorting in Java and Python questions the generally accepted idea that merge algorithms are not competitive for sorting in practice. In an at- tempt to better understand TimSort algorithm, we define a framework to study the merging cost of sorting algorithms that relies on merges of monotonic subsequences of the input. We design a simpler yet competi- tive algorithm in the spirit of TimSort based on the same kind of ideas. As a benefit, our framework allows to establish the announced running time of TimSort, that is, O(n log n).
    [Show full text]
  • Introspective Sorting and Selection Algorithms
    Introsp ective Sorting and Selection Algorithms David R Musser Computer Science Department Rensselaer Polytechnic Institute Troy NY mussercsrpiedu Abstract Quicksort is the preferred inplace sorting algorithm in manycontexts since its average computing time on uniformly distributed inputs is N log N and it is in fact faster than most other sorting algorithms on most inputs Its drawback is that its worstcase time bound is N Previous attempts to protect against the worst case by improving the way quicksort cho oses pivot elements for partitioning have increased the average computing time to o muchone might as well use heapsort which has aN log N worstcase time b ound but is on the average to times slower than quicksort A similar dilemma exists with selection algorithms for nding the ith largest element based on partitioning This pap er describ es a simple solution to this dilemma limit the depth of partitioning and for subproblems that exceed the limit switch to another algorithm with a b etter worstcase bound Using heapsort as the stopp er yields a sorting algorithm that is just as fast as quicksort in the average case but also has an N log N worst case time bound For selection a hybrid of Hoares find algorithm which is linear on average but quadratic in the worst case and the BlumFloydPrattRivestTarjan algorithm is as fast as Hoares algorithm in practice yet has a linear worstcase time b ound Also discussed are issues of implementing the new algorithms as generic algorithms and accurately measuring their p erformance in the framework
    [Show full text]
  • On the Worst-Case Complexity of Timsort Nicolas Auger, Vincent Jugé, Cyril Nicaud, Carine Pivoteau
    On the Worst-Case Complexity of TimSort Nicolas Auger, Vincent Jugé, Cyril Nicaud, Carine Pivoteau To cite this version: Nicolas Auger, Vincent Jugé, Cyril Nicaud, Carine Pivoteau. On the Worst-Case Complexity of TimSort. 26th Annual European Symposium on Algorithms (ESA 2018), Aug 2018, Helsinki, Finland. pp.4:1–4:13, 10.4230/LIPIcs.ESA.2018.4. hal-01798381 HAL Id: hal-01798381 https://hal.archives-ouvertes.fr/hal-01798381 Submitted on 23 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the Worst-Case Complexity of TimSort Nicolas Auger Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France Vincent Jugé Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France Cyril Nicaud Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France Carine Pivoteau Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France Abstract TimSort is an intriguing sorting algorithm designed in 2002 for Python, whose worst-case com- plexity was announced, but not proved until our recent preprint. In fact, there are two slightly different versions of TimSort that are currently implemented in Python and in Java respec- tively.
    [Show full text]