Introspective Sorting and Selection Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Introspective Sorting and Selection Algorithms Introsp ective Sorting and Selection Algorithms David R Musser Computer Science Department Rensselaer Polytechnic Institute Troy NY mussercsrpiedu Abstract Quicksort is the preferred inplace sorting algorithm in manycontexts since its average computing time on uniformly distributed inputs is N log N and it is in fact faster than most other sorting algorithms on most inputs Its drawback is that its worstcase time bound is N Previous attempts to protect against the worst case by improving the way quicksort cho oses pivot elements for partitioning have increased the average computing time to o muchone might as well use heapsort which has aN log N worstcase time b ound but is on the average to times slower than quicksort A similar dilemma exists with selection algorithms for nding the ith largest element based on partitioning This pap er describ es a simple solution to this dilemma limit the depth of partitioning and for subproblems that exceed the limit switch to another algorithm with a b etter worstcase bound Using heapsort as the stopp er yields a sorting algorithm that is just as fast as quicksort in the average case but also has an N log N worst case time bound For selection a hybrid of Hoares find algorithm which is linear on average but quadratic in the worst case and the BlumFloydPrattRivestTarjan algorithm is as fast as Hoares algorithm in practice yet has a linear worstcase time b ound Also discussed are issues of implementing the new algorithms as generic algorithms and accurately measuring their p erformance in the framework of the C Standard Template Library key words Quicksort Heapsort Sorting algorithms Introsp ective algorithms Hybrid algorithms Generic algorithms STL Intro duction Among sorting algorithms with O N log N average computing time medianof quicksort is considered to b e a go o d choice in most contexts It sorts in place except for log N stack space and is usually faster than other inplace algorithms such as heapsort mainly b ecause it do es substantially fewer data assignments and other op erations These characteristics make medianof quicksort a go o d candidate for a standard library sorting routine and it is in fact used as such in the C Standard Template Library STL as well as in older C librariesit is the algorithm most commonly used for qsort for example However its worst case time is N and although the worstcase behavior app ears to be highly unlikely the very existence of input sequences that can cause such bad p erformance may be a concern in some situations The b est alternativeinsuch situations has b een to use heapsort which has a N log N worstcase as well as averagecase time bound but doing so results in computing times to times longer than quicksorts time on most inputs Thus in order to protect This work was partially supp orted by a grant from IBM Corp oration completely against deterioration to quadratic time it would seem necessary to pay a substantial time p enalty for the great ma jority of input sequences A similar dilemma app ears with selection algorithms for nding the ith smallest elementof a sequence Hoares algorithm based on partitioning has a linear b ound in the average case but is quadratic in the worst case The BlumFloydPrattRivestTarjan lineartime worst case algorithm is much slower on the average than Hoares algorithm In this pap er we concentrate on the sorting problem and return to the selection problem only briey in a later section The next section presents a class of arbitrarily long input sequences that do in fact cause medianof quicksort to take quadratic time call these sequences medianof killers It is p ointed out that such input sequences might not be as rare in practice as a probabilistic argument based on uniform distribution of p ermutations would suggest The third section then describ es introsort for introspective sort a new hybrid sorting algorithm that b ehaves almost exactly like medianof quicksort for most inputs and is just as fast but which is capable of detecting when partitioning is tending toward quadratic b ehavior By switching to heapsort in those situations introsort achieves the same O N log N time b ound as heapsort but is almost always faster than just using heapsort in the rst place On a medianof killer sequence of length for example introsort switches to heapsort after partitions and has a total running time less than th of that of medianof quicksort In this case it would be somewhat faster to use heapsort in the rst place but for almost all randomlychosen integer sequences introsort is faster than heapsort by a factor of between and Ideally quicksort partitions sequences of size N into sequences of size approximately N those sequences in sequences of size N and so on implicitly pro ducing a tree of subproblems whose depth is approximately log N The quadratictime problem arises on sequences that cause many unequal partitions resulting in the subproblem tree depth growing linearly rather than logarithmically Introsort avoids the problem by putting a logarithmic b ound on the depth and switching to heapsort whenever the b ound is reached Another way of obtaining an O N log N worstcase time bound with an algorithm based on quicksort is to install a lineartime mediannding algorithm for cho osing partition pivots However the resulting algorithm is useless in practice since the large overhead of the mediannding algorithm makes the overall sorting algorithm much slower than heapsort This algorithm could however be used as the stopp er in an introsp ective algorithm in place of heapsort There might be some advantage in this algorithm in terms of commonality of co de with the selection algorithms describ ed in a later section Instead of nding the median exactly other less exp ensive alternatives have b een suggested such as adaptively selecting from larger arrays a larger sample of elements from which to estimate the median A new version of the C library function qsort based on this technique and other improvements outp erforms medianof versions in most cases but still takes N time in the worstcase Yet another p ossibility is to use a randomized version of quicksort in whichpivot elements are chosen at random The worstcase time b ound is still N but the probabilityof there seconds on a MHz microSPARC II versus seconds for the generic sort algorithm from the HewlettPackard HP implementation of the C Standard Template library with b oth algorithms compiled with the Ap ogee C compiler version Performance comparisons that are more architecture and compiler indep endent are given in a later section For a purely recursiveversion of quicksort the subproblem depth would b e the same as the recursion depth but the most ecientversions recurse directly or using a stack on only one branch of the subproblem tree and iterate down the other b eing suciently many bad partitions to achieve this b ound is extremely low However cho osing a single element of the sequence at random do es not pro duce go o d enough partitions on the average to comp ete with medianof choices and cho osing three elements at random requires to o much time for random numb er generation Introsort b eats these randomized variations in practice Medianof Killer Sequences As is wellknown the simplest metho ds of cho osing pivot elements for partitioning such as always cho osing the rst element cause quicksort to deteriorate to quadratic time on already or nearly sorted sequences Since there are many situations in which one applies a sorting algorithm to an already sorted or almost sorted sequence a more robust wayofcho osing pivots is needed While the ideal choice would be the median value the amount of computation required is to o large Instead one of the most frequently used metho ds is to cho ose the rst middle and last elements and then cho ose the median of these three values This metho d pro duces go o d partitions in most cases including the sorted or almost sorted cases that cause the simpler pivoting metho ds to blow up Nevertheless there are sequences that can cause medianof quicksort to make many bad partitions and take quadratic time For example let k be any even p ositiveinteger and consider the following p ermutation of k k k k k k k k k k k k k k k k Call this p ermutation K for reasons to be seen it will also b e called a medianof killer k permutation or sequence Assume the three elements chosen by a medianof quicksort algorithm on an array ak are aak and ak Thus for K the three values k chosen are and k and the median value chosen as the pivot for partitioning is In the partition the only elements exchanged are k and resulting in k k k k k k k k k k k k k k k where the partition point is after a Now the array ak now holds a sequence with the structure of K as can be seen by subtracting from every element As this step can k be repeated ktimeswehave the following Theorem For any even integer N divisible by the permutation K causes medianof N partitioning to produce a sequence of N partitions into subsequences of length and N and N and N Corollary On any sequencepermuted from an ordered sequencebyK where N is divisible N by medianof quicksort takes N time Pro of By the theorem the subproblem tree pro duced by partitioning K has at least N N levels Since the total time for all partitions at each level is N the total time for all levels is N One might argue that the K sequences are not likely to occur in real
Recommended publications
  • Quick Sort Algorithm Song Qin Dept
    Quick Sort Algorithm Song Qin Dept. of Computer Sciences Florida Institute of Technology Melbourne, FL 32901 ABSTRACT each iteration. Repeat this on the rest of the unsorted region Given an array with n elements, we want to rearrange them in without the first element. ascending order. In this paper, we introduce Quick Sort, a Bubble sort works as follows: keep passing through the list, divide-and-conquer algorithm to sort an N element array. We exchanging adjacent element, if the list is out of order; when no evaluate the O(NlogN) time complexity in best case and O(N2) exchanges are required on some pass, the list is sorted. in worst case theoretically. We also introduce a way to approach the best case. Merge sort [4]has a O(NlogN) time complexity. It divides the 1. INTRODUCTION array into two subarrays each with N/2 items. Conquer each Search engine relies on sorting algorithm very much. When you subarray by sorting it. Unless the array is sufficiently small(one search some key word online, the feedback information is element left), use recursion to do this. Combine the solutions to brought to you sorted by the importance of the web page. the subarrays by merging them into single sorted array. 2 Bubble, Selection and Insertion Sort, they all have an O(N2) In Bubble sort, Selection sort and Insertion sort, the O(N ) time time complexity that limits its usefulness to small number of complexity limits the performance when N gets very big. element no more than a few thousand data points.
    [Show full text]
  • Overview of Sorting Algorithms
    Unit 7 Sorting Algorithms Simple Sorting algorithms Quicksort Improving Quicksort Overview of Sorting Algorithms Given a collection of items we want to arrange them in an increasing or decreasing order. You probably have seen a number of sorting algorithms including ¾ selection sort ¾ insertion sort ¾ bubble sort ¾ quicksort ¾ tree sort using BST's In terms of efficiency: ¾ average complexity of the first three is O(n2) ¾ average complexity of quicksort and tree sort is O(n lg n) ¾ but its worst case is still O(n2) which is not acceptable In this section, we ¾ review insertion, selection and bubble sort ¾ discuss quicksort and its average/worst case analysis ¾ show how to eliminate tail recursion ¾ present another sorting algorithm called heapsort Unit 7- Sorting Algorithms 2 Selection Sort Assume that data ¾ are integers ¾ are stored in an array, from 0 to size-1 ¾ sorting is in ascending order Algorithm for i=0 to size-1 do x = location with smallest value in locations i to size-1 swap data[i] and data[x] end Complexity If array has n items, i-th step will perform n-i operations First step performs n operations second step does n-1 operations ... last step performs 1 operatio. Total cost : n + (n-1) +(n-2) + ... + 2 + 1 = n*(n+1)/2 . Algorithm is O(n2). Unit 7- Sorting Algorithms 3 Insertion Sort Algorithm for i = 0 to size-1 do temp = data[i] x = first location from 0 to i with a value greater or equal to temp shift all values from x to i-1 one location forwards data[x] = temp end Complexity Interesting operations: comparison and shift i-th step performs i comparison and shift operations Total cost : 1 + 2 + ..
    [Show full text]
  • Batcher's Algorithm
    18.310 lecture notes Fall 2010 Batcher’s Algorithm Prof. Michel Goemans Perhaps the most restrictive version of the sorting problem requires not only no motion of the keys beyond compare-and-switches, but also that the plan of comparison-and-switches be fixed in advance. In each of the methods mentioned so far, the comparison to be made at any time often depends upon the result of previous comparisons. For example, in HeapSort, it appears at first glance that we are making only compare-and-switches between pairs of keys, but the comparisons we perform are not fixed in advance. Indeed when fixing a headless heap, we move either to the left child or to the right child depending on which child had the largest element; this is not fixed in advance. A sorting network is a fixed collection of comparison-switches, so that all comparisons and switches are between keys at locations that have been specified from the beginning. These comparisons are not dependent on what has happened before. The corresponding sorting algorithm is said to be non-adaptive. We will describe a simple recursive non-adaptive sorting procedure, named Batcher’s Algorithm after its discoverer. It is simple and elegant but has the disadvantage that it requires on the order of n(log n)2 comparisons. which is larger by a factor of the order of log n than the theoretical lower bound for comparison sorting. For a long time (ten years is a long time in this subject!) nobody knew if one could find a sorting network better than this one.
    [Show full text]
  • 1 Lower Bound on Runtime of Comparison Sorts
    CS 161 Lecture 7 { Sorting in Linear Time Jessica Su (some parts copied from CLRS) 1 Lower bound on runtime of comparison sorts So far we've looked at several sorting algorithms { insertion sort, merge sort, heapsort, and quicksort. Merge sort and heapsort run in worst-case O(n log n) time, and quicksort runs in expected O(n log n) time. One wonders if there's something special about O(n log n) that causes no sorting algorithm to surpass it. As a matter of fact, there is! We can prove that any comparison-based sorting algorithm must run in at least Ω(n log n) time. By comparison-based, I mean that the algorithm makes all its decisions based on how the elements of the input array compare to each other, and not on their actual values. One example of a comparison-based sorting algorithm is insertion sort. Recall that insertion sort builds a sorted array by looking at the next element and comparing it with each of the elements in the sorted array in order to determine its proper position. Another example is merge sort. When we merge two arrays, we compare the first elements of each array and place the smaller of the two in the sorted array, and then we make other comparisons to populate the rest of the array. In fact, all of the sorting algorithms we've seen so far are comparison sorts. But today we will cover counting sort, which relies on the values of elements in the array, and does not base all its decisions on comparisons.
    [Show full text]
  • Mergesort and Quicksort ! Merge Two Halves to Make Sorted Whole
    Mergesort Basic plan: ! Divide array into two halves. ! Recursively sort each half. Mergesort and Quicksort ! Merge two halves to make sorted whole. • mergesort • mergesort analysis • quicksort • quicksort analysis • animations Reference: Algorithms in Java, Chapters 7 and 8 Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1 3 Mergesort and Quicksort Mergesort: Example Two great sorting algorithms. ! Full scientific understanding of their properties has enabled us to hammer them into practical system sorts. ! Occupy a prominent place in world's computational infrastructure. ! Quicksort honored as one of top 10 algorithms of 20th century in science and engineering. Mergesort. ! Java sort for objects. ! Perl, Python stable. Quicksort. ! Java sort for primitive types. ! C qsort, Unix, g++, Visual C++, Python. 2 4 Merging Merging. Combine two pre-sorted lists into a sorted whole. How to merge efficiently? Use an auxiliary array. l i m j r aux[] A G L O R H I M S T mergesort k mergesort analysis a[] A G H I L M quicksort quicksort analysis private static void merge(Comparable[] a, Comparable[] aux, int l, int m, int r) animations { copy for (int k = l; k < r; k++) aux[k] = a[k]; int i = l, j = m; for (int k = l; k < r; k++) if (i >= m) a[k] = aux[j++]; merge else if (j >= r) a[k] = aux[i++]; else if (less(aux[j], aux[i])) a[k] = aux[j++]; else a[k] = aux[i++]; } 5 7 Mergesort: Java implementation of recursive sort Mergesort analysis: Memory Q. How much memory does mergesort require? A. Too much! public class Merge { ! Original input array = N.
    [Show full text]
  • Hacking a Google Interview – Handout 2
    Hacking a Google Interview – Handout 2 Course Description Instructors: Bill Jacobs and Curtis Fonger Time: January 12 – 15, 5:00 – 6:30 PM in 32‐124 Website: http://courses.csail.mit.edu/iap/interview Classic Question #4: Reversing the words in a string Write a function to reverse the order of words in a string in place. Answer: Reverse the string by swapping the first character with the last character, the second character with the second‐to‐last character, and so on. Then, go through the string looking for spaces, so that you find where each of the words is. Reverse each of the words you encounter by again swapping the first character with the last character, the second character with the second‐to‐last character, and so on. Sorting Often, as part of a solution to a question, you will need to sort a collection of elements. The most important thing to remember about sorting is that it takes O(n log n) time. (That is, the fastest sorting algorithm for arbitrary data takes O(n log n) time.) Merge Sort: Merge sort is a recursive way to sort an array. First, you divide the array in half and recursively sort each half of the array. Then, you combine the two halves into a sorted array. So a merge sort function would look something like this: int[] mergeSort(int[] array) { if (array.length <= 1) return array; int middle = array.length / 2; int firstHalf = mergeSort(array[0..middle - 1]); int secondHalf = mergeSort( array[middle..array.length - 1]); return merge(firstHalf, secondHalf); } The algorithm relies on the fact that one can quickly combine two sorted arrays into a single sorted array.
    [Show full text]
  • Quicksort Z Merge Sort Z T(N) = Θ(N Lg(N)) Z Not In-Place CSE 680 Z Selection Sort (From Homework) Prof
    Sorting Review z Insertion Sort Introduction to Algorithms z T(n) = Θ(n2) z In-place Quicksort z Merge Sort z T(n) = Θ(n lg(n)) z Not in-place CSE 680 z Selection Sort (from homework) Prof. Roger Crawfis z T(n) = Θ(n2) z In-place Seems pretty good. z Heap Sort Can we do better? z T(n) = Θ(n lg(n)) z In-place Sorting Comppgarison Sorting z Assumptions z Given a set of n values, there can be n! 1. No knowledge of the keys or numbers we permutations of these values. are sorting on. z So if we look at the behavior of the 2. Each key supports a comparison interface sorting algorithm over all possible n! or operator. inputs we can determine the worst-case 3. Sorting entire records, as opposed to complexity of the algorithm. numbers,,p is an implementation detail. 4. Each key is unique (just for convenience). Comparison Sorting Decision Tree Decision Tree Model z Decision tree model ≤ 1:2 > z Full binary tree 2:3 1:3 z A full binary tree (sometimes proper binary tree or 2- ≤≤> > tree) is a tree in which every node other than the leaves has two c hildren <1,2,3> ≤ 1:3 >><2,1,3> ≤ 2:3 z Internal node represents a comparison. z Ignore control, movement, and all other operations, just <1,3,2> <3,1,2> <2,3,1> <3,2,1> see comparison z Each leaf represents one possible result (a permutation of the elements in sorted order).
    [Show full text]
  • An Evolutionary Approach for Sorting Algorithms
    ORIENTAL JOURNAL OF ISSN: 0974-6471 COMPUTER SCIENCE & TECHNOLOGY December 2014, An International Open Free Access, Peer Reviewed Research Journal Vol. 7, No. (3): Published By: Oriental Scientific Publishing Co., India. Pgs. 369-376 www.computerscijournal.org Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms PRAMOD KADAM AND Sachin KADAM BVDU, IMED, Pune, India. (Received: November 10, 2014; Accepted: December 20, 2014) ABstract This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms (Root to Fruit (1): An Evolutionary Study of Sorting Problem) [1]and concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. Key words: Evolutionary study of sorting, History of sorting Early Sorting algorithms, list of inventors for sorting. IntroDUCTION name and their contribution may skipped from the study. Therefore readers have all the rights to In spite of plentiful literature and research extent this study with the valid proofs. Ultimately in sorting algorithmic domain there is mess our objective behind this research is very much found in documentation as far as credential clear, that to provide strength to the evolutionary concern2. Perhaps this problem found due to lack study of sorting algorithms and shift towards a good of coordination and unavailability of common knowledge base to preserve work of our forebear platform or knowledge base in the same domain. for upcoming generation. Otherwise coming Evolutionary study of sorting algorithm or sorting generation could receive hardly information about problem is foundation of futuristic knowledge sorting problems and syllabi may restrict with some base for sorting problem domain1.
    [Show full text]
  • Overview Parallel Merge Sort
    CME 323: Distributed Algorithms and Optimization, Spring 2015 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Matriod and Stanford. Lecture 4, 4/6/2016. Scribed by Henry Neeb, Christopher Kurrus, Andreas Santucci. Overview Today we will continue covering divide and conquer algorithms. We will generalize divide and conquer algorithms and write down a general recipe for it. What's nice about these algorithms is that they are timeless; regardless of whether Spark or any other distributed platform ends up winning out in the next decade, these algorithms always provide a theoretical foundation for which we can build on. It's well worth our understanding. • Parallel merge sort • General recipe for divide and conquer algorithms • Parallel selection • Parallel quick sort (introduction only) Parallel selection involves scanning an array for the kth largest element in linear time. We then take the core idea used in that algorithm and apply it to quick-sort. Parallel Merge Sort Recall the merge sort from the prior lecture. This algorithm sorts a list recursively by dividing the list into smaller pieces, sorting the smaller pieces during reassembly of the list. The algorithm is as follows: Algorithm 1: MergeSort(A) Input : Array A of length n Output: Sorted A 1 if n is 1 then 2 return A 3 end 4 else n 5 L mergeSort(A[0, ..., 2 )) n 6 R mergeSort(A[ 2 , ..., n]) 7 return Merge(L, R) 8 end 1 Last lecture, we described one way where we can take our traditional merge operation and translate it into a parallelMerge routine with work O(n log n) and depth O(log n).
    [Show full text]
  • Algoritmi Za Sortiranje U Programskom Jeziku C++ Završni Rad
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the University of Rijeka SVEUČILIŠTE U RIJECI FILOZOFSKI FAKULTET U RIJECI ODSJEK ZA POLITEHNIKU Algoritmi za sortiranje u programskom jeziku C++ Završni rad Mentor završnog rada: doc. dr. sc. Marko Maliković Student: Alen Jakus Rijeka, 2016. SVEUČILIŠTE U RIJECI Filozofski fakultet Odsjek za politehniku Rijeka, Sveučilišna avenija 4 Povjerenstvo za završne i diplomske ispite U Rijeci, 07. travnja, 2016. ZADATAK ZAVRŠNOG RADA (na sveučilišnom preddiplomskom studiju politehnike) Pristupnik: Alen Jakus Zadatak: Algoritmi za sortiranje u programskom jeziku C++ Rješenjem zadatka potrebno je obuhvatiti sljedeće: 1. Napraviti pregled algoritama za sortiranje. 2. Opisati odabrane algoritme za sortiranje. 3. Dijagramima prikazati rad odabranih algoritama za sortiranje. 4. Opis osnovnih svojstava programskog jezika C++. 5. Detaljan opis tipova podataka, izvedenih oblika podataka, naredbi i drugih elemenata iz programskog jezika C++ koji se koriste u rješenjima odabranih problema. 6. Opis rješenja koja su dobivena iz napisanih programa. 7. Cjelokupan kôd u programskom jeziku C++. U završnom se radu obvezno treba pridržavati Pravilnika o diplomskom radu i Uputa za izradu završnog rada sveučilišnog dodiplomskog studija. Zadatak uručen pristupniku: 07. travnja 2016. godine Rok predaje završnog rada: ____________________ Datum predaje završnog rada: ____________________ Zadatak zadao: Doc. dr. sc. Marko Maliković 2 FILOZOFSKI FAKULTET U RIJECI Odsjek za politehniku U Rijeci, 07. travnja 2016. godine ZADATAK ZA ZAVRŠNI RAD (na sveučilišnom preddiplomskom studiju politehnike) Pristupnik: Alen Jakus Naslov završnog rada: Algoritmi za sortiranje u programskom jeziku C++ Kratak opis zadatka: Napravite pregled algoritama za sortiranje. Opišite odabrane algoritme za sortiranje.
    [Show full text]
  • Lecture 16: Lower Bounds for Sorting
    Lecture Notes CMSC 251 To bound this, recall the integration formula for bounding summations (which we paraphrase here). For any monotonically increasing function f(x) Z Xb−1 b f(i) ≤ f(x)dx: i=a a The function f(x)=xln x is monotonically increasing, and so we have Z n S(n) ≤ x ln xdx: 2 If you are a calculus macho man, then you can integrate this by parts, and if you are a calculus wimp (like me) then you can look it up in a book of integrals Z n 2 2 n 2 2 2 2 x x n n n n x ln xdx = ln x − = ln n − − (2 ln 2 − 1) ≤ ln n − : 2 2 4 x=2 2 4 2 4 This completes the summation bound, and hence the entire proof. Summary: So even though the worst-case running time of QuickSort is Θ(n2), the average-case running time is Θ(n log n). Although we did not show it, it turns out that this doesn’t just happen much of the time. For large values of n, the running time is Θ(n log n) with high probability. In order to get Θ(n2) time the algorithm must make poor choices for the pivot at virtually every step. Poor choices are rare, and so continuously making poor choices are very rare. You might ask, could we make QuickSort deterministic Θ(n log n) by calling the selection algorithm to use the median as the pivot. The answer is that this would work, but the resulting algorithm would be so slow practically that no one would ever use it.
    [Show full text]
  • Quick Sort Algorithm Song Qin Dept
    Quick Sort Algorithm Song Qin Dept. of Computer Sciences Florida Institute of Technology Melbourne, FL 32901 ABSTRACT each iteration. Repeat this on the rest of the unsorted region Given an array with n elements, we want to rearrange them in without the first element. ascending order. In this paper, we introduce Quick Sort, a Bubble sort works as follows: keep passing through the list, divide-and-conquer algorithm to sort an N element array. We exchanging adjacent element, if the list is out of order; when no evaluate the O(NlogN) time complexity in best case and O(N2) exchanges are required on some pass, the list is sorted. in worst case theoretically. We also introduce a way to approach the best case. Merge sort [4] has a O(NlogN) time complexity. It divides the 1. INTRODUCTION array into two subarrays each with N/2 items. Conquer each Search engine relies on sorting algorithm very much. When you subarray by sorting it. Unless the array is sufficiently small(one search some key word online, the feedback information is element left), use recursion to do this. Combine the solutions to brought to you sorted by the importance of the web page. the subarrays by merging them into single sorted array. 2 Bubble, Selection and Insertion Sort, they all have an O(N2) time In Bubble sort, Selection sort and Insertion sort, the O(N ) time complexity that limits its usefulness to small number of element complexity limits the performance when N gets very big. no more than a few thousand data points.
    [Show full text]