<<

Quaternary International

The Koskobilo (Olazti, Navarre, Northern Iberian Peninsula) paleontological collection: new insights for the Middle and Late in Western --Manuscript Draft--

Manuscript Number: QUATINT-D-20-00081R1 Article Type: SI: Quaternary Research in Keywords: Middle Pleistocene; late Pleistocene; Western Pyrenees; ; macaque; Asian black Corresponding Author: Asier Gómez-Olivencia Euskal Herriko Unibertsitatea/Universidad del País Vasco SPAIN First Author: Asier Gómez-Olivencia Order of Authors: Asier Gómez-Olivencia Mikel Arlegi, PhD Diego Arceredillo, PhD Eric Delson, PhD Alfred Sanchis, PhD Carmen Núñez-Lahuerta, PhD Mónica Fernández-García, PhD Mónica Villalba, MSc Julia Galán, PhD Adrián Pablos, PhD Antonio Rodríguez-Hidalgo, PhD Mikel A. López-Horgue, PhD Manuel Rodríguez-Almagro, MSc Virginia Martínez-Pillado, PhD Joseba Rios-Garaizar, PhD Jan van der Made, PhD Abstract: The destroyed site(s) of Koskobilo (Olazti, Navarre, Northern Iberian Peninsula) have yielded unique archaeo-paleontological evidence in the Western Pyrenees region. The quarry uncovered a karstic site with faunal remains in 1940, and fossils were recovered both in situ and from the dump. Ten later, while the quarry was still working, a new visit to the dump yielded a large lithic assemblage and additional fossil remains with a different taphonomic pattern, which has been interpreted as the remains coming from a different site or zone within the same system. Here we re-study the paleontological evidence and provide new dating on a covering a hemitoechus tooth, which has yielded a minimum date of c. 220 ka for part of the assemblage. In total, the fossil assemblage comprises 38 and six avian taxa and three fish remains. The faunal evidence indicates that in 1940 a mix of taxa from both the Middle and Upper Pleistocene were recovered, and it is difficult to assign most of them to a concrete period. However, based on biochronological criteria s ome of the identified taxa (e.g., Ursus thibetanus , Ursus cf. deningeri , Cuon cf. priscus , Macaca sylvanus , cf. Megaceroides ) could be roughly contemporaneous with the dated rhino tooth, which would provide a new window to the Middle Pleistocene of the region, with deposits from MIS 7d and/or older. Despite the difficulties in studying this collection, recovered without stratigraphic context and in a salvage operation, Koskobilo has yielded an important paleontological assemblage which helps to understand the paleoecology of the Middle Pleistocene

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Manuscript File Click here to view linked References

1 The Koskobilo (Olazti, Navarre, Northern Iberian Peninsula) paleontological collection: new 2 insights for the Middle and Late Pleistocene in Western Pyrenees 3 4 Asier Gómez-Olivenciaa,b,c,* 5 Mikel Arlegia,d 6 Diego Arceredilloe 7 Eric Delsonf,g,h,i,j 8 Alfred Sanchisk 9 Carmen Núñez-Lahuertal,m,n 10 Mónica Fernández-Garcíao,p 11 Mónica Villalba de Alvaradoq,c 12 Julia Galánn 13 Adrián Pablosr,c 14 Antonio Rodríguez-Hidalgoq,s,o 15 Mikel A. López-Horguea 16 Manuel Rodríguez-Almagroa 17 Virginia Martínez-Pilladoc 18 Joseba Rios-Garaizarr 19 Jan van der Madet 20 21 a Dept. Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Euskal Herriko 22 Unibertsitatea, UPV/EHU. Barrio Sarriena s/n, 48940 , Spain 23 b Sociedad de Ciencias Aranzadi, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain 24 c Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Avda. 25 Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain 26 d Université de Bordeaux, UMR PACEA / 5199, Laboratoire d’Anthropologie des Populations du 27 Passé, Université Bordeaux 1, avenue des Facultés, 33405 Talence cedex, 28 e Facultad de Humanidades y Ciencias Sociales, Universidad Isabel I, c. Fernán González 76, 29 09003, Burgos, Spain 30 f Department of Anthropology, Lehman College of the City University of New York, 250 Bedford 31 Park Boulevard West, Bronx, NY 10468, USA 32 g Department of Vertebrate , American Museum of Natural History, 200 Central Park 33 West, New York, NY 10024, USA 34 h PhD Program in Anthropology, The Graduate Center of the City University of New York, 365 35 Fifth Avenue, New York, NY 10016, USA 36 i New York Consortium in Evolutionary Primatology, New York, NY, USA 37 j Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici 38 ICTA-ICP, Carrer de les Columnes s/n, Campus de La UAB, 08193 Cerdanyola del Vallès, 39 Barcelona, Spain 40 k Museu de Prehistòria de València, Servei d'Investigació Prehistòrica, Diputació de València, 41 Corona 36, València, Spain 42 l Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova 43 de Lisboa, 2829-516 Caparica, 44 m Museu da Lourinhã, Rua João de Moura 95, 2530-158 Lourinhã, Portugal 45 n Aragosaurus-IUCA, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de 46 Zaragoza, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain 47 o Institut Català de Paleoecología Humana i Evolució Social (IPHES), Zona Educacional 4, Campus 48 Sescelades URV (Edifici W3), 43007, Tarragona, Spain

1

49 p Área de Prehistòria, Universitat Rovira i Virgili. Facultat de Lletres, Avinguda Catalunya 35, 50 43002 Tarragona, Spain 51 q Departamento de Prehistoria, Historia Antigua y Arqueología, Universidad Complutense, Prof. 52 Aranguren s/n, 28040, Madrid 53 r Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo de la Sierra de 54 Atapuerca, 3, 09002 Burgos, Spain 55 s IDEA (Instituto de Evolución en África), Calle Covarrubias 36, 28010, Madrid, Spain 56 t Consejo Superior de Investigaciones Científicas, Museo Nacional de Ciencias Naturales, c. José 57 Gutiérrez Abascal 2, 28006, Madrid 58 59 *Corresponding author. Dpto. Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, 60 Universidad del País Vasco/Euskal Herriko Unibertsitatea. Barrio Sarriena s/n. 48940 Leioa, Spain. 61 E-mail adress: [email protected] (A. Gómez-Olivencia) 62 63 64 Key-words: Middle Pleistocene; Late Pleistocene; Western Pyrenees; dhole; macaque; Asian black 65 bear; Deninger’s bear 66 67 68

2

69 Abstract 70 71 The destroyed site(s) of Koskobilo (Olazti, Navarre, Northern Iberian Peninsula) have 72 yielded unique archaeo-paleontological evidence in the Western Pyrenees region. The quarry 73 uncovered a karstic site with faunal remains in 1940, and fossils were recovered both in situ and 74 from the dump. Ten years later, while the quarry was still working, a new visit to the dump yielded 75 a large lithic assemblage and additional fossil remains with a different taphonomic pattern, which 76 has been interpreted as the remains coming from a different site or zone within the same karst 77 system. Here we re-study the paleontological evidence and provide new dating on a speleothem 78 covering a Stephanorhinus hemitoechus tooth, which has yielded a minimum date of c. 220 ka for 79 part of the assemblage. In total, the fossil assemblage comprises 38 mammal and six avian taxa and 80 three fish remains. The faunal evidence indicates that in 1940 a mix of taxa from both the Middle 81 and Upper Pleistocene were recovered, and it is difficult to assign most of them to a concrete 82 period. However, based on biochronological criteria some of the identified taxa (e.g., Ursus 83 thibetanus, Ursus cf. deningeri, Cuon cf. priscus, Macaca sylvanus, cf. Megaceroides) could be 84 roughly contemporaneous with the dated rhino tooth, which would provide a new window to the 85 Middle Pleistocene of the region, with deposits from MIS 7d and/or older. Despite the difficulties in 86 studying this collection, recovered without stratigraphic context and in a salvage operation, 87 Koskobilo has yielded an important paleontological assemblage which helps to understand the 88 paleoecology of the Middle Pleistocene human occupations in the Western Pyrenees.

3

89 1. Introduction 90 91 The Western Pyrenees (henceforth WP) is a key area to understand the cultural and 92 biological interchanges between the Iberian Peninsula and the rest of Europe (Arrizabalaga and 93 Rios-Garaizar, 2012). It is located on the northern fringe of the Iberian Peninsula and acts as a 94 natural corridor among the continent, the Ebro basin, the northern Meseta (plateau) and the 95 Cantabrian fringe. Despite a relatively good record of Upper Pleistocene deposits, there is a dearth 96 of Middle Pleistocene sites in this area (and in the rest of the Northern Iberian Peninsula) which has 97 limited so far a good understanding of the paleoecological conditions of the oldest hominin 98 occupations in this region. The nearby areas, on the contrary, have yielded a relatively well known 99 record for this chronology (e.g., Atapuerca: Rodríguez et al., 2011; Arsuaga et al., 2014, 2015). In 100 the last decade, new findings, the re-study of collections excavated a long time ago and the 101 implementation of new geochronological dating methods have provided new insights into this 102 important time period. However, there are still only three mid-Middle Pleistocene sites in the whole 103 Cantabrian region, and late Middle Pleistocene paleontological information comes only from a 104 handful of sites. 105 106 The mid-Middle Pleistocene is only represented by a single site in the WP (Punta Lucero) 107 and only two additional sites are known in the Northern Iberian Peninsula: Llantrales and Mestas de 108 Con (Álvarez-Lao, 2016). The Llantrales quarry (Asturias) has yielded a small assemblage 109 including Cervus cf. elaphus, Praemegaceros solilhacus, and Stephanorhinus cf. hundsheimensis. A 110 date of 0.8-0.5 Ma has been proposed for this site (Álvarez-Lao, 2016). The new study of the 111 Mestas de Con assemblage (proposed age: 0.6-0.4 Ma) has yielded a more diverse assemblage 112 including herbivores such as C. elaphus, Praemegaceros?, Capreolus cf. capreolus, a small sized 113 bison (Bison sp.), Equus sp., and Stephanorhinus hemitoechus, as well as two carnivore taxa: 114 Homotherium latidens and Ursus sp. Punta Lucero was preliminarily studied by Castaños (1988). 115 With a similar chronology to Mestas de Con (i.e., 0.6-0.4 Ma), it is currently the most important site 116 in terms of number of fossils and species identified: it has yielded fossils from five herbivore (C. 117 elaphus, a megacerine , cf. Bos primigenius, Bison sp., Stephanorhinus sp.) and four carnivore 118 (H. latidens, Panthera gombaszoegensis, Vulpes sp., and ) taxa (Gómez- 119 Olivencia et al., 2015). Additionally, a combined isotopic analysis and trophic modeling has 120 provided important paleoecological information: resource partitioning, with bison and 121 consuming vegetation from more open spaces when compared to red deer, evidence of high 122 competition among the carnivore guild, with overlap between the two large cats, which probably 123 did not compete with the wolf C. mosbachensis (Domingo et al., 2017). 124 125 The late Middle Pleistocene is slightly better represented in the WP: the c. 300 ka site of 126 Santa Isabel de Ranero with the presence of and (Torres et al., 127 2001, 2014), the lower levels of Arlanpe (Rios-Garaizar et al., 2015), Lezetxiki (Altuna, 1972; 128 Falguères et al., 2005) and Lezetxiki II (Castaños et al., 2011; Arriolabengoa et al., 2018), and the 129 single dated tooth from Goikoetxe (Edeso et al., 2011). The sites of Astigarraga 130 (Villaluenga et al., 2012) or Irikaitz (Arrizabalaga and Iriarte, 2011) could also be pre-MIS5 in age. 131 North of the Pyrenees, there are several late Middle Pleistocene archaeological sites such as Duclos 132 (Auriac, Pyrénées-Orientales) or Romentères (Le Vignau, Landes) (Hernández et al., 2012). 133 However, the archeological sequences are still scarce, in some cases only preliminarily published, 134 and only a single human remain has been found (the humerus from Lezetxiki; Basabe, 1966; de-la- 135 Rúa et al., 2016) combined with some scant paleontological evidence, and a good chronological 136 setting is still missing for many sites. In this context, the presence in Koskobilo of Hippopotamus

4

137 sp. (Ruiz de Gaona, 1941, 1952, 1958), a species which went extinct in western continental Europe 138 c. 117 ka BP (Stuart and Lister, 2012); and of U. thibetanus (Arlegi et al., 2018), a taxon which 139 enters Western Europe at different times during the Middle Pleistocene (Crégut-Bonnoure, 1997), 140 provides a new window into the Middle Pleistocene in the northern Iberian Peninsula. The main 141 objective of this report is to provide an in-depth analysis of the paleontological collection recovered 142 from Koskobilo during the middle of the 20th century, including biochronological and taphonomic 143 aspects. 144 145 1.1. Koskobilo: geological, geographic and historiographic context 146 147 The Koskobilo quarry (Olazti, Navarre, UTM: 30 T 565685 4747601; 42º52’N, 2º11’W; 556 148 m.a.s.l.) is located in the termination of the Aizkorri mountain range, in front of the Urbasa plateau, 149 both flanking a natural corridor between the Alavan plain and the Sakana corridor, which is close to 150 the limit between Atlantic and Mediterranean climates (Figure 1; Supplementary Information Figure 151 S1). This quarry is located in the central part of the inverted Basque-Cantabrian Basin, which 152 structurally is part of the southeastern end of the SE plunging anticlinorium, a complex 153 folded area that extends along 100 km with a N125E strike between the study area and the west of 154 province. The Koskobilo and the coeval sedimentary units form the periclinal 155 end of this structure, dipping around 60 degrees towards SW, S and NE. 156 157 [INSERT FIGURE 1 HERE] 158 159 The currently abandoned Koskobilo and Olazti quarries were dug in a single unit 160 which stratigraphically changes laterally to coeval fine-grained siliciclastic deposits. This limestone 161 was formed as an isolated shallow marine carbonate bank separated by siliciclastic deeper marine 162 troughs from other coeval carbonate banks. These carbonates are included in the Egino Formation 163 (García-Mondéjar, 1982) and more recently in the Albeniz Unit (López-Horgue et al., 1996) just to 164 include the coeval deeper marine siliciclastics and a unit of calcarenites cropping out to the north of 165 Altsasu. Sedimentary thickness varies between carbonate banks (max. 600 m) and troughs (max. 166 300 m), the Koskobilo bank being 250 m thick. The age of this unit is early Late Albian based on 167 orbitolinids from the limestones and on ammonoids from the coeval siliciclastics (López-Horgue et 168 al., 1996; Klompmaker, 2013). 169 170 The limestone facies are micritic floatstones of large planar corals, algae and sponges, with 171 bioclastic floatstones atop some sequences and bioclastic debrites and in the transition to 172 deeper marine troughs. The limestones show features of early dissolution during the Late Albian 173 following fractures. Later these fractures were filled with carbonate sediments and siliciclastics (e. 174 g., López-Horgue et al., 1996). These smaller scale fractures originated at right angles with respect 175 to the main synsedimentary SW-NE faults. During the Basque-Cantabrian Basin inversion (Bodego 176 and López-Horgue, 2018), some old fractures were re-activated and played an important role in the 177 alpine deformation. However, sedimentary units in the folded study area show a good lateral 178 continuity only broken by a thrust to the north of the town of Altsasu. In the Koskobilo bank the 179 Quaternary karstification follows in part some of the minor fractures with synsedimentary infillings. 180 A more detailed analysis of the fractures with karst features is necessary to better understand the 181 karst development in the area, but a main dissolution along NW-SE strike seems likely. 182 183 A detailed history of the discovery of the archaeo-paleontological assemblage from the 184 Koskobilo quarry can be found in Arlegi et al. (2018), which will be briefly summarized here. In

5

185 1940, work at the Koskobilo quarry revealed the presence of a vertical cavity of 12-14 m (height), 186 with a base of c. 6 m, divided into two compartments by a rocky crest. This cavity was filled with 187 sediment where paleontological remains were found and shown to Máximo Ruiz de Gaona. This 188 researcher visited the site and realized that part of the paleontological assemblage from the infilling 189 of the cavity had been thrown into the dump (Ruiz de Gaona, 1941). Ruiz de Gaona recovered fossil 190 remains not only from the dump but also in situ from the infilling itself. He sent these remains to 191 the paleontologist Federico Gómez Llueca (Museo Nacional de Ciencias Naturales, Madrid) in 192 order to make the first identification of the Koskobilo findings, which resulted in a list of more than 193 25 taxa (Table 1; Ruiz de Gaona, 1941). In 1948, Crusafont and Villalta (1948) described in more 194 detail the beaver (Castor fiber) remains from Koskobilo, which represented the first mention of this 195 taxon in the Iberian Peninsula. In 1950, Ruiz de Gaona returned to the dump with the objective of 196 recovering additional faunal remains. During this visit, he basically recovered a large assemblage of 197 lithic remains, with the presence of both Middle and typologies; he 198 considered the Solutrean to be very abundant (but see Maluquer de Motes, 1954 for an alternative 199 classification). Thereafter, some of the quarry workers told him about the potential presence of a 200 horizontal gallery from which the archaeological material would derive (Ruiz de Gaona, 1952). 201 Maluquer de Motes and Uranga also recovered lithic materials in 1954 (Vallespí Pérez and Ruiz de 202 Gaona, 1971). In 1955, the famous Basque archaeologist J.M. de Barandiarán recovered 1,155 203 remains, a pebble and a small bone assemblage (Beguiristain Gúrpide, 1974). 204 Subsequently, Ruiz de Gaona published five Solutrean foliate points (Vallespí and Ruiz de Gaona, 205 1969-70) and three bifacial tools (Vallespí Pérez and Ruiz de Gaona, 1971; see also Beguiristain 206 Gúrpide, 1974; García Gazólaz, 1994). In 2016 we recovered 134 faunal remains and 425 lithics 207 from dump “a” and 25 additional lithics from dump “b” (sensu Ruiz de Gaona, 1952; see also 208 Arlegi et al., 2018). Our preliminary revision of the paleontological collection from Koskobilo, new 209 archaeo-paleontological findings and a critical evaluation of the literature led us to propose that the 210 archaeo-paleontological collection probably derives from two different cavities, with both the 211 Middle Pleistocene and the Late Pleistocene represented: most of the archaeological material 212 probably derives from a second cavity (or sector), different from that which yielded the 213 paleontological remains described in 1941 by Ruiz de Gaona (Arlegi et al., 2018). 214 215 [INSERT TABLE 1 HERE] 216 217 The lithic assemblage of Koskobilo, recovered by Ruiz de Gaona, Barandiaran, and 218 ourselves, reinforces the interpretation of different occupation episodes at the site(s). The presence 219 of a handaxe and other large cutting tools, now lost, suggests the existence of Middle Pleistocene 220 occupations at Koskobilo, while there are other lithics that can be attributed to a 221 generic Middle Paleolithic. Other pieces, like carinated end-scrapers, backed points, and some 222 characteristic types, such as Noailles burins, suggest a human presence in Koskobilo during 223 the Early Upper Paleolithic. The bulk of the lithic collection can be attributed to the Solutrean. The 224 presence of almost finished foliate points, foliate point roughouts, and many waste products 225 generated during the foliate fabrication process, suggest the presence of a flint workshop at the site. 226 Finally there are some elements that can be attributed to the Final Upper Magdalenian/Azilian 227 (Arlegi et al., 2018 and references therein). 228 229 2. Material and methods 230 231 2.1. Material 232 The Koskobilo paleontological collection is currently divided among three different

6

233 institutions. Most of the paleontological remains (n = 680) are housed at the Museo de Navarra 234 (Pamplona-Iruñea), with smaller samples at the Sociedad de Ciencias Aranzadi (Donostia-San 235 Sebastián; n = 32), and at the Museo Nacional de Ciencias Naturales (MNCN, Madrid; n = 9). The 236 latter sample is probably part of the original collection studied by Federico Gómez Llueca (Ruiz de 237 Gaona, 1941) that was never returned to Navarre. The Museo de Navarra sample does not have an 238 official label, so we have “virtually” labelled all the specimens using numbers. The small 239 paleontological sample housed at the S.C. Aranzadi was collected by J.M. de Barandiarán in 1955 240 (Beguiristain Gúrpide, 1974); it was given to the paleontologist J. Altuna, who never actually 241 studied this sample (Altuna, personal communication). The 134 remains recently found by us 242 (Arlegi et al., 2018) are not included in this study, but we nonetheless discuss them. AMany 243 collections have been visited to examine comparative materials (see Supplementary Text S1, 244 Supplementary Tables S1-S2). 245 246 2.2. Paleobiological analysis 247 The taxonomic assessment was conducted using both modern and fossil samples housed in 248 different research centers as well as osteological atlases. Upper teeth are indicated by uppercase 249 letters, lower teeth by lowercase. To distinguish between Canis and Cuon the morphometric 250 differences between these two genera present in the dentition and in the mandibular morphology 251 have been taken into consideration based on published reports of Middle and Late Pleistocene 252 wolves and from France and the Iberian Peninsula (e.g., Altuna, 1972, 1983; Sarrión 253 Montañana, 1984, 1990; García, 2003; Boudadi-Maligne, 2010; Pérez Ripoll et al., 2010). The 254 canid remains were also compared to Canis mosbachensis and to fossils attributed to Lycaon 255 (Madurell-Malapeira et al., 2013; Bartolini Lucenti et al., 2017). None of the diagnostic features 256 found in the latter genus were found in the Koskobilo canid assemblage (see Supplementary Text 257 S2). The identification criteria and the metrics considered during small-mammal analysis were 258 based on Crusafont and Villalta (1948), Chaline (1972), Nadachowski (1982), Menu and Popelard 259 (1987), Cuenca-Bescós (1988), Sevilla (1988), van Cleef Roders and van den Hoek Ostende (2001), 260 and López-García (2011). Various keys were used for taxonomic identification of the birds 261 (Woolfenden, 1961; Kraft, 1972; Jánossy, 1983; Cohen and Serjeantson, 1996; Tomek and 262 Bochenski, 2000; Bochenski and Tomek, 2009). For the analysis of the paleontological record of the 263 avian species, the works of Mlíkovsk. (2002) and Tyberg (2007) were used. 264 The biometrical assessment generally follows the standard approaches (Driesch, 1976). The 265 measurements of the Rhinocerotidae and Suidae fossils were taken following Van der Made (1996, 266 2010). Measurements of the fossils of Megaceroides follow Van der Made (2019). Nomenclature of 267 the tooth morphology in the descriptions of the Suidae, Cervus elaphus and Megaceroides follow 268 Van der Made (1996, 2019). In the case of the human remains, the anatomical variables studied in 269 the present work are linear measurements employed in other studies of foot remains, largely 270 following the Martin system (Bräuer, 1988; but see also Trinkaus, 1975, 1983, 2016; Pablos et al., 271 2012; 2013a, 2014). The metrical variables were selected in order to describe the general 272 morphology and articular size of each bone, some of which allow the differentiation of Neandertal 273 pedal remains from other samples. The Lyrurus tetrix remains were measured following 274 Erbersdobler (1968). 275 In order to offer some insights into the paleobiology of the Koskobilo human foot bones 276 (Supplementary Text S3) we tried to determine the sex using the multivariate formulae offered by 277 Alonso-Llamazares and Pablos (2019) using both talar and calcaneal variables. Stature was 278 estimated using European male formulae based on both the talus and the calcaneus (Pablos et al., 279 2013b). Body mass was estimated based on the medio-lateral breadth (M5) of the trochlea of the 280 talus, using the regression formula derived from a recent human sample (McHenry, 1992).

7

281 282 283 2.3. Taphonomic analysis 284 285 The taphonomic analysis of the assemblage was done using standardized methods and 286 techniques reported elsewhere (Lyman, 1994). Three hundred ninety-four specimens (NSP) were 287 studied. The bone cortical surface is well preserved, which allowed us to analyze the potential 288 modifications present on its surfaces. All the remains were studied using a binocular microscope 289 (x20) and hand-lenses (x4), using oblique light (Blumenschine et al., 1996). Additional observations 290 on the small-mammal assemblage were done following Andrews (1990). 291 292 2.4. Uranium series dating 293 A speleothem crust covering a Stephanorhinus hemitoechus left p3 (specimen number 50 of 294 our catalogue; henceforth just the number will be given) was dated. In order to eliminate the 295 potential contamination by the surrounding clays and to better visualize the internal structure of the 296 carbonatic crystals, the most external part of the crust was scraped away on the occlusal part of the 297 tooth and also, to a smaller extent, on the lingual part, using a tungsten carbide elongated drill 298 (width = 1 mm) at 17,000 rpm. From the occlusal surface of the tooth a translucent and whitish 299 layer was chosen to be sampled for the U/Th dating (Supplementary Figure S2). The powder 300 extraction (c. 95 mg; Supplementary Figure S3) was performed using tungsten carbide drill burrs 301 (width = 0.5 mm) at 10,000 rpm following the lamination of the speleothem growth. The sampling 302 was done under a laminar flow chamber to avoid contamination and with clean drills (purification 303 using HCl 0.6M and ethanol). The U/Th dating was carried out at the Xi’an Jiaotong University 304 () following the methodology of Cheng et al. (2013). 305 306 307 3. Systematic paleontology- 308 309 A total of 694 remains have been identified as mammals, belonging to a total of 8 orders and 310 22 different families. 311 312 3.1. Order Perissodactyla Owen, 1848 313 314 Perissodactyls are represented by a total of 68 remains belonging to two families (Table 2). Selected 315 perissodactyl remains are shown in Figure 2. 316 317 [INSERT FIGURE 2 HERE] 318 319 3.1.1. Family Equidae Gray, 1821 320 321 Equus ferus Boddaert, 1785 322 323 Ruiz de Gaona (1941) cited the presence of 52 molars and 6 incisors belonging to Equus 324 caballus fossilis (Table 1). The current collection is smaller (NISP = 43), with the presence of 10 325 permanent incisors, a deciduous incisor, 28 upper and lower molariforms, one upper canine, a talus 326 (Figure 2), a calcaneus, and a proximal phalanx. The measurements and morphology of these 327 elements are compatible with Equus ferus. These teeth represent a minimum of four individuals, 328 based on the presence of three left i3 and a di2.

8

329 330 331 3.1.Family Rhinocerotidae Gray, 1821 332 333 Stephanorhinus hemitoechus (Falconer, 1860) 334 335 The rhinoceros from Koskobilo (Figure 2, Supplementary Figure S4) was first assigned to 336 Rhinoceros megarhinus (Ruiz de Gaona, 1941, 1952) and later to Rhinoceros tichorhinus 337 (=Coelodonta) (Ruiz de Gaona, 1958). This assignment to Coelodonta was later repeated elsewhere 338 (Altuna, 1972; Arsuaga Ferreras and Aguirre Enríquez, 1979). Guérin (1980) assigned the three 339 teeth from Koskobilo housed at MNCN to Dicerorhinus hemitoechus, and Cerdeño (1990) and 340 Álvarez-Lao and García (2011) assigned them to Stephanorhinus hemitoechus, and we agree with 341 this determination and extend it to the rest of the collection (see below). The Koskobilo collection 342 currently includes 25 rhinoceros remains: a mandibular fragment preserving (partially) three teeth 343 and 24 isolated teeth. Therefore, the collection preserves 10 additional remains above the 15 344 initially reported by Ruiz de Gaona (1941), which represent a minimum of three individuals: two 345 adults are represented based on the repetition of the left p3 (48 and 50) and p4 (571 and 573) and an 346 immature based on the presence of a d3-4 (576). The speleothem overlying one Stephanorhinus 347 specimen (50) has been dated using U/Th, which provides a minimum age for this specimen and 348 hence for part of the deposit. The Koskobilo Stephanorhinus measurements are compared in Figures 349 3-4 and shown in Supplementary Tables S3-S4. 350 351 [INSERT FIGURES 3-4 HERE] 352 353 The Koskobilo remains do not belong to the genus Coelodonta due to the absence of 354 characteristics typical of this taxon: e.g., a relatively wider (relative to Stephanorhinus) anterior lobe 355 of the lower cheek teeth, which are shorter near the base and much longer at the occlusal surface of 356 m1/2 (resulting in very divergent anterior and posterior sides when regarded lingually), a heavy 357 crenellated enamel, a crochet isolating a middle fossa from the lingual valley in upper teeth, and the 358 presence of a metaloph and hypocone which together with the posterior end of the ectoloph enclose 359 a post fossa in M3. On the other hand, the Koskobilo specimens are not as large as Stephanorhinus 360 kirchbergensis, and the m3s do not show a U-shaped posterior valley (in lingual view). We also 361 consider that the Koskobilo specimens do not belong to S. hundsheimensis as the P2 may be very 362 large in the latter species. Moreover, the teeth from Koskobilo, not having the Coelodonta features, 363 are very hypsodont, consistent with (and even above) S. hemitoechus, the most hypsodont species 364 within Stephanorhinus, and of course above S. hundsheimensis, S. etruscus and S. aff. etruscus. The 365 Koskobilo specimens being so hypsodont compared to the S. hemitoechus (Figure 4) sample could 366 be due to the low number of S. hemitoechus in which hypsodonty could be measured. 367 368 369 3.2. Order Artiodactyla Owen, 1848 370 The artiodactyls are represented by 202 remains belonging to 7 taxa (Table 2). Selected 371 artiodactyl remains are shown in Figure 2. 372 373 3.2.1. Family Suidae Gray, 1821 374 Sus scrofa Linnaeus, 1758 375 376 The collection currently comprises all the elements listed by Ruiz de Gaona (1941; Table 1)

9

377 plus a canine previously assigned to Hippopotamus sp. (total NISP = 11; Table 1; Figure 2). They 378 belong to a minimum of two adults (239 and 476) and a younger adult (474) based on the repetition 379 of the left P3. A fragment of left maxilla preserving the M1-M2 (289), not listed previously, is 380 probably recent. All these remains (Supplementary Table S5) fit well within the metric and 381 morphological range of variation of recent and/or Pleistocene Sus scrofa and are different from both 382 S. strozzii and the domestic pigs (e.g., a Koskobilo m3 has three lobes and a terminal in the 383 middle; Figure 5; Supplementary Figure S5). However, we lack information about the range of 384 variation and any potential size trend in the Pleistocene of Iberia. 385 386 [INSERT FIGURE 5 HERE] 387 388 3.2.2. Family Cervidae Goldfuss, 1820 389 390 Ruiz de Gaona (1941) mentioned the presence of several cervid fossil remains: 6 belonging 391 to red deer, two antler fragments belonging to roe deer and 13 additional fossils to an indeterminate 392 cervid (Table 1). Apart from the indeterminate cervid remains (NISP = 10), we attribute the cervid 393 fossils to three different taxa: red deer (Cervus elaphus), roe deer (Capreolus capreolus), and a giant 394 deer (cf. Megaceroides). 395 396 Capreolus capreolus (Linnaeus, 1758) 397 398 Twenty-two remains have been attributed to roe deer: two antler fragments (listed by Ruiz 399 de Gaona, 1941), a distal phalanx, and 19 maxillary/mandibular fragments and isolated dental 400 remains. We suppose that the complete roe deer mandible (506; Figure 2) was likely previously 401 classified by Ruiz de Gaona (1941) as one of the two “antilopid” lower jaws (Table 1), although we 402 cannot discount that it could have been added to the collection after his first publication. The roe 403 deer remains from Koskobilo correspond to a minimum of three individuals based on the repetition 404 of the right m3s (248, 253, and 386). 405 406 Cervus elaphus Linnaeus, 1758 407 Thirteen remains have been attributed to red deer, seven more than those listed by Ruiz de 408 Gaona (1941). Most of these remains are mandibular, maxillary and isolated dental remains with the 409 exception of an intermediate phalanx (which could be recent) and an antler fragment with the 410 characteristic bez tine of this species. A minimum of two individuals are represented in the 411 Koskobilo red deer sample, a juvenile known by a left maxilla preserving D3-M1 (494), and an 412 adult hemimandible (241). 413 Cervus elaphus appeared in western Europe at the end of the Early Pleistocene. It is present 414 at Dorn Dürkheim 3 (; Franzen et al., 2000) and in Atapuerca TD4 to 7 (Van der Made et 415 al., 2017), levels which have reversed polarity and are situated between the Jaramillo and Brunhes- 416 Matuyama boundary (Álvarez-Posada et al., 2018). It is also cited from Mosbach 1, which is 417 situated in the Jaramillo (Von Koenigswald and Tobien, 1987). Initially, the antlers of the adults 418 lacked a crown, but after about 500 ka crowns are known. There are marked size changes as seen in 419 the m3, astragali and phalanges (Van der Made, 2011; Van der Made et al., 2014). The species was 420 large until about 650 ka, then it became smaller, from MIS7 to the earlier part of MIS5 it was large 421 again, and then it was generally smaller, although during MIS 2 it was also larger. During the 422 it became very small in western Europe but retained its size further to the east. The same 423 size change trends can be observed in the m1 (Figure 6), despite the limited size of the samples. The 424 two m1s from Koskobilo probably represent different individuals. The smaller of the two is smaller

10

425 than any specimen of the populations with larger body size, which suggests that at least this 426 individual does not derive from such a population. This specimen and the m3 (Figure 7) are similar 427 in size to the MIS 8-9 Cervus elaphus from Galería (Sierra de Atapuerca), and thus the small Cervus 428 from Koskobilo could have been contemporary to the Megaceroides and Stephanorhinus, but it is 429 also consistent in size with other Late Pleistocene/Holocene samples. 430 431 [INSERT FIGURES 6-7 HERE] 432 433 434 cf. Megaceroides Joleaud, 1914 435 Twelve mandibular fragments and isolated teeth have been assigned to a minimum of four 436 cf. Megaceroides individuals based on the repetition of the left m3 belonging to three young adult 437 individuals (Figures 2 and 7) and a fourth individual (M3, 493; Figure 8), with a greater degree of 438 wear. The identification is based on four different criteria. First, a relatively wide mandible (243) 439 when compared to the teeth (i.e., pachystose) which is a common feature of giant 440 (Megaloceros, Megaceroides, etc.), while Cervus elaphus has normal narrow mandibles (Figure 7). 441 Second, unlike Cervus, all the m3s attributed to Megaceroides (240, 243, and 252; Figures 2 and 7), 442 have the lingual wall of the third lobe placed clearly more buccally than the lingual wall of the first 443 and second lobes, the back of the anterior fossid is open towards the lingual side, and there is no 444 connection between the protopostcristid and metapostcristid or metaendocristid. Moreover, the three 445 specimens are smaller than Megaloceros giganteus m3s, but fit exactly in the range of variation of 446 Megaceroides specimens (Figure 7), and are larger than their homologues in Megaloceros savini, 447 M. matritensis, Cervus or and Haploidoceros (the latter being close in size to Cervus and 448 Dama). Fourth, the m3s (Figures 2 and 7) differ from those of Alces in having a higher crown and 449 lack the typical morphology of this taxon, such as a well-developed lingual cusp in the third lobe 450 (hexaconid). Several other molars and premolars also fit within the Megaceroides range of variation 451 (Figure 8, Supplementary Table S6). 452 453 [INSERT FIGURE 8 HERE] 454 455 3.2.3. Family Gray, 1821 456 Ruiz de Gaona (1941) recognized the presence of both Caprini and Bovini. With regards to 457 caprids, he attributed two lower jaws and some isolated dental remains to an “antilopid” and a horn 458 fragment to wild goat. He also recognized the presence of two different large bovids: Bos curvidens, 459 with a large number of specimens, and an unknown number of specimens attributed to Bison sp. We 460 recognize the presence of wild goat (Capra sp.), (Rupicapra sp.), and large bovids (Figure 461 2). 462 463 Genus Capra Linnaeus, 1758 464 Capra sp. 465 The horn fragment attributed by Ruiz de Gaona (1941) to a wild goat actually belonged to a 466 red deer. Currently, 21 dental remains have been assigned to Capra sp. (Figure 2) representing at 467 least two adult individuals based on the presence of two left M2s (367 and 369) and two right m3s 468 (373 and 539), and an immature individual based on the presence of a right (503) and a left dp4 469 (454). 470 471 472 Genus Rupicapra Blainville, 1816

11

473 Rupicapra sp. 474 475 Ruiz de Gaona (1941) cited the presence of two mandibles and some isolated molars and 476 incisors belonging to “an antilopid”. A total of 50 remains have been assigned to chamois 477 representing a minimum of 6 individuals (Figure 2) based on the repetition of the left m3 (295, 371, 478 381, 451, 502, and 505). Except for an intermediate phalanx, the rest are cranio-mandibular/dental 479 remains, mostly isolated teeth. 480 481 482 Genus Bos Linnaeus, 1758 483 Genus Bison Hamilton Smith, 1827 484 Bos/Bison 485 486 While Ruiz de Gaona (1941) proposed the presence of two large bovid species, Bos 487 curvidens and bison, the difficulties of distinguishing between these two taxa, and the diachrony of 488 the deposit has led us to classify all the large bovid remains as Bos/Bison sp. The large bovid 489 assemblage is composed of 56 isolated dental remains and an intermediate phalanx belonging to a 490 (conservative) minimum of four individuals of different ages-at-death based on the presence of 491 eight m1-2s. 492 493 494 3.3. Order Carnivora Bowdich, 1821 495 A total of 156 remains have been attributed to the Order Carnivora, with 5 families 496 represented (Table 2; Figures 9-11). 497 498 499 3.3.1. Family Felidae Fischer von Waldheim, 1817 500 501 502 [INSERT FIGURES 9-11 HERE] 503 504 Genus Felis Linnaeus, 1758 505 Felis silvestris Schreber, 1777 506 Felis sp. 507 Ruiz de Gaona (1941) cited the presence of three mandibles and some isolated canines 508 belonging to Felis catus. The current collection preserves two hemimandibles, probably belonging 509 to the same individual (Figure 9), a nearly complete canine, a fibular fragment and a proximal 510 phalanx identified as Felis silvestris. Additionally, the collection includes a cat cranium belonging 511 to an immature individual (Felis sp.; Supplementary Figure S6) which is recent and was not 512 mentioned by Ruiz de Gaona (1941). 513 514 Genus Panthera Oken, 1816 515 Panthera pardus (Linnaeus, 1758) 516 The leopard is represented by a single upper right canine (Figure 9). The measurements of 517 this specimen fit well with other Iberian leopards (Table 3). 518 519 [INSERT TABLE 3 HERE] 520

12

521 Panthera spelaea Goldfuss, 1810 522 The cave lion is represented by two fragmentary left P4s, corresponding to two adult 523 individuals of different age-at-death based on the degree of wear (Figure 9). These two remains 524 were likely attributed to hyaena by Ruiz de Gaona (1941), however their size and morphology are 525 those of a lion. 526 527 3.3.2. Family Hyaenidae Gray, 1821 528 Genus Crocuta Kaup, 1828 529 Crocuta sp. 530 Ruiz de Gaona (1941) cited the presence of 12 remains belonging to Hyaena spelaea. The 531 spotted is represented by two specimens: an upper right canine and a right p3 (Figure 10; 532 Table 4), both of which are within the range of variation of the Iberian spotted and below the 533 range of a relatively large sample of European Pachycrocuta brevirostris. The carnassials attributed 534 to this taxon by Ruiz de Gaona (1941) have been reidentified as belonging to Panthera spelaea. 535 Moreover, the permanent exposition of the Museo de Navarra had some bear distal phalanges also 536 identified as belonging to hyena (Arlegi et al., 2018). We do not rule out that the other remains 537 identified by Ruiz de Gaona (1941) as hyena were either misidentified or are currently lost. 538 539 [INSERT TABLE 4 HERE] 540 541 3.3.3. Family Canidae Fischer von Waldheim, 1817 542 543 Genus Canis Linnaeus, 1758 544 Canis cf. lupus Linnaeus, 1758 545 Canis sp. 546 547 Six fossil remains are identified as belonging to genus Canis based on their morphology and 548 size greater than those of fossil Cuon. Additionally, they are larger and morphologically different 549 from Canis mosbachensis (Tables 5-6). A left maxilla fragment preserving M1-M2 (486; Figure 9) 550 is identified as belonging to an adult individual of Canis cf. lupus. A second older Canis cf. lupus 551 adult would be represented by a left M1 (485). The remaining four fossils are identified as Canis 552 sp., and one of them represents an additional individual: based both in size and shape, the 553 morphology of the right M1 487 does not correspond to either 485 or 486. Finally, a left 554 hemimandible fragment preserving p3-p4 (222), and two isolated upper premolars are also present 555 in the collection (216: P3; 224: P2). Metrically, all these remains fit within modern Canis lupus 556 variation (Tables 5-6) and are larger than all the known Iberian Cuon records. 557 558 [INSERT TABLES 5-6 HERE] 559 560 561 Cuon Hodgson, 1838 562 Cuon cf. priscus Thenius, 1954 563 Cuon cf. alpinus europaeus (Bourguignat, 1868) 564 Cuon sp. 565 566 Five remains have been attributed to genus Cuon. Based on the current knowledge of this 567 genus in the Iberian Peninsula, a tentative identification is proposed here: three of them (MNI = 3) 568 could belong to Middle Pleistocene populations, while the remaining two remains (MNI = 1) show

13

569 Late Pleistocene characteristics. 570 The Late Pleistocene dhole populations, assigned to either Cuon alpinus or C. alpinus 571 europaeus, depending on the author and site, show smaller teeth with more derived traits that are 572 normally related to a higher degree of hypercarnivorism: a reduced metaconid and narrower m1 573 talonids, and simpler m2. Two remains from Koskobilo have been identified within this group 574 attributed to a single Cuon cf. alpinus europaeus individual: a left hemimandible preserving the 575 dental series p2-m1 (221; Figure 9) and a right M1 (489). The M1 shows the typical characteristics 576 of Cuon and a size similar to the specimens from Obarreta, Zafarraya (Table 7) and Llonin 577 (Asturias; Sanchis et al., in press). The hemimandible presents small premolars with pointed cuspids 578 and the anterior denticle on p4 (typical of Late Pleistocene dholes, and variable in Middle 579 Pleistocene dholes) (Table 8). 580 The dhole assemblage assigned to the Middle Pleistocene comprises a mandibular fragment 581 (229, Cuon sp.) preserving the distal half of the m1, the alveolus for the m2 and the ramus nearly 582 complete, and two right m1: one preserving the mesial half (230, Cuon sp.), and one preserving the 583 complete crown and very complete roots (232, Cuon cf. priscus). The mandible is robust (body 584 height behind the m1), and shows some archaic features such as a m2 with two roots and the 585 development of the metaconid. The measurements of the m1 are close to the Middle Pleistocene 586 dhole from Cova Negra recently identified as Cuon cf. priscus (Table 8; Sanchis et al., in press). 587 Two of these fossils (229, 230) are assigned to Cuon sp. due to their incompleteness. 588 589 [INSERT TABLES 7-8 HERE] 590 591 592 593 Vulpes vulpes (Linnaeus, 1758) 594 Sixteen fossil remains, comprising isolated teeth (n = 9), hemimandibles (n = 5), a maxilla 595 and a proximal phalanx have been attributed to the (Figure 9). A minimum of 3 individuals 596 have been estimated based on the repetition of the left hemimandible. One of the mandibles was 597 directly labeled as belonging to a dog by Ruiz de Gaona. Metrically, the Vulpes remains from 598 Koskobilo fit within the range of variation of Middle Pleistocene and recent V. vulpes and are larger 599 than recent V. lagopus remains (Supplementary Table S12). 600 601 602 3.3.4. Family Mustelidae Fischer von Waldheim , 1817 603 604 Meles meles Linnaeus, 1758 605 Ruiz de Gaona did not mention the presence of badger remains among the Koskobilo 606 paleontological collection. Currently there are two complete badger crania (including their 607 mandibles in articulation; 8 and 9) of modern aspect in the Koskobilo collection (Supplementary 608 Figure S6). 609 610 Genus Mustela Linnaeus, 1758 611 Mustela nivalis Linnaeus, 1766 612 613 Ruiz de Gaona (1941) mentioned the presence of five more or less complete jaws that he 614 assigned to “Mustella vulgaris”. The collection currently includes of 9 hemimandibles belonging to 615 a minimum of six individuals based on the repetition of the left hemimandible (507, 508, 509, 512, 616 513, and 514) that we attribute to Mustela nivalis based on size (Figure 9; Supplementary Table

14

617 S13). 618 619 620 3.3.5. Family Ursidae Fischer, 1817 621 622 Genus Ursus Linnaeus, 1758 623 624 Ruiz de Gaona (1941) mentioned the presence in Koskobilo of 10 canines and at least 30 625 molars, premolars and incisors belonging to cave and an indeterminate number of specimens 626 belonging to an indeterminate ursid (Ursus sp.), later identified as U. arctos (Ruiz de Gaona, 1958). 627 A total of 91 specimens have now been identified as bears belonging to a minimum of nine 628 individuals. Thirty-nine specimens have been identified as Ursus sp. Five specimens (a very 629 complete mandible and four upper teeth) have been classified as belonging to the speleoid clade (U. 630 deningeri-U. spelaeus) without specifying the species due to the lack of enough information 631 (Supplementary Figures S7-S11; Supplementary Tables S14-S17). 632 633 634 Ursus arctos Linnaeus, 1758 635 Twelve remains (nine isolated dental remains, two phalanges and a scapholunate) have been 636 attributed to two different brown bear individuals based on the presence of two M2s with very 637 different degrees of wear (27 and 28; Figure 11) and two right upper canines (233 and 235). The 638 dental remains are smaller than those from the speleoid lineage (Supplementary Tables S16-S17). 639 The phalanges are within the U. arctos variation: medio-laterally narrower at both the proximal end 640 and at the mid-part of the diaphysis, relative to their greatest length. The scapholunate shows a 641 convex anterior border and a pointed posterior end of the palmar protuberance, typical of U. arctos 642 and different from U. spelaeus (more flattened with a quadrangular protuberance). 643 644 Ursus cf. deningeri von Reichenau, 1904 645 This species is represented by a maxilla (7) that preserves the undeformed palate with the 646 left M1-M2 and crushed nasal bones. The teeth are worn on their lingual borders. The M1 displays a 647 trapezoidal shape with rounded borders, and labial and lingual cingula. The parastyle and the 648 metastyle are wide, clearly distinguishable from the paracone and metacone, and are oriented 649 outwards. These are characteristics of speleoid bears that distinguish them from U. arctos, where 650 they are oriented vertically and the metastyle might be small or absent (García, 2003). The lingual 651 cusps are worn, but the metaconule/mesocone seems to be narrow in comparison to the protocone 652 and hypocone, which is rather common in U. deningeri and not a characteristic of U. spelaeus 653 (Supplementary Table S18). The M2 shows a wide talon with a rounded tip and a very pronounced 654 sulcus between paracone and metacone, which is a morphology common in speleoid bears, but not 655 uncommon in U. arctos (Torres, 1988; García, 2003). The paracone has no parastyle and the 656 metacone is posteriorly worn but seems not to have accessory cusps. Thus, the cusps are less 657 complex than in U. spelaeus. The lingual and the internal cusps are worn and cannot be 658 distinguished. Metrically the teeth are similar to and/or fall within the range of variation of the U. 659 deningeri from Sima de los Huesos, Santa Isabel de Ranero and Lezetxiki (Iberian Peninsula), and 660 other European sites such as Grotte de la Carrière, Mauer, Mosbach, Jagsthausen and Petralona 661 (Supplementary Table S16; Supplementary Figures S10-S11). They are also below the mean from 662 Troskaeta, which has yielded a small-sized U. spelaeus with an early Late Pleistocene chronology 663 (Torres et al., 1991, 2014). Finally, this maxilla shows a palate thickness at the M2 which is above 664 the range of a U. arctos sample and below the range of a U. spelaeus sample (Supplementary Table

15

665 S19). 666 667 668 Ursus spelaeus Rosenmüller, 1794 669 Thirty-six fossils, mostly cranio-dental remains but including six metapodials and three 670 proximal phalanges have been attributed to , representing a minimum of four individuals 671 based on the M2s (35, 500, 544, and 547), due to their morphological and age-at-death 672 incompatibilities. The teeth show speleoid-like features not only in their larger size (Supplementary 673 Tables S16-S17), but also in the multiplication of their cusps (Figure 11). The metapodials and 674 phalanges are wider relative to their maximum length, which makes them more robust than the 675 arctoid species. 676 677 Ursus thibetanus Cuvier, 1823 678 This small sized bear is represented by two specimens: a left M2 (34) and a lower right 679 canine (465; Figure 11). Apart from its size, the M2 displays several morphological features 680 consistent with other European U. thibetanus and different from speleoid species and U. arctos 681 (Supplementary Figure S12). The M2 shows a small-sized talon with an acute tip shape, and unlike 682 speleoid species, it shows a low number of internal cusps, contrary to what is seen in U. arctos and 683 in cave bears. The cusps have a low height and are oriented toward the internal surface of the crown 684 (Crégut-Bonnoure, 1997). The paracone has no parastyle as in 88.46% of extant and fossil U. 685 thibetanus (n = 26), 85.96% of a large sample of Pleistocene, Holocene and extant U. arctos 686 (Regourdou and Sima de Illobi; n = 57) but only 25.8% of a large sample of U. deningeri (Santa 687 Isabel de Ranero, Lezetxiki, La Romieu, Mauer and Jagsthausen; n = 31). The metacone is simple 688 and, in lingual view has almost the same height as the paracone, as in 64% of U. thibetanus (n = 689 25), 27.27% of U. arctos (n = 55), and 12.12% of U. deningeri (n = 33). The protocone and 690 hypocone are simple and form a thin continuous ridge (Crégut-Bonnoure, 1997), the hypocone is 691 small and subtle, and there is no post-hypocone. This pattern appears in 77.77% of U. thibetanus (n 692 = 18) but only in 24.32% of U. arctos (n = 37) from the mentioned sites and it is not observed in U. 693 deningeri (n = 23). However, in both the arctoid and speleoid species the hypocone is usually more 694 differentiated and there might be multiple cuspids and/or the presence of a post-hypocone. 695 Metrically the Koskobilo M2 is similar to the Middle Pleistocene specimen from Gajtan (Albania; 696 Supplementary Table S20) and within the known range of variation for European U. thibetanus 697 (Table 9). The lower canine shows the typical bear morphology and a very small size, similar to one 698 specimen from Mosbach and one individual from Ehringsdorf (Supplementary Table S21) and in 699 the lower range of the known fossil record for Europe and Western Asia (Table 9). 700 701 [INSERT TABLE 9] 702 703 3.4. Order Eulipotyphla 704 3.4.1. Family Talpidae Fischer von Waldheim, 1814 705 Talpa sp. 706 707 Eighteen remains (seven hemimandibles, seven humeri, three ulnae, a tibiofibula) have been 708 assigned to moles (Figure 12), representing a minimum of six individuals (six left humeri). During 709 the Late Pleistocene (and still today), two species of Talpa can be found in the Iberian Peninsula: 710 the smaller iberian mole (T. occidentalis) and the European mole (T. europaea). The best character 711 to distinguish between these two species is the width of the humeral diaphysis (López-García, 712 2011). The measurements of the Koskobilo sample are in the overlap zone between these two

16

713 species, but closer to the T. europaea measurements. Three of the mandibles show evidence of 714 strong digestion which would indicate that these remains were accumulated either by a diurnal 715 raptor or a small carnivore. 716 717 3.4.2. Family Erinaceidae Fischer von Waldheim, 1814 718 cf. Erinaceus Linnaeus, 1758 719 We have attributed the distal fragment of a humerus preserving the distal articulation to a 720 hedgehog (Figure 12). 721 722 3.5. Order Chiroptera Blumenbach, 1779 723 724 Bats are represented by five remains belonging to two vespertilionoid species. 725 726 3.5.1. Superfamily Verspertilionoidea Gray, 1821 727 728 Family Vespertilionidae Gray, 1821 729 Myotis myotis (Borkahusen, 1797) 730 Three hemimandibles and a distal fragment of a humerus are identified as belonging to two 731 individuals of the greater mouse-eared bat (Figure 12). The myotodont lower molars and the dental 732 formula of the mandibles (3.1.3.3), as well as the humerus distal epiphysis lacking a styloid process, 733 are diagnostic of genus Myotis. The large size of the remains allows to assign them to Myotis 734 myotis, as the size of the lower molars is larger than Iberian populations of the sibling species 735 Myotis blythii (Galán et al., 2019). This bat prefers deciduous and mixed forests as well as 736 transitional woodland and woodland margins and is a typical cave-dwelling species (Dietz et al., 737 2009; Palomo et al., 2007). 738 739 Family Miniopteridae Mein and Tupinier, 1977 740 Miniopterus schreibersii (Kuhl, 1817) 741 Schreiber's long-fingered bat is represented by a complete left m1. The is nyctalodont 742 and presents a narrow but irregular labial cingulum together with a relatively closed trigonid with 743 lingual cingulum that characterize this species among nyctalodont Iberian bats. This species 744 inhabits a variety of Mediterranean landscapes although it seems to favor broadleaved forests, and it 745 mainly roosts in karstic cavities (Dietz et al., 2009; Palomo et al., 2007). 746 747 748 3.6. Order Rodentia Bowdich, 1821 749 750 A total of 125 remains have been assigned to four families and eight different taxa of 751 rodents. 752 753 3.6.1. Family Muridae Illiger, 1811 754 755 Genus Rattus Fischer von Waldheim, 1803 756 Rattus sp. 757 A cranium and two hemimandibles (right-left) have been assigned to this taxon. These 758 remains are modern based on their different color pattern, and on the surface of the cranium it was 759 still possible to observe . 760

17

761 762 3.6.2. Family Cricetidae Fischer von Waldheim , 1817 763 764 Arvicola amphibius (Linnaeus, 1758) 765 Sixteen cranial/mandibular remains have been identified as belonging to a minimum of 766 seven european water voles (Figure 12). The SDQ values of these specimens are similar to those 767 from other Late Pleistocene sites (Supplementary Figure S13). 768 769 Microtus arvalis (Pallas, 1778) 770 Two hemimandibles have been identified as belonging to a single common vole (Figure 12). 771 772 Microtus agrestis (Linnaeus, 1761) 773 Three hemimandibles have been identified as belonging to a minimum of two field voles 774 (Figure 12). 775 776 Microtus (Terricola) cf. lusitanicus (Gerbe, 1879) 777 A left hemimandible has been identified as belonging to the Lusitanian vole (Figure 778 12). 779 780 Pliomys coronensis Mehely, 1914 781 A left hemimandible has been identified as belonging to this vole species (Figure 12). 782 783 3.6.3. Family Sciuridae Fischer von Waldheim, 1817 784 Marmota marmota (Linnaeus, 1758) 785 The marmot collection comprises 22 elements, all except a talus being cranio-dental 786 remains, representing a minimum of four individuals (Figure 12). The measurements of these 787 remains can be found in Supplementary Tables S22-S23. 788 789 3.6.4. Family Castoridae Hemprich, 1820 790 Castor fiber Linnaeus, 1758 791 Ruiz de Gaona (1941) mentions the presence of 19 beaver remains. Crusafont and Villalta 792 (1948) studied 12 remains from Koskobilo which would indicate a minimum of four individuals 793 based on their anatomical determinations. The current collection comprises only six remains (one of 794 them recovered by J.M. Barandiarán in 1955; Table 1; Figure 12), comprising a left maxilla 795 preserving P4-M3 (154), a very complete right mandible with all the teeth (477), and two P4s (right 796 and left; 155 and AR.6) which would represent two individuals. The measurements of these remains 797 can be found in Supplementary Table S24. Two proximal phalanges (345 and 353) are also 798 tentatively attributed to this taxon. 799 800 3.7. Order Lagomorpha Brandt, 1855 801 3.7.1. Family Leporidae Fischer von Waldheim, 1817 802 Leporidae indet. 803 804 A single leporid fossil is represented by a right maxilla preserving P3-M2 (Figure 12), which 805 would be consistent with the only leporid described by Ruiz de Gaona (1941). 806 807 [INSERT FIGURE 12 HERE] 808

18

809 3.8. Order Linnaeus, 1758 810 811 3.8.1. Family Gray, 1825 812 813 sapiens Linnaeus, 1758 814 Our species is represented by three specimens belonging to the same adult individual: the 815 two calcanei from both sides and a left talus, which perfectly articulates with the calcaneus. While 816 these remains are relatively complete, their surface is eroded and trabecular bone is exposed in 817 many places (Figure 13; Supplementary Figures S14-S16). Twelve of 15 of the multivariate 818 discriminant functions analyzed suggest that the talus and calcanei from Koskobilo probably 819 belonged to a male individual, with an estimated stature of c. 170 cm and estimated body mass of 820 67.8 kg. From a metrical point of view (Supplementary Tables S25-S26; Figure 14) these remains 821 are close to the mean of recent , with the talus being more useful than the calcaneus to 822 establish taxonomic affinities (Figure 14). The bivariate plot (Figure 14-A) of lateral malleolar 823 breadth (M7a) and total talar breadth (M2) indicates that the Koskobilo talus is different from the 824 Middle Pleistocene sample from Sima de los Huesos (SH) and Upper Paleolithic modern humans. 825 The bivariate plot of the talar head breadth (M9) and talar length (M1) separates Koskobilo from 826 both Neandertals and Upper Paleolithic modern humans (Figure 14-B). The bivariate plot of the 827 anterior trochlear breadth (M5-2) and posterior trochlear breadth (M5-1) separates Koskobilo from 828 Upper Paleolithic modern humans (Figure 14-C). 829 830 831 [INSERT FIGURES 13-14 HERE] 832 833 834 3.8.2. Family Cercopithecidae Gray, 1821 835 836 Macaca sylvanus (Linnaeus, 1758) 837 838 One specimen can be attributed to a macaque: a distal half of a right m3 of a papionin 839 monkey (200; Figure 15). The area of breakage passes through the mesial ends of the hypoconid 840 and entoconid, which present only slight amounts of surface wear. The cusp tip of the entoconid 841 shows a small subcircular dentine exposure, while the remainder of that cusp, the hypoconid, the 842 hypoconulid and two (or three) lingually placed accessory cuspules show planar wear surfaces. The 843 entoconid and hypoconid are elevated above the more distal cusps, which lie behind a meandering 844 transverse groove. The hypoconulid is directly buccal to the accessory cusps, rather than protruding 845 distally as is more often the case. Columnar roots under each cusp are fused into a single structure, 846 whose apex is broken away. 847 848 Only a few standard measurements can be taken of the tooth fragment (Table 10) as other 849 landmarks are too damaged to use for measurement. The preserved metrical values of the Koskobilo 850 specimen are consistent with those for Macaca sylvanus, the only papionin known in the European 851 later Pleistocene. The values for extant M. sylvanus do not differ from those for samples of Early or 852 Middle to Late Pleistocene macaques. It has been proposed that European macaques might be 853 divided into three time-successive subspecies (Szalay and Delson, 1979; Delson, 1980), but 854 metrical differences among these have not been supported (see also Alba et al., 2011). Of two other 855 known Early Pleistocene European papionins, Macaca majori is slightly smaller, while 856 Paradolichopithecus arvernensis is rather larger (the ranges of these two taxa hardly overlap those

19

857 of Macaca sylvanus). Thus, the Koskobilo tooth can be reliably identified as Macaca sylvanus. 858 859 [INSERT FIGURE 15 & TABLE 10 HERE] 860 861 862 4. Systematic paleontology-Birds 863 864 The Ruiz de Gaona collection preserves 27 avian remains, and it was possible to 865 taxonomically assess 15 of them, which belong to three different orders (Figure 16). Twelve 866 indeterminate remains (Aves indet.) belong to different anatomical regions, including a vertebra, 867 two synsacra, a coracoid, a phalanx, and seven long bones. 868 869 [INSERT FIGURE 16 HERE] 870 871 4.1. Order Galliformes Temmink, 1820 872 4.1.1. Family Phasianidae Horsfield, 1821 873 Perdix perdix (Linnaeus, 1758) 874 A distal fragment of a right tarsometatarsus has been attributed to a grey partridge (Figure 875 16c). 876 877 Lagopus muta (Montin, 1776) 878 A complete right tarsometatarsus from a rock ptarmigan has been identified (Figure 16b). 879 880 Lyrurus tetrix (Linnaeus, 1758) 881 A left carpometacarpus and both tarsometatarsi from a single black grouse have been 882 identified (Figure 16a). The measurements of the Koskobilo black grouse expand the known range 883 variation of this species in the WP (Table 11; Suárez-Bilbao et al., 2020). 884 885 [INSERT TABLE 11 HERE] 886 887 4.2. Order Columbiformes Latham, 1790 888 Columbiformes indet. 889 A complete left coracoideum has been attributed to an indeterminate dove. 890 891 4.2.1. Family Columbidae Leach, 1820 892 Columba livia/oenas group (Columba livia Gmelin, 1789 or Columba oenas Linnaeus, 1758) 893 A nearly complete carpometacarpus has been attributed to a rock or stock dove (Figure 16e). 894 895 4.3. Order Passeriformes Linnaeus, 1758 896 897 4.3.1. Passeriformes indet. 898 A complete right humerus belongs to an indeterminate passerine bird. 899 900 4.3.2. Family Alaudidae Vigors, 1825 901 A complete right humerus belongs to an indeterminate lark (Figure 16f). 902 903 4.3.3. Family Corvidae Vigors, 1825 904

20

905 Corvidae indet. 906 An immature (very porous) complete right femur, a complete (but eroded) right humerus 907 and a complete right carpometacarpus have been attributed to indeterminate corvids. 908 909 Pyrrhocorax pyrrhocorax Linnaeus, 1766 910 The proximal half of a right ulna and the complete left coracoid bone (Figure 16d) have 911 been attributed to a red-billed chough. 912 913 914 915 5. Taphonomic analysis 916 917 5.1. Large-mammal assemblage 918 Of the 394 studied large vertebrate specimens (NSP), 99% were determined at both 919 anatomical and taxonomic levels (Number of Identified Specimens, NISP). Anatomically, the 920 skeletal representation of the paleontological assemblage is dominated by cranial, dental and 921 basipodial bone remains, supporting an artificial selection of the recovered remains (Arlegi et al., 922 2018). Regarding the fragmentation, this assemblage displays a high number of complete remains 923 (54% of the NSP). Many are dental or cranio-mandibular remains with several teeth (NISP = 267; 924 67.7%). The results of the taphonomic analysis are displayed in Table 12. 925 926 [INSERT TABLE 12 HERE] 927 928 The most abundant modifications are those related to the diagenetic phase and indicate a 929 fossil-diagenesis associated to karstic environments (Fernández-Jalvo and Andrews, 2016). We can 930 underscore the presence of manganese oxide (black) staining (23.1% NSP) and to a lower extent, 931 fissures, cracking and flaking due to changes of humidity (2.8% NSP) and CaCO3 cementations 932 (1.8% NSP). The same pattern is also observed in the small-mammal assemblage. However, and 933 taking into consideration that this is a selected assemblage, a significant percentage of the non- 934 dental remains (NISP = 17; 7.1%) show tooth-marks (Supplementary Figure S17). Pits, punctures 935 and scores have been recorded on bear, canid, felid, red-deer like cervid, bovid and especially bird 936 remains, which constitute 28% of the tooth-marked NISP. Despite the low amount of carnivore 937 tooth marks, which preclude the statistical treatment of the data in order to establish the carnivore(s) 938 responsible for these modifications, the width of some pits (5.5 mm) and of some scores (4.2 mm) 939 in cortical bone indicate the presence of a large carnivore (i.e., bear, lion, hyena and/or wolf) 940 chewing the macro-mammal bones (Domínguez-Rodrigo and Piqueras, 2003). Among the bones 941 modified by carnivores, the presence of crenulated edges (40% of the bones with tooth marks) and 942 digested bones (35% of the bones modified by carnivores) stand out. The high incidence of 943 crenulated edges is here related to the anatomical selection of the remains because out of 17 remains 944 with tooth marks seven correspond to mandibles. The level of digestion ranges between subtle to 945 moderate, and principally affect the avian remains (5 out of 6). Among the biostratinomic 946 modifications, three remains shows cut-marks, and one shows modifications compatible with the 947 use of a bone blank as bone retoucher (Supplementary Figure S18). An equid calcaneus presents 948 two groups of slicing marks. The first group comprises nine short, straight, and parallel slicing 949 marks located on the medial side of the bone (Arlegi et al., 2018). The second group comprises five 950 straight, parallel (though in some cases overlapping) deeper cut-marks, located on the dorsal edge. 951 The location of these marks is related to the disarticulation of the basipodial (Nilssen, 2000). Two 952 large-sized long limb shaft fragments show groups of slicing marks, oblique to the of the

21

953 element and parallel to each other. Both groups of butchering marks are related to the exploitation 954 of large packages of meat, and the two bone fragments present fracture edges compatible with green 955 breakage (Binford, 1981; Nilssen, 2000). Finally, one shaft fragment of long bone of a large-sized 956 (Aranzadi AR-16, Supplementary Figure S18) shows deep-short cuts (like small chop 957 marks), centered in the bone blank, concentrated and superposed, generating a hatched area. All 958 these features have been related to the use of bones as retouchers (e.g. Mallye et al., 2012). 959 960 5.2. Small-mammal assemblage 961 The small-mammal assemblage shows a bias with cranial and larger post-cranial elements 962 being preferentially represented, which we interpret as the result of the recovery techniques used. 963 Otherwise, the three remains of rat (Rattus sp.) are not fossils. The rest of the small-mammal 964 remains show a homogenous taphonomic pattern, which consist on fissures, cracks and manganese 965 oxide stains on most of the bones. This pattern is similar to what is found with larger mammals, 966 consistent with a humid fossiliferous environment. Regarding the origin of the accumulation, 967 digestion modifications are not observed, indicating that they have not been accumulated by the 968 action of a predator or, more likely, that a predator which does not leave significant signs of 969 digestion (Category 1; Andrews, 1990) has accumulated them, such as the barn owl (Tyto alba). 970 Digestion was only detected in three remains of mole (Talpa sp.; Supplementary Figure S19), 971 including one mandible with strong digestion marks, which could indicate the intervention of a 972 small carnivore. Some common predators of moles are red foxes, but also wildcats, genets and 973 martens (Hernández, 2005). Nevertheless, the scarce number of remains and their selected origin do 974 not allow going further in these inferences. The origin of the accumulation of groundhogs and 975 beavers, larger than the rest of the small vertebrates, cannot be readily determined given the absence 976 of digestion or other predator modifications, but no anthropic marks were found. 977 978 979 6. Uranium/thorium dating 980 981 The dating of the speleothem covering the S. hemitoechus p3 (50; Supplementary Figures 982 S2-S3) has yielded an age of 219,561 ± 9,153 yr, placing its formation during Marine Isotope Stage 983 7 (MIS 7), at the limit between substages 7d (~228-220 ka BP) and 7c (~220-215 ka BP), well 984 within the Middle Pleistocene (Table 13). MIS 7, also known as the penultimate interglacial 985 complex, (ca 245-186 ka; Roucoux et al., 2008), is marked by an alternation of five warm and cold 986 periods (MIS 7e to MIS 7a; Railsback et al., 2015). During this stage, a combination of high 987 eccentricity, maximum precession and low obliquity gave rise to insolation changes of very high 988 amplitude (Berger, 1978; Jouzel et al., 2007), but temperature and ice volume do not appear to 989 respond proportionally to precessional insolation forcing. Thus, MIS 7 is one of several examples in 990 the paleoclimatic record which could challenge the classical Milankovitch theory of astronomical 991 climate forcing (Paillard, 2001). In summary, the speleothem formation over the S. hemitoechus 992 premolar marks the transition between cold to warm conditions and implies that part of the 993 Koskobilo assemblages was accumulated during or before MIS 7d. 994 995 [INSERT TABLE 13 HERE] 996 997 998 7. Discussion 999 1000 7.1. The Koskobilo paleontological collection

22

1001 1002 The difficulties in the study of the Koskobilo paleontological collection include both 1003 collection and curation problems. First, the original paleontological collection (published in 1941) 1004 was recovered without any stratigraphic control (Ruiz de Gaona, 1941). The preliminary faunal 1005 analysis (Arlegi et al., 2018) suggested a diachrony in the paleontological deposit, which was 1006 compatible with the size of the original cave-site (vertical cavity of 12-14 m, with a base of c. 6 m, 1007 divided into two compartments by a rocky crest; Ruiz de Gaona, 1941). This is further confirmed 1008 both on a geochronological basis, due to the direct dating of a speleothem covering a rhinoceros 1009 tooth, which provides a MIS 7d or pre-MIS 7d date for part of the deposit, and the presence of taxa 1010 more compatible with the Late Pleistocene on both size and morphological bases (e.g., some cave 1011 bear specimens and a significant part of the small-mammal assemblage). The lack of stratigraphic 1012 control does not permit dividing the faunal collection on this basis and makes it more difficult to 1013 understand potential changes in the faunal association. Second, the large percentage of identifiable 1014 remains in the macro-vertebrate assemblage points to a selective paleontological collection and/or 1015 discarding process afterwards (Arlegi et al., 2018), in which micro-vertebrate remains were 1016 specifically collected (by hand-picking or dry-sieving). Third, Ruiz de Gaona (1941) provides an 1017 inventory, which is quite accurate for some of the taxa (Tables 1-2), but nonetheless vague for other 1018 species. Moreover, he did not cite whether the collection also preserves indeterminate faunal 1019 remains. Fourth, some of the studied remains (e.g., the castorids; Crusafont and Villalta, 1948) have 1020 been lost and are not currently in the collection. Fifth, the presence of readily recognizable taxa, not 1021 listed previously (Ruiz de Gaona, 1941), is in our opinion clear evidence that additional fossil 1022 specimens have been incorporated into the collection. We include in this group the human remains, 1023 the badger crania, the cat , the rat remains, and a Sus fossil. Additionally, many of these 1024 remains have a very “modern” aspect and could belong to that were living around the 1025 quarry dumps and/or included in recent egagropiles, so that their bone remains were mixed with the 1026 sediment. Unfortunately, we lack museum/collection records to test when each specimen was 1027 incorporated into the collection. The presence of some labels (pieces of paper with numbers glued 1028 onto the fossil surfaces) in part of the fossil assemblage points toward some kind of record similar 1029 to what Ruiz de Gaona provided with other invertebrate collections (Arlegi and Gómez-Olivencia, 1030 personal observation). 1031 The dumps from where Ruiz de Gaona (1941, 1958) recovered part of the original collection 1032 were probably used to receive the cave sediments as the work of the quarry advanced. No lithic 1033 remains was found in the first collection in the 1940s, but 10 years after a large collection of lithic 1034 remains were recovered from the dumps, and the quarry workers mentioned a possible horizontal 1035 cave, different from the vertical infilling from where Ruiz de Gaona (1941) recovered part of the 1036 materials. This led Arlegi et al. (2018) to propose the presence of two or cave sectors from 1037 which the archaeo-paleontological evidence derived, with at least four different time intervals 1038 represented based on the diachrony in the paleontological collection and the typological differences 1039 in the lithic assemblage. 1040 The small faunal collection recovered by J.M. de Barandiarán in 1955, similar to the bone 1041 remains recovered by Arlegi et al. (2018) in 2016, shows a different taphonomic aspect due to its 1042 anthropogenic origin in contrast to the taphonomic signal from the original collection, with a larger 1043 abundance of carnivore marks. In fact, only a single bone from the Museo de Navarra collection 1044 shows cut-marks: a calcaneum. This bone is not mentioned in the first faunal list by Ruiz de 1045 Gaona (1941), and it cannot be discounted that it might have been recovered during the 1950s. 1046 Thus, excluding the horse calcaneum (for which we lack information on when it was found) and 1047 those remains that are recent/sub-recent, it is noteworthy to underline that the faunal remains found 1048 in 1955 and most of those found by us in 2016 were recovered together with lithic remains in the

23

1049 quarry dump. As most of these lithic remains have been attributed to the Upper Paleolithic, a 1050 comparable age could be proposed for the associated fossils. However, for the largest part of the 1051 paleontological collection, including taxa belonging to the Middle and Late Pleistocene, it has not 1052 been possible to find distinct taphonomic traits that could help to distinguish between these ages. 1053 1054 In any case, despite the difficulties, Koskobilo has yielded the presence of new taxa 1055 unknown in the region and/or very rare in the Iberian Peninsula. The salvage excavation and the 1056 recovery of fossil remains from the quarry dump performed by M. Ruiz de Gaona in 1940 has 1057 provided a new window into the Middle Pleistocene of Western Pyrenees. 1058 1059 1060 7.2. The age of the fossils 1061 1062 We have already listed the difficulties of studying the Koskobilo fossil collection, due to the 1063 lack of stratigraphical control and the likely presence of more than one time mixed together. The 1064 speleothem formation implies that part of the Koskobilo assemblage was accumulated during or 1065 before MIS 7d, and some of the species would be consistent with this chronology. Despite the 1066 presence of some species that appeared during the early Pleistocene (Castor fiber, Marmota 1067 marmota, Talpa sp.) or the Middle Pleistocene (Microtus arvalis, Microtus agrestis, Pliomys 1068 coronensis), they are especially abundant in the Late Pleistocene (Cuenca-Bescós et al., 2010, 2017; 1069 López-García, 2011; Sesé, 2017). Moreover, there are taxa, such as Microtus (Terricola) lusitanicus 1070 and Arvicola amphibious, that only appeared during the Late Pleistocene (López-García, 2011). The 1071 size and SDQ results for A. amphibious (mean: 82.6; range: 72.8-103.9; Supplementary Figure S13) 1072 are consistent with central European sites and Cova Eirós during MIS3 (Maul et al., 2014; López- 1073 García et al., 2017; Rey-Rodríguez et al., 2016). Indeed, all these species can be found nowadays in 1074 northern Iberia (Blanco, 1998), with the sole exception of Pliomys coronensis, which went extinct at 1075 the end of the Pleistocene (Cuenca-Bescós et al., 2010; López-García et al., 2012). In a previous 1076 work we also mentioned that the size of some of the Ursus spelaeus M2 from Koskobilo are similar 1077 to Late Pleistocene samples of the same species (Supplementary Table S15; Arlegi et al., 2018). 1078 Finally, the metric study of the human remains suggest that they belonged to Holocene modern 1079 humans. 1080 We will refer here in detail to the giant deer, the macaque, the asian black bear and the 1081 dhole. The giant deer specimens from Koskobilo are different from Megaloceros giganteus, larger 1082 than the Middle Pleistocene species Megaloceros savini and M. matritensis, but fit within the 1083 known range of variation of Megaceroides very well. There is no consensus on the classification of 1084 this genus. The use of the name Megaceroides (e.g., Van der Made, 2019) implies that these 1085 European deer are related to the Late Pleistocene type species M. algericus from North Africa. 1086 Many prefer the name Praemegaceros (e.g., Croitor, 2006; Vislobokova, 2013), which has a 1087 European type species. It has also been included in Megaloceros (e.g., Azzaroli, 1953, 1979; Lister, 1088 1993) of which various species are recognized (M. boldrini, M. obscurus, M. pliotarandoides, M. 1089 verticornis, M. solilhacus, M. dawkinsi, as well as some endemic species on the islands of Corsica 1090 and Sardinia), but the identifications are mainly based on antlers and generally do not take 1091 variability into account. Size and morphology of the specimens from Koskobilo do not show much 1092 variation and are compatible with derivation from a single population of a species of this genus, 1093 even though the species cannot be identified. The genus appeared in Europe in the Early 1094 Pleistocene, it is generally assumed to have disappeared after 400-500 ka, but there are some later 1095 records at Azokh V (~MIS9) and Atapuerca TG10 (~MIS8) (Fernández-Jalvo et al., 2016; Van der 1096 Made et al., 2016; Demuro et al., 2014). An endemic lineage in Corsica and Sardinia survived until

24

1097 the Holocene (Van der Made and Palombo, 2006; Benzi et al., 2007). However, if we assume that 1098 the Koskobilo Megaceroides remains are not the most recent ones, then MIS8 would be the latest 1099 possible age for them. 1100 1101 The Barbary macaque (Macaca sylvanus) is known in Iberia from around a dozen sites 1102 (Marigó et al., 2014, and references therein; Alba et al., 2019), including sites well dated to the 1103 early Pleistocene (e.g., TE9, Sima del Elefante, Sierra de Atapuerca; the Vallparadís section, 1104 Terrassa); and Middle Pleistocene (e.g., Aroeira, TD-8, Gran Dolina, Sierra de Atapuerca) (Alba et 1105 al., 2008, 2019; Rodríguez et al., 2011). Castaños et al. (2011) attributed a partial left hemimandible 1106 from Lezetxiki II to M. sylvanus cf. pliocena based on an MIS5 age for to the level where it was 1107 found, which would have represented one of the most recent occurrences of this species for Europe 1108 and therefore for Iberia. This specimen was found in level J, which is now dated to MIS7-6 based 1109 on sedimentological and geochronological grounds: it overlies a TT-OLS date of 215 +/- 15 ka in 1110 the upper part of level K (Arriolabengoa et al., 2018). Bolomor has also yielded a macaque fossil in 1111 level IV and two additional remains from level XII, both in MIS6 (Blasco et al., 2010; Blasco and 1112 Fernández Peris, 2012). Cova Negra has also yielded two M. sylvanus remains: an m3 and an m2 1113 from sector B, layers 9 and 11, respectively (Pérez Ripoll, 1977), which would correspond to the 1114 late Middle Pleistocene (Richard et al., 2019; Eixea, personal communication). Finally, Koskobilo 1115 is located in a zone modelled between “very high” and “excellent” probability of occurrence of M. 1116 sylvanus for both the Middle and Late Pleistocene (Elton and O’Regan, 2014). 1117 1118 The Asian black bear (Ursus thibetanus) has only been found in two additional sites in the 1119 Iberian Peninsula. A total of three remains have been found in Bolomor (Tavernes de la Valldigna, 1120 Valencia): a left M2, a left p4 (of uncertain date) and a left radius (MIS 7), which are associated 1121 with other taxa present in Koskobilo such as Macaca and Stephanorhinus (Sarrión Montañana and 1122 Fernández Peris, 2006). The dental remains were attributed to MIS 5e and the postcranial remain to 1123 MIS7 (Sarrión Montañana and Fernández Peris, 2006). In Cau d’en Borràs (Orpesa del Mar, 1124 Castellón), Carbonell et al. (1979) cite the presence of a small-sized ursid in a Middle Pleistocene 1125 deposit, together with the presence of Hemitragus. The U. thibetanus remains from Europe are 1126 attributed to two subspecies: U. thibetanus stehlini from the early Middle Pleistocene, and U. t. 1127 mediterraneus from the late Middle and Late Pleistocene (Baryshnikov, 2010 and references 1128 therein). 1129 1130 Among the dhole remains, a complete m1 from Koskobilo has been attributed to Cuon cf. 1131 priscus, together with two other specimens that also show a large size. The closest parallel to this 1132 specimen is the dhole mandible from Cova Negra (Pérez-Ripoll et al., 2010), recently attributed to 1133 Cuon cf. priscus (Sanchis et al., in press). This mandible was found in the Entrance slope, layer VII 1134 (Middle Pleistocene; MIS 8-7; Richard et al., 2019). 1135 1136 1137 7.3. Additional paleobiogeographical and paleoclimatic implications 1138 1139 The bird association found in Koskobilo is not unusual during the Pleistocene in the Western 1140 Pyrenees and is consistent with the landscape around the site. Koskobilo is within the current range 1141 of distribution (Svensson et al., 2010) of most of the species found in the site with only two 1142 exceptions. Koskobilo is outside of the current range of distribution of the rock ptarmigan (Lagopus 1143 muta) though this species is very abundant throughout Europe during the Late Pleistocene 1144 (Lagerholm et al., 2017). On the other hand, the black grouse (Lyrurus tetrix) does not currently

25

1145 inhabit the Iberian Peninsula, although it is relatively abundant along the northern face of the 1146 Pyrenees during the Late Pleistocene and its oldest record, from the Middle Pleistocene, can be 1147 found in Montoussé (Clot and Mourer-Chauviré, 1986). In the Pleistocene of the Iberian Peninsula, 1148 it has been found in the MIS 5 records from Artazu VII (Suárez-Bilbao et al., 2016, in press), in the 1149 Late Pleistocene records from Urtiaga (Elorza, 1990), and in the Middle Paleolithic levels of 1150 Valdegoba (Sánchez-Marco, 2004). 1151 Most of the small-mammal species recovered point to an open and humid environment that 1152 would be consistent with alpine or subalpine meadows, with humid soils that can be burrowed and 1153 the presence of water masses (Blanco, 1998; Palomo et al., 2007). All the species identified are 1154 related to mid-European environments, although some are tolerant of Mediterranean conditions and 1155 relatively cold climate. With the exception of Pliomys coronensis, all taxa can be found nowadays 1156 in the studied area, which corresponds for most of them to their southern peninsular limit (Palomo 1157 et al., 2007). Assuming that the recovered small-mammal species belonged to a concrete time 1158 period, the absence of Mediterranean species could point to a deposition during a cold period. 1159 However, the absence of a stratigraphic context and the bias induced by the selected small-mammal 1160 sample limits the inferences that can be drawn from it. 1161 1162 7.4. The Middle Pleistocene in Koskobilo: parallels 1163 Based on the dating of the speleothem and the paleontological association, some parallels 1164 can be drawn to connect the Middle Pleistocene deposit from Koskobilo with other sites in WP and 1165 northern Iberian Peninsula. The closest would be the nearby sites of Lezetxiki II, based on the 1166 presence of Macaca sylvanus, the lower levels of Lezetxiki, with deposits older than 200 ka 1167 (Falguères et al., 2005; de-la-Rúa et al., 2016) and the site of Santa Isabel de Ranero (Torres et al., 1168 2001, 2014). The lower levels of Arlanpe (Rios-Garaizar et al., 2015) are probably younger. In this 1169 context, additional information on the of the dated rhinoceros tooth from Goikoetxe 1170 (Edeso et al., 2011) would allow establishing better parallels. Another possible parallel is the MIS 1171 7c site of Mollet, which has also yielded a human fossil (Maroto et al., 2012; López-García et al., 1172 2014). The best parallels for Koskobilo are larger, more complete stratigraphic sequences, such as 1173 the Middle Pleistocene assemblages from the Sierra de Atapuerca, especially Trinchera Galería 1174 (Rodríguez et al., 2011), and those present in the Iberian , at the site of Bolomor with the 1175 presence of Macaca, Cuon, Stephanorhinus and U. thibetanus (Sarrión Montañana and Fernández 1176 Peris, 2006; Blasco et al., 2010; Blasco and Fernández Peris, 2012; Sanchis et al., in press). 1177 It is very difficult to relate the Middle Pleistocene faunal remains from Koskobilo to 1178 potential human occupations in surrounding areas due to the difficulties explained above. However, 1179 there is evidence of Middle Pleistocene occupation in the surroundings of Koskobilo. First, one of 1180 the bifaces and the convergent from Koskobilo, initially described by Vallespí Pérez and 1181 Ruiz de Gaona (1971) and recovered by the latter in the quarry dump, could also be of Middle 1182 Pleistocene age (Arlegi et al., 2018). Additionally, there are several bifacial tools found mainly in 1183 Quaternary terrace contexts that are probably roughly contemporaneous to the Middle Pleistocene 1184 record from Koskobilo (e.g., Armendáriz Martija, 1988; García Gazólaz, 1994, and references 1185 therein). However, we still lack a good chronological context for the terraces in which some of 1186 these finds were made. 1187 1188 1189 8. Conclusions 1190 1191 Despite the limitations in the recovery of the paleontological assemblage, the Koskobilo

26

1192 collection is one of the richest in the Western Pyrenees, especially in terms of macro-mammal 1193 species diversity, which could be (partially) related to the fact that different time periods from the 1194 Middle and Late Pleistocene are represented. Nonetheless, the Koskobilo paleontological 1195 assemblage is very important in the Iberian context for two reasons: 1) the presence of several taxa 1196 with a very limited representation in the Iberian Peninsula such as Megaceroides, Cuon cf. priscus, 1197 Ursus thibetanus, U. cf. deningeri, Macaca sylvanus, and Lyrurus tetrix; and 2) the dating of a 1198 speleothem crust on a rhinoceros tooth which indicates that part of the Koskobilo assemblages was 1199 accumulated during or before MIS 7d, being one of the limited Middle Pleistocene sites in the 1200 Western Pyrenees. 1201 1202 1203 Acknowledgments 1204 1205 We thank Jesús Sesma and Jesús García Gazólaz for the permission to study these materials and 1206 their help to access them. We also thank F. , J. Tapia, and M. Cubas for access to the 1207 Koskobilo materials housed at the S.C. Aranzadi Z.E. Thanks also to J. Altuna for information 1208 provided on this collection and to CENIEH-ICTS for the access to the comparative collections. We 1209 acknowledge the work done by Máximo Ruiz de Gaona who, in difficult circumstances, recovered a 1210 large part of the paleontological (and archaeological) collection and published it, which made 1211 Koskobilo one of the classic references of the of the Western Pyrenees. We also 1212 appreciate the work done by Federico Gómez Llueca, identifying for the first time the fossil 1213 mammals from Koskobilo and also the work done by other scholars who recovered additional 1214 evidence and published additional works about Koskobilo. We thank all the people and institutions 1215 that have allowed us to study the collections under their care and kindly provided assistance: F. 1216 Alférez, F.X. Amprimoz, J. A. Anacleto, S. Anibarro, H. Astibia, E. Baquedano, J.M. Bermúdez de 1217 Castro, P.J.H. van Bree, C. Cacho Quesada, E. Carbonell, B. Castillo, E. Cioppi, M. Comas, R. 1218 Cornette, L. Costeur, E. Crégut-Bonnoure, A. Currant, C. de Giuli, T. Engel, C. Ferrández-Cañadell, 1219 T. Engel, B. Engesser, J.L. Franzen, E. Frey, I. García Camino, A. L. Garvía, L. Gibert, J. Gibert 1220 Clols, U. Göhlich, M. Gross, J.H. Grünberg, C. Guérin, O. Hampe, W.D. Heinrich, C. Heunisch, E. 1221 Huerta, K.A. Hünermann, N. Ibañez, J.W.M. Jagt, R.D. Kahlke, J.A. Keiler, T. King, H. de Lumley, 1222 H. Lutz, S. Madelaine, D. Mania, M. Martínez Andreu, H. Meller, A.M. Moigne, W. Munk, M. 1223 Negro, C. Olaetxea, M.R. Palombo, T. Rathgeber, K. Rauscher, D. Reeder, E. Robert, J. Rodríguez, 1224 A. Rol, L. Rook, G. Rössner, S. San José, B. Sánchez Chillón, J.M. Segura, C. Smeenk, P.Y. 1225 Sondaar, M. Sotnikova, C. Strang, E. Tchernov, Tong Haowen, T.J. de Torres Perez-Hidalgo E. 1226 Tsoukala, A. Van Heteren, E. Vangengejm, N. Vanishvili, G. Veron, V. Vicedo, J. de Vos, J. Wagner, 1227 V.I. Zeghallo, R. Zeigler, and R. van Zelst. Thanks also to E. Trinkaus and C. Lorenzo for kindly 1228 providing some comparative data and to N. Sala, A. Eixea, E. Santos, and R. Mella for fruitful 1229 discussion. This work was supported by the Research Group IT1418-19 (Eusko Jaurlaritza- 1230 Gobierno Vasco) and the Spanish Ministerio de Ciencia e Innovación (projects PGC2018-093925- 1231 B-C31 and PGC2018-093925-B-C33; MCI/AEI/FEDER, UE) and benefitted from grant Synthesys 1232 AT-TAF-3663. A.G.-O. is funded by a Ramón y Cajal fellowship (RYC-2017-22558). M. 1233 Fernández-García is beneficiary of a PEJ grant (PEJ2018-005222-P) funded by the Spanish 1234 National System of Garantía Juvenil and the European Social Fund. M. Villalba de Alvarado is 1235 funded by a FPU fellowship (Fpu 15/06882; Spanish Ministerio de Ciencia, Innovación y 1236 Universidades). 1237 1238 1239 References

27

1240 1241 Alba, D.M., Carlos Calero, J.A., Mancheño, M.Á., Montoya, P., Morales, J., Rook, L., 2011. Fossil remains of Macaca 1242 sylvanus florentina (Cocchi, 1872) (Primates, Cercopithecidae) from the Early Pleistocene of Quibas (Murcia, 1243 Spain). Journal of 61, 703-718. 1244 Alba, D.M., Daura, J., Sanz, M., Santos, E., Yagüe, A.S., Delson, E., Zilhão, J., 2019. New macaque remains from the 1245 Middle Pleistocene of Gruta da Aroeira ( karst system, Portugal). Journal of Human Evolution 131, 40- 1246 47. 1247 Alba, D.M., Moyà-Solà, S., Madurell, J., Aurell, P., 2008. Dentognathic remains of Macaca (Primates, Cercopithecidae) 1248 from the late early Pleistocene of Terrassa (Catalonia, Spain). Journal of Human Evolution 55, 1160-1163. 1249 Alonso-Llamazares, C., Pablos, A., 2019. Sex estimation from the calcaneus and talus using discriminant function 1250 analysis and its possible application in fossil remains. Archaeological and Anthropological Sciences 11, 4927- 1251 4946. 1252 Altuna, J., 1972. de mamíferos de los yacimientos prehistóricos de Guipúzcoa. Munibe 24, 1-492. 1253 Altuna, J., 1983. Hallazgo de un cuon (Cuon alpinus Pallas) en Obarreta, Gorbea (Vizcaya). Kobie (Bilbao) XIII, 141- 1254 158. 1255 Álvarez-Lao, D.J., 2016. Middle Pleistocene large-mammal from North Iberia: palaeobiogeographical and 1256 palaeoecological implications. Boreas 45, 191-206. 1257 Álvarez-Laó, D.J., García, N., 2011. Southern dispersal and Palaeoecological implications of woolly rhinoceros 1258 (Coelodonta antiquitatis): review of the Iberian occurrences. Quaternary Science Reviews 30, 2002-2017. 1259 Álvarez-Posada, C., Parés, J.M., Cuenca-Bescós, G., Van der Made, J., Rosell, J., Bermúdez de Castro, J.M., Carbonell, 1260 E., 2018. A post-Jaramillo age for the artefact-bearing layer TD4 (Gran Dolina, Atapuerca): New paleomagnetic 1261 evidence. Quaternary Geochronology 45, 1-8. 1262 Andrews, P., 1990. Owls, caves and fossils. Predation, preservation and accumulation of small mammal bones in caves, 1263 with an analysis of the Pleistocene Cave Faunas from Westbury-sub-Mendip, Somerset, UK. The University of 1264 Chicago Press, Chicago. 1265 Arlegi, M., Rios-Garaizar, J., Rodríguez-Hidalgo, A., López-Horgue, M.A., Gómez-Olivencia, A., 2018. Koskobilo 1266 (Olazti, Nafarroa): nuevos hallazgos y revisión de las colecciones. Munibe Antropologia-Arkeologia 69, 21-41. 1267 Armendáriz Martija, J., 1988. Hallazgo de dos nuevos bifaces paleolíticos en el valle del río Ega. Trabajos de 1268 Arqueología Navarra 13, 349-357. 1269 Arriolabengoa, M., Iriarte, E., Aranburu, A., Yusta, I., Arnold, L.J., Demuro, M., Arrizabalaga, A., 2018. Reconstructing 1270 the sedimentary history of Lezetxiki II cave (Basque Country, northern Iberian Peninsula) using 1271 micromorphological analysis. Sedimentary Geology 372, 96-111. 1272 Arrizabalaga, A., Iriarte, M.J., 2011. Lower and Upper Palaeolithic settlements in Irikaitz (Zestoa, Basque Country, 1273 Spain). Deconstruction of a Pleistocene archaeological site in the Eastern Cantabrian range. Revista Cuaternario y 1274 Geomorfología 25, 105-119. 1275 Arrizabalaga, A., Rios-Garaizar, J., 2012. The first human occupation of the Basque crossroads. Journal of World 1276 Prehistory 25, 157-181. 1277 Arsuaga Ferreras, P.M., Aguirre Enríquez, E., 1979. Rinocerontes lanudos en la provincia de Madrid (Coelodonta 1278 antiquitatis Blumenbach). Boletín de la Real Sociedad Española de Historia Natural. Sección Geológica 77, 23- 1279 59. 1280 Arsuaga, J.L., Carretero, J.-M., Lorenzo, C., Gómez-Olivencia, A., Pablos, A., Rodríguez, L., García-González, R., 1281 Bonmatí, A., Quam, R.M., Pantoja-Pérez, A., Martínez, I., Aranburu, A., Gracia-Téllez, A., Poza-Rey, E., Sala, 1282 N., García, N., Alcázar de Velasco, A., Cuenca-Bescós, G., Bermúdez de Castro, J.M., Carbonell, E., 2015. 1283 Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. Proceedings of the 1284 National Academy of Sciences of the of America 112, 11524-11529. 1285 Arsuaga, J.L., Martínez, I., Arnold, L.J., Aranburu, A., Gracia-Téllez, A., Sharp, W.D., Quam, R.M., Falguères, C., 1286 Pantoja-Pérez, A., Bischoff, J., Poza-Rey, E., Parés, J.M., Carretero, J.M., Demuro, M., Lorenzo, C., Sala, N., 1287 Martinón-Torres, M., García, N., Alcázar de Velasco, A., Cuenca-Bescós, G., Gómez-Olivencia, A., Moreno, D., 1288 Pablos, A., Shen, C.-C., Rodríguez, L., Ortega, A.I., García, R., Bonmatí, A., Bermúdez de Castro, J.M., 1289 Carbonell, E., 2014. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344, 1290 1358-1363. 1291 Azzaroli, A., 1953. The deer of the Weybourn Crag and Forest bed of Norfolk. British Museum (Natural History), 1292 London. 1293 Azzaroli, A., 1979. Critical remarks on some giant deer (genus Megaceros Owen) from the Pleistocene of Europe. 1294 Palaeontographia Italica, 71, 5-16, pls. 1-6. 1295 Baryshnikov, G., 2010. Middle Pleistocene Ursus thibetanus (Mammalia, Carnivora) from Kudaro caves in the 1296 Caucasus. Proceedings of the Zoological Institute RAS 314, 67-79. 1297 Bartolini Lucenti, S., Alba, D.M., Rook, L., Moyà-Solà, S., Madurell-Malapeira, J., 2017. Latest Early Pleistocene

28

1298 wolf-like canids from the Iberian Peninsula. Quaternary Science Reviews 162, 12-25. 1299 Basabe, J.M., 1966. El húmero premusteriense de Lezetxiki (Guipúzcoa). Munibe XVIII, 13-32. 1300 Beguiristain Gúrpide, M.A., 1974. La colección Barandiarán de Coscobilo de Olazagutía. Príncipe de Viana 136-137, 1301 345-401. 1302 Benzi, V., Abbazzi, L., Bartolomei, P., Esposito, M., Fassò, C., Fonzo, O., Giampieri, R., Murgia, F., Reyss, J.L., 2007. 1303 Radiocarbon and U-series dating of the endemic deer Praemegaceros cazioti (Depéret) from ''Grotta Juntu'', 1304 Sardinia. Journal of Archaeological Science 34, 790-794. 1305 Berger, A., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the atmospheric 1306 sciences 35, 2362-2367. 1307 Binford, L.R., 1981. Bones: ancient men and modern myths. Academic Press, London. 1308 Blanco, J.C., 1998. Mamíferos de España II. Cetáceos, Artiodáctilos, Roedores y Lagomorfos de la Península Ibérica, 1309 Baleares y Canarias. 383 pp. Planeta. Madrid. 1310 Blasco, R., Fernández Peris, J., 2012. Small and large game: Human use of diverse faunal resources at Level IV of 1311 Bolomor Cave (Valencia, Spain). Comptes Rendus Palevol 11, 265-282. 1312 Blasco, R., Fernández Peris, J., Rosell, J., 2010. Several different strategies for obtaining animal resources in the late 1313 Middle Pleistocene: The case of level XII at Bolomor Cave (Valencia, Spain). Comptes Rendus Palevol 9, 171- 1314 184. 1315 Blumenschine, R.J., Marean, C.W., Capaldo, S.D., 1996. Blind tests of inter-analyst correspondence and accuracy in the 1316 identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. Journal of 1317 Archaeological Science 23, 493-507. 1318 Bochenski, Z.M., Tomek, T., 2009. A Key for the Identification of Domestic Bird Bones in Europe: Preliminary 1319 Determination. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow. 1320 Bodego, A., López-Horgue, M.Á., 2018. Geología de los Pirineos occidentales: evolución ambiental a través de sus 1321 rocas y fósiles. In: Badiola, A., Gómez-Olivencia, A., Pereda Suberbiola (Eds.). Registro fósil de los Pirineos 1322 occidentales: bienes de interés paleontológico y geológico: proyección social. Vitoria-Gasteiz, Servicio Central de 1323 Publicaciones del Gobierno Vasco-Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia, pp. 35-52. 1324 Bonifay, M.-F., 1971. Carnivores quaternaires du sud-est de la France. Éditions du Muséum, Paris. 1325 Boudadi-Maligne, M., 2010. Les Canis pléistocènes du Sud de la France: approche biosystématique, évolutive et 1326 biochronologique 1327 Bräuer, G., 1988. Osteometrie. In: Knussmann, R. (ed.) Anthropologie. Handbuch der vergleichenden Biologie des 1328 Menschen. Gustav Fischer, Stuttgart, pp. 160-232. 1329 Carbonell, E., Estévez, J., Gusi, F., 1979. Resultados preliminares de los trabajos efectuados en el yacimiento del 1330 Pleistoceno Medio de "Cau d'en Borràs" (Orpesa, Castellon). Cuadernos de Prehistoria y Arqueología 1331 Castellonenses 6, 7-18. 1332 Castaños, P., 1986. Los Macromamíferos del Pleistoceno y Holoceno de Vizcaya. Faunas asociadas a los yacimiento 1333 arqueológicos., Universidad del País Vasco-Euskal Herriko Unibertsitatea 1334 Castaños, P., 1988. Estudio de los restos de la cantera de Punta Lucero (Abanto y Ciervana, Bizkaia). Kobie (Serie 1335 Paleoantropología) XVII, 157-165. 1336 Castaños, P., Murelaga, X., Arrizabalaga, A., Iriarte, M.-J., 2011. First evidence of Macaca sylvanus (Primates, 1337 Cercopithecidae) from the Late Pleistocene of Lezetxiki II cave (Basque Country, Spain). Journal of Human 1338 Evolution 60, 816-820. 1339 Cerdeño, E., 1990. Stephanorhinus hemitoechus (Falc.) (Rhinocerotidae, Mammalia) del Pleistoceno Medio y Superior 1340 de España. Estudios Geológicos 46, 465-479. 1341 Chaline, J., 1972. Les rongeurs du Pleistocène moyen et supèrieur de France. C.N.R.S., Paris. 1342 Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., 1343 Kong, X., Spötl, C., Wang, X., Calvin Alexander, E., 2013. Improvements in 230Th dating, 230Th and 234U 1344 half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass 1345 spectrometry. Earth and Planetary Science Letters 371-372, 82-91. 1346 Cleef-Roders, J.T. van, Den Hoek Ostende, L.W. van, 2001. Dental morphology of Talpa europaea and Talpa 1347 occidentalis (Mammalia: Insectivora) with a discussion of fossil Talpa in the Pleistocene of Europe. Zoologische 1348 Mededelingen 75, 51-68. 1349 Clot, A., Mourer-Chauviré, C., 1986. Inventaire systematique des oiseaux quaternaires des Pyrenées Francaises. Munibe 1350 (Antropologia-Arkeologia) 38, 171-184. 1351 Cohen, A., Serjeantson, D., 1996. A Manual for the Identification of Bird Bones from Archaeological Sites. Archetype 1352 Publications. 1353 Crégut-Bonnoure, E., 1997. The Saalian Ursus thibetanus from France and . Geobios 30, 285-294. 1354 Croitor, R., 2006. Taxonomy and systematics of large-sized deer of the genus Praemegaceros Portis, 1920 (Cervidae, 1355 Mammalia). In: Kahlke, R.-D., Maul, L. C., Mazza, P. P. A. (eds.), Late Neogene and Quaternary Biodiversity

29

1356 and Evolution: Regional Developments and Interregional Correlations, vol. I. Courrier Forsch.-Institut 1357 Senckenberg,, Frankfurt a. Main pp. 91-116. 1358 Crusafont, M., Villalta, J.F., 1948. Los castores fósiles de España. Ins. Geol. y Min. de España LXI, 321-449. 1359 Cuenca-Bescós, G., 1988. Revisión de los Sciuridae del Aragoniense y del Rambliense en la fosa de Calatayud- 1360 Montalbán. Scripta Geologica 87, 1-116. 1361 Cuenca-Bescós, G., Rosell Ardévol, J., Morcillo-Amo, Á., Galindo-Pellicena, M.Á., Santos, E., Costa, R.M., 2017. 1362 Beavers (Castoridae, Rodentia, Mammalia) from the Quaternary sites of the Sierra de Atapuerca, in Burgos, 1363 Spain. Quaternary International 433, Part A, 263-277. 1364 Cuenca-Bescós, G., Straus, L.G., García-Pimienta, J.C., Morales, M.R.G., López-García, J.M., 2010. Late Quaternary 1365 small mammal turnover in the Cantabrian Region: The extinction of Pliomys lenki (Rodentia, Mammalia). 1366 Quaternary International 212, 129-136. 1367 de-la-Rúa, C., Altuna, J., Hervella, M., Kinsley, L., Grün, R., 2016. Direct U-series analysis of the Lezetxiki humerus 1368 reveals a Middle Pleistocene age for human remains in the Basque Country (northern Iberia). Journal of Human 1369 Evolution 93, 109-119. 1370 Delson, E., 1980. Fossil macaques, phyletic relationships and a scenario of deployment. The macaques: studies in 1371 ecology, behavior and evolution 10, 30. 1372 Demuro, M., Arnold, L.J., Parés, J.M., Pérez-González, A., Ortega, A.I., Arsuaga, J.L., Bermúdez de Castro, J.M. 1373 Carbonell, E., 2014. New luminescence ages for the Galería complex archaeological site: resolving 1374 chronological uncertainties on the record of the Sierra de Atapuerca, Northern Spain. PLoS ONE 1375 9(10): e110169. 1376 Dietz, C., von Helversen, O., Nill, D., 2009. L’encyclopédie des chauves-souris d’Europe et d’Afrique du Nord : 1377 biologie, caractéristiques,protection. Delachaux et Niestlé, Paris. 1378 Domingo, L., Rodríguez-Gómez, G., Libano, I., Gómez-Olivencia, A., 2017. New insights into the Middle Pleistocene 1379 paleoecology and paleoenvironment of the Northern Iberian Peninsula (Punta Lucero Quarry site, Biscay): A 1380 combined approach using mammalian stable isotope analysis and trophic resource availability modeling. 1381 Quaternary Science Reviews 169, 243-262. 1382 Domínguez-Rodrigo, M., Piqueras, A., 2003. The use of tooth pits to identify carnivore taxa in tooth-marked 1383 archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of 1384 Archaeological Science 30, 1385-1391. 1385 Driesch, A.v.d., 1976. A Guide to the Measurements of Animal Bones from Archaeological Sites. Peabody Museum, 1386 Harvard. 1387 Edeso, J.M., Aranzabal, G., López Quintana, J.C., Guenaga, A., Zallo, J.C., Castaños, P., Castaños, J., San Pedro, Z., 1388 Murelaga, X., Torres, T., Ortiz, J.E., Uribarri, P.J., Basterretxea, I., García, A., Gutiérrez, R., 2011. Aproximación 1389 al registro paleoambiental de la cueva de Goikoetxe (): Evidencias sedimentarias y paleontológicas.La 1390 cueva de Goikoetxe y el karst de Peña . Unión de Espeleólogos vascos, Oñati. 1391 Elorza, E., 1990. Restos de aves en los yacimientos prehistóricos vascos. Estudios realizados. Munibe (Antropologia 1392 Arkeologia) 42, 263-267. 1393 Elton, S., O'Regan, H.J., 2014. Macaques at the margins: the biogeography and extinction of Macaca sylvanus in 1394 Europe. Quaternary Science Reviews 96, 117-130. 1395 Erbersdobler, K., 1968. Vergleichend morphologische Untersuchungen an Einzelknochen des postcranialen Skeletts in 1396 Mitteleuropa vorkommender mittelgrosser Hühnervögel, UNI-Druck, Munich. 1397 Falguères, C., Yokoyama, Y., Arrizabalaga, A., 2005. La geocronología del yacimiento pleistocénico de Lezetxiki 1398 (Arrasate, País Vasco): crítica de las dataciones existentes y algunas nuevas aportaciones. Munibe (Antropologia- 1399 Arkeologia) 57, 93-106. 1400 Fernández-Jalvo, Y., Andrews, P., 2016. Atlas of taphonomic identifications: 1001+ images of fossil and recent mammal 1401 bone modification. Springer, Dordrecht. 1402 Fernández-Jalvo, Y., P. Dtichfield, R. Grün, W. Lees, M. Aubert, T. Torres, J.E. Ortíz, A. Díaz Bautista & R. Pickering, 1403 2016. Appendix: Dating methods applied to Azokh Cave sites. In: Fernández-Jalvo, Y., King, T., Andrews, P., 1404 Yepiskoposyan, L. (Eds). Azokh Caves and the Transcaucasian Corridor. Springer - Dordrecht: 321-339. 1405 Franzen, J.L., Gliozzi, E., Jellinek, T., Scholger, R., Weidenfeller, M., 2000. Die spätaltpleistozäne Fossillagerstätte 1406 Dorn-Dürkheim 3 und ihre Bedeutung für die Rekonstruktion der Entwicklung des rheinischen Flußsystems. 1407 Senckenbergiana lethaea 80, 305-353. 1408 Galán, J., Núñez-Lahuerta, C., Sauqué, V., Cuenca-Bescós, G., López-García, J.M., 2019. Cranial biometrics of the 1409 Iberian Myotis myotis/Myotis blythii complex: new data for studying the fossil record. Journal of Mammalian 1410 Evolution 26, 333-344. 1411 García, N., 2003. Osos y otros carnívoros de la Sierra de Atapuerca. Fundación Oso de Asturias, Oviedo. 1412 García Gazólaz, J., 1994. Los primeros depredadores en Navarra: estado de la cuestión y nuevas aportaciones. 1413 Cuadernos de Arqueología de la Universidad de Navarra 2, 7-47.

30

1414 Garcıa-Mondéjar, J., 1982. Aptiense y Albiense, Región Vasco-Cantábrica y Pirineo navarro. El Cretácico de Espana. 1415 Universidad Complutense, Madrid, 63-84. 1416 Geraads, D., 1995. Carnívoros musterienses de la Cueva de Zafarraya (Málaga). Cuaternario y geomorfologia: revista 1417 de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario 9, 51-57. 1418 Gómez-Olivencia, A., Sala, N., Arceredillo, D., García, N., Martínez-Pillado, V., Rios-Garaizar, J., Garate, D., Solar, G., 1419 Libano, I., 2015. The Punta Lucero Quarry site (, Bizkaia): a window into the Middle Pleistocene in the 1420 Northern Iberian Peninsula. Quaternary Science Reviews 121, 52-74. 1421 Guérin, C., 1980. Les rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pleistocène supérieur en Europe 1422 occidentale. Comparaison avec les espèces actuelles. Docum. Lab. Géol. Lyon 79, 423-783. 1423 Harlé, É., 1891. Note sur les mandibules d'un canidé du genre Cuon. L'Anthropologie II, 129-140. 1424 Hernández, A., 2005. Topos en la dieta de zorros rojos en el noroeste de España. Galemys: Boletín informativo de la 1425 Sociedad Española para la conservación y estudio de los mamíferos 17, 87-90. 1426 Hernandez, M., Mercier, N., Bertran, P., Colonge, D., Lelouvier, L.A., 2013. Premiers éléments de datation des 1427 industries du Pléistocène moyen (Acheuléen - Paléolithique moyen ancien) de la région pyrénéogaronnaise : une 1428 approche géochronologique pluri-méthodes (TL, OSL et TT-OSL) des sites de Duclos et Romentères. Paleo 23, 1429 155-170. 1430 Jánossy, D., 1983. Humeri of Central European smaller passeriformes. Fragmenta Mineralogica et Palaeontologica 11, 1431 85-112. 1432 Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.- 1433 M., Chappellaz, J., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 1434 317, 793-796. 1435 Klompmaker, A.A., 2013. Extreme diversity of decapod crustaceans from the mid- (late Albian) of Spain: 1436 implications for Cretaceous decapod paleoecology. Cretaceous Research 41, 150-185. 1437 Koenigswald, W.v., Tobien, H., 1987. Bemerkungen zur Altersstellung der pleistozänen Mosbach-Sande bei Wiesbaden 1438 (Hessen, BRD). Geologische Jahrbücher Hessen 115, 227-237. 1439 Kraft, E., 1972. Vergleichend morphologische Untersuchungen and Einzelknochen Nord- und Mitteleuropäischer 1440 kleinerer Jühnervögel, Universität Munchen 1441 Kurtén, B., Poulianos, A.N., 1977. New stratigraphic and faunal material from , with special reference to 1442 the Carnivora. Anthropos 4, 47-130. 1443 Lagerholm Vendela, K., Sandoval-Castellanos, E., Vaniscotte, A., Potapova Olga, R., Tomek, T., Bochenski Zbigniew, 1444 M., Shepherd, P., Barton, N., Van Dyck, M.C., Miller, R., Höglund, J., Yoccoz Nigel, G., Dalén, L., Stewart John, 1445 R., 2017. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to 1446 climate warming in cold‐ adapted birds. Global Change Biology 23, 1425-1435. 1447 Lister, A.M., 1993. The stratigraphical significance of deer species in the Cromer forest‐ bed formation. Journal of 1448 Quaternary Science 8, 95-108. 1449 López-García, J.M., 2011. Los micromamíferos del Pleistoceno superior de la Península Ibérica. Evolución de la 1450 diversidad taxonómica y cambios paleoambientales y paleoclimáticos. Ed. Académica Española, Saarbrücken. 1451 López-García, J., Blain, H.A., Burjachs, F., Ballesteros, A., Allué, E., Cuevas-Ruiz, G.E., Rivals, F., Blasco, R., 1452 Morales, J.I., Rodríguez-Hidalgo, A., Carbonell, E., Serrat, E., Rosell, J., 2012. A multidisciplinary approach to 1453 reconstructing the southwestern European : the contribution of Teixoneres cave (Moià, 1454 Barcelona). Quaternary Science Reviews, 43: 33-44. 1455 López-García, J.M., Blain, H.-A., Julià, R., Maroto, J., 2014. Environment and climate during MIS 7 and their 1456 implications for the late Middle Pleistocene hominins: The contribution of Mollet cave, Serinyà, Girona, 1457 northeastern Iberian Peninsula. Quaternary International 337, 4-10. 1458 López-García, J.M., Blain, H.-A., Lozano-Fernández, I., Luzi, E., Folie, A., 2017. Environmental and climatic 1459 reconstruction of MIS 3 in northwestern Europe using the small-mammal assemblage from Caverne Marie- 1460 Jeanne (Hastière-Lavaux, ). Palaeogeography, Palaeoclimatology, Palaeoecology 485, 622-631. 1461 López-Horgue, M.Á., Lertxundi-Manterola, D., Baceta-Caballero, J.I., 1996. Evolución sedimentaria del episodio mixto 1462 carbonatadoterrígeno del Albiense Superior-Cenomaniense Inferior entre Altsasu (Nafarroa) y Asparrena (Araba): 1463 la unidad Albeniz. Príncipe de Viana. Suplemento de Ciencias, 81-96. 1464 Lyman, R.L., 1994. Vertebrate taphonomy. Cambridge University Press., Cambridge. 1465 Made, J. van der , 1996. Listriodontinae (Suidae, Mammalia), their evolution, systematic and distribution in time and 1466 space. Contributions to Tertiary and Quaternary Geology 33, 3-254. 1467 Made, J. van der , 2010. The rhinos from the middle Pleistocene of Neumark Nord (Saxony-Anhalt). Veröffentlichungen 1468 des Landesamtes für Archäologie 62, 432-527. 1469 Made, J. van der, 2011. Biogeography and climatic change as a context to human dispersal out of Africa and within 1470 . Quaternary Science Reviews 30, 1353-1367. 1471 Made, J. van der, 2019. The dwarfed “giant deer” Megaloceros matritensis n.sp. from the Middle Pleistocene of Madrid

31

1472 - A descendant of M. savini and contemporary to M. giganteus. Quaternary International 520, 110-139. 1473 Made, J. van der, Palombo, M.R., 2006. Megaloceros sardus n.sp., a large deer from the Pleistocene of Sardinia. 1474 Annales Géologiques des Pays Helléniques, 41: 163-176. 1475 Made, J. van der, Rosell, J., Blasco, R., 2017. Faunas from Atapuerca at the Early-Middle Pleistocene limit: the 1476 ungulates from level TD8 in the context of climatic change. Quaternary International 433, 296-346. 1477 Made, J.van der, Stefaniak, K., Marciszak, A., 2014. The Polish fossil record of the wolf Canis and the deer Alces, 1478 Capreolus, Megaloceros, Dama and Cervus in an evolutionary perspective. Quaternary International 326-327, 1479 406-430. 1480 Made, J. van der, Torres, T., Ortiz, J.E., Moreno-Pérez L., Fernández Jalvo, Y., 2016. The new material of large 1481 mammals from Azokh and comments on the older collections. In: Fernández-Jalvo, Y., King, T., Andrews, P., 1482 Yepiskoposyan, L. (Eds.). Azokh caves and the Transcaucasian Corridor. Springer, Dordrecht, pp. 117-162. 1483 Madurell-Malapeira, J., Rook, L., Martínez-Navarro, B., Alba, D.M., Aurell-Garrido, J., Moyà-Solà, S., 2013. The latest 1484 European painted dog. Journal of Vertebrate Paleontology 33, 1244-1249. 1485 Mallye, J.-B., Thiébaut, C., Mourre, V., Costamagno, S., Claud, É., Weisbecker, P., 2012. The bone 1486 retouchers of : experimentation and identification of marks. Journal of Archaeological Science 39, 1487 1131-1142. 1488 Maluquer de Motes, J., 1954. La industria lítica de Olazagutía. Príncipe de Viana 54-55, 9-27. 1489 Marigó, J., Susanna, I., Minwer-Barakat, R., Madurell-Malapeira, J., Moyà-Solà, S., Casanovas-Vilar, I., Robles, J.M., 1490 Alba, D.M., 2014. The fossil record in the Iberian Peninsula. Journal of Iberian Geology 40, 179-211. 1491 Maroto, J., Julià, R., López-García, J.M., Blain, H.-A., 2012. Chronological and environmental context of the Middle 1492 Pleistocene human tooth from Mollet Cave (Serinyà, NE Iberian Peninsula). Journal of Human Evolution 62, 1493 655-663. 1494 Maul, L.C., Masini, F., Parfitt, S.A., Rekovets, L., Savorelli, A., 2014. Evolutionary trends in arvicolids and the 1495 endemic murid Mikrotia-New data and a critical overview. Quaternary Science Reviews 96, 240-258. 1496 McHenry, H.M., 1992. Body size and proportions in early hominids. American Journal of Physical Anthropology 87, 1497 407-431. 1498 Menu, H., Poperlard, J.B., 1987. Utilisation des caracteres dentaires pour la determination des vespertilionines de 1499 l'ouest europeen. Muséum d'histoire naturelle. 1500 Mlíkovský, J., 2002. Cenozoic Birds of the World. Part 1: Europe. Ninox Press, Praha. 1501 Nadachowski, A., 1982. Late Quaternary Rodents of with Special Reference to Morphotype Dentition Analysis 1502 of Voles. . P.W.N., Warszava-Krakow. 1503 Nilssen, P.J., 2000. An actualistic butchery study in and its implications for reconstructing hominid 1504 strategies of carcass acquisition and butchery in the Upper Pleistocene and Plio-Pleistocene, University of Cape 1505 Town South Africa. 1506 Pablos, A., Gómez-Olivencia, A., García-Pérez, A., Martínez, I., Lorenzo, C., Arsuaga, J.L., 2013b. From toe to head: 1507 Use of robust regression methods in stature estimation based on foot remains. Forensic Science International 226, 1508 299.e1-299.e7. 1509 Pablos, A., Lorenzo, C., Martínez, I., Bermúdez de Castro, J.M., Martinón-Torres, M., Carbonell, E., Arsuaga, J.L., 1510 2012. New foot remains from the Gran Dolina-TD6 Early Pleistocene site (Sierra de Atapuerca, Burgos, Spain). 1511 Journal of Human Evolution 63, 610-623. 1512 Pablos, A., Martínez, I., Lorenzo, C., Gracia, A., Sala, N., Arsuaga, J.L., 2013a. Human talus bones from the Middle 1513 Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). Journal of Human Evolution 65, 79- 1514 92. 1515 Pablos, A., Martínez, I., Lorenzo, C., Sala, N., Gracia-Téllez, A., Arsuaga, J.L., 2014. Human calcanei from the Middle 1516 Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). Journal of Human Evolution 76, 63- 1517 76. 1518 Paillard, D., 2001. Glacial cycles: toward a new paradigm. Reviews of Geophysics 39, 325-346. 1519 Palomo, L.J., Gisbert, J., Blanco, J.C., 2007. Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección 1520 General para laBiodiversidad-SECEM-SECEMU, Madrid. 1521 Pérez Ripoll, M., 1977. Los mamíferos del yacimiento musteriense de Cova Negra (Játiva, Valencia). Servicio de 1522 Investigación Prehistórica. Diputación provincial de Valencia. Serie de trabajos varios 53, 7-147. 1523 Pérez Ripoll, M., Morales Pérez, J.V., Sanchis Serra, A., Aura Tortosa, J.E., Sarrión Montañana, I., 2010. Presence of 1524 genus Cuon in upper Pleistocene and initial Holocene sites of the Iberian Peninsula: new remains identified in 1525 archaeological contexts of the Mediterranean region. Journal of Archaeological Science 37, 437-450. 1526 Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered 1527 marine isotope substages for the last 1.0 million years, and the climatostratigraphic of isotope stages and 1528 substages. Quaternary Science Reviews 111, 94-106. 1529 Rey-Rodríguez, I., López-García, J.-M., Bennasar, M., Bañuls-Cardona, S., Blain, H.-A., Blanco-Lapaz, Á., Rodríguez-

32

1530 Álvarez, X.-P., de Lombera-Hermida, A., Díaz-Rodríguez, M., Ameijenda-Iglesias, A., 2016. Last Neanderthals 1531 and first Anatomically Modern Humans in the NW Iberian Peninsula: Climatic and environmental conditions 1532 inferred from the Cova Eirós small-vertebrate assemblage during MIS 3. Quaternary Science Reviews 151, 185- 1533 197. 1534 Richard, M., Falguères, C., Pons-Branchu, E., Foliot, L., Guillem, P.M., Martínez-Valle, R., Eixea, A., Villaverde, V., 1535 2019. ESR/U-series chronology of early occupations at Cova Negra (Valencia, Spain). Quaternary 1536 Geochronology 49, 283-290. 1537 Rios-Garaizar, J., Garate Maidagan, D., Gómez-Olivencia, A., Iriarte, E., Arceredillo-Alonso, D., Iriarte-Chiapusso, 1538 M.J., Garcia-Ibaibarriaga, N., García-Moreno, A., Gutierrez-Zugasti, I., Torres, T., Aranburu, A., Arriolabengoa, 1539 M., Bailón, S., Murelaga, X., Ordiales, A., Ortiz, J.E., Rofes, J., San Pedro, Z., 2015. Short-term Neandertal 1540 occupations in the late Middle Pleistocene of Arlanpe (Lemoa, northern Iberian Peninsula). Comptes Rendus 1541 Palevol 14, 233-244. 1542 Rodríguez, J., Burjachs, F., Cuenca-Bescós, G., García, N., Van der Made, J., Pérez González, A., Blain, H.A., Expósito, 1543 I., López-García, J.M., García Antón, M., Allué, E., Cáceres, I., Huguet, R., Mosquera, M., Ollé, A., Rosell, J., 1544 Parés, J.M., Rodríguez, X.P., Díez, C., Rofes, J., Sala, R., Saladié, P., Vallverdú, J., Bennasar, M.L., Blasco, R., 1545 Bermúdez de Castro, J.M., Carbonell, E., 2011. One million years of cultural evolution in a stable environment at 1546 Atapuerca (Burgos, Spain). Quaternary Science Reviews 30, 1396-1412. 1547 Roucoux, K.H., Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., 2008. Vegetation history of the marine 1548 isotope stage 7 interglacial complex at Ioannina, NW . Quaternary Science Reviews 27, 1378-1395. 1549 Ruiz de Gaona, M., 1941. Un yacimiento de mamíferos pleistocénicos en Olazagutía (Navarra). Boletín de la Real 1550 Sociedad Española de Historia Natural 39, 155-160. 1551 Ruiz de Gaona, M. 1952. Noticia del hallazgo y destrucción del yacimiento paleolítico superior más importante de 1552 Navarra. Primer Congreso Internacional del Pirineo del Instituto de Estudios Pirenaicos, pp. 5-16. 1553 Ruiz de Gaona, M., 1958. Todavía algo sobre el yacimiento de Coscobilo (Olazagutía). Príncipe de Viana 72-73, 279- 1554 287. 1555 Sánchez Marco, A., 2004. Avian zoogeographical patterns during the Quaternary in the Mediterranean region and 1556 paleoclimatic interpretation. Ardeola 51, 91-132. 1557 Sanchis, A., Gómez-Olivencia, A., Real, C., Pérez, L., Duarte, E., Rasilla de la, M., Fernández Peris, J., Villaverde, V,, 1558 Pérez Ripoll, M. (in press): Pleistocene dhole (genus Cuon) populations from the Iberian Peninsula: 1559 morphometry, taxonomy and evolution. Colloque Hommes-Canidés, Monographies Ausonius, Université de 1560 Bordeaux. 1561 Sarrión Montañana, I., 1984. Nota preliminar sobre yacimientos paleontológicos pleistocénicos en la Ribera Baixa: 1562 Valencia. Cuadernos de Geografía, 163-174. 1563 Sarrión Montañana, I., 1990. El yacimiento del Pleistoceno Medio de la Cova del Corb (Ondara-Alicante). Archivo de 1564 Prehistoria Levantina XX, 43-75. 1565 Sarrión Montañana, I., Fernández Peris, J., 2006. Presencia de Ursus thibetanus mediterraneus (Forsyth Major, 1873) 1566 en la Cova del Bolomor. Tavernes de la Valldigna, Valencia. Archivo de Prehistoria Levantina XXVI, 1-14. 1567 Sesé, C., 2017. Los micromamíferos (Eulipotyphla, Chiroptera, Rodentia y Lagomorpha) del yacimiento del Pleistoceno 1568 Superior de la cueva de El Castillo (Cantabria). 1569 Sevilla, P., 1988. Estudio paleontológico de los Quirópteros del Cuaternario español. Paleontologia i Evolució 22, 113- 1570 233. 1571 Stuart, A.J., Lister, A.M., 2012. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of 1572 late Quaternary megafaunal extinctions in northern Eurasia. Quaternary Science Reviews 51, 1-17. 1573 Suárez-Bilbao, A., Elorza, M., Castaños, J., Arrizabalaga, A., Iriarte-Chiapusso, M.J., Murelaga, X., 2020. The Late 1574 Pleistocene avifauna from Artazu VII (Basque Country, northern Iberian Peninsula). Historical Biology 32, 307- 1575 320. 1576 Suárez-Bilbao, A., Garcia-Ibaibarriaga, N., Castaños, J., Castaños, P., Iriarte-Chiapusso, M.-J., Arrizabalaga, Á., 1577 Torrese, T., Ortiz, J.E., Murelaga, X., 2016. A new Late Pleistocene non-anthropogenic vertebrate assemblage 1578 from the northern Iberian Peninsula: Artazu VII (Arrasate, Basque Country). Comptes Rendus Palevol 15, 950- 1579 957. 1580 Svensson, L., Mullarney, K., Zetterström, D., 2010. Guía de aves: España, Europa y región mediterránea. Ediciones 1581 Omega, Barcelona. 1582 Szalay, F.S., Delson, E., 1979. Evolutionary history of the primates. Academic Press, New York. 1583 Thenius, E., 1954. Die Caniden (Mammalia) aus dem altquartär von Hundsheim (Niederösterreich) nebst Bemerkungen 1584 zur stammesgeschichte der Gattung Cuon. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 99, 1585 230-286. 1586 Tobien, H., 1957. Cuon HODG. i Gulo FRISCH (Carnivora, Mammalia) aus den altpleistozänen Snaden von Mosbach 1587 bei Wiesbaden. Państwowe Wydawnictwo Naukowe-Oddział Kraków.

33

1588 Tomek, T., Bochenski, Z.M., 2000. The Comparative Osteology of European Corvids (Aves: Corvidae), with a Key to 1589 the Identification of Their Skeletal Elements. Institute of Systematics and Evolution of Animals, Polish Academy 1590 of Sciences, Krakow. 1591 Torres, T.J., 1988. Osos (Mammalia, Carnívora, Ursidae) del Pleistoceno de la Península Ibérica. Boletin Geológico y 1592 minero 99, 1-316. 1593 Torres, T., Cobo, R., Salazar, A., 1991. La población de oso de las cavernas (Ursus spelaeus parvilatipedis n.ssp.) de 1594 Troskaeta'ko-Kobea (Ataun-Gipuzkoa) (Campaña de excavación de 1987 y 1988). Munibe (Antropologia 1595 Arkeologia) 43, 3-85. 1596 Torres, T., Nestares, T., Cobo, R., Ortiz, J.E., Cantero, M.A., Ortiz, J., Vidal, R., Prieto, J.O., 2001. Análisis morfológico 1597 y métrico de la dentición y metapodios del oso de Deninger (Ursus deningeri Von Reichenau) de la Cueva Sta. 1598 Isabel de Ranero. Aminocronología (Valle de Carranza - Bizkaia - País Vasco). Munibe (Ciencias Naturales - 1599 Natur Zientziak) 51, 107-141. 1600 Torres, T., Ortiz, J.E., Fernández, E., Arroyo-Pardo, E., Grün, R., Pérez-González, A., 2014. Aspartic acid racemization 1601 as a dating tool for dentine: A reality. Quaternary Geochronology 22, 43-56. 1602 Trinkaus, E., 1975. A functional analysis of the Neandertal foot, Faculty of the Graduate school of Arts and Sciences. 1603 University of Pennsylvania, Pennsylvania. 1604 Trinkaus, E., 1983. The Shanidar Neandertals. Academic Press, New York. 1605 Trinkaus, E., 2016. The Krapina human postcranial remains: morphology, morphometrics and paleopathology. FF-Press, 1606 Zagreb. 1607 Tyberg, T., 2007. Pleistocene Birds of the Palearctic: a Catalogue. Publications of the Nuttall Ornithological Club No. 1608 27, Cambridge (Massachusetts). 1609 VallespÍ, E., Ruiz de Gaona, M., 1969-1970. Puntas foliáceas de retoque plano en las series líticas de Coscobilo de 1610 Olazagutia (Navarra). Anuario de Eusko Folklore 23, 209-215. 1611 Vallespí Pérez, E., Ruiz de Gaona, M., 1971. Piezas inéditas de tradición achelense en las series líticas de Coscobilo de 1612 Olazagutía (Navarra). Munibe XXIII, 375-384. 1613 Villaluenga, A., Castaños, P., Arrizabalaga, A., Mujika Alustiza, J.A., 2012. Cave bear (Ursus spelaeus Rosenmüller 1614 Heinroth, 1794) and humans during the early Upper Pleistocene (Lower and Middle Palaeolithic) in Lezetxiki, 1615 Lezetxiki II and Astigarragako Kobea (Basque Country, Spain). Preliminary Approach. Journal of Taphonomy 10, 1616 521-543. 1617 Vislobokova, I.A., 2013. Morphology, taxonomy, and phylogeny of megacerines (Megacerini, Cervidae, Artiodactyla). 1618 Paleontological Journal 47, 833-950. 1619 Woolfenden, G.E., 1961. Postcranial osteology of the waterfowl. University of Florida, Gainesville.

34

1620 Figure legends 1621 1622 Figure 1. Geographical location of the Koskobilo quarry together with other sites mentioned in the 1623 text. 1624 1625 Figure 2. Selected herbivore remains from Koskobilo. From left to right and from top to bottom: 1626 horse (Equus ferus) left talus (130) in anterior view; rhinoceros (Stephanorhinus 1627 hemitoechus) right M3 (622) and left M1-2 (42) in occlusal view; cf. Megaceroides left mandibular 1628 fragment with m3 (240) in different views; red deer (Cervus elaphus) hemimandible fragment 1629 preserving the p3-m3 series (241) in lingual view; roe deer (Capreolus capreolus) left 1630 hemimandible preserving the whole p2-m3 series (506) in lingual view; goat (Capra sp.) right m3 1631 (539) in labial (left) and lingual (right) views; two right large bovid (Bos/Bison sp.) m3s (610 and 1632 611) in different views; chamois (Rupicapra sp.) left hemimandible preserving p4-m3 (505) in 1633 lingual view; wild boar (Sus scrofa) right hemimandible (238) in occlusal and labial views, and 1634 dorsal and anterior views of a right upper canine (613). 1635 1636 Figure 3. Comparison (in mm) of the Stephanorhinus hemitoechus lower premolars from Koskobilo 1637 to other rhinoceros samples. Bivariate plots of the height (H), width of the anterior lobe (DTa) and 1638 width of the posterior lobe (DTp) of the p2 (top), p3 (center) and p4 (bottom). Lines indicate 1639 average proportions. Provenance of data as indicated in Supplementary Table S1. Specimens: 1) left 1640 p2 (575): a) lingual, b) occlusal, and c) buccal views. 2) Left p3 (50): a) buccal, and b) occlusal 1641 views (note that this specimen shows a speleothem crust on its labial side; see Supplementary 1642 Figure S3). 3) Left p4 (40): a) buccal, b) occlusal, and lingual views. 1643 1644 Figure 4. Comparison (in mm) of the Stephanorhinus hemitoechus lower molars from Koskobilo to 1645 other rhinoceros samples. Bivariate diagrams of the height (H), width of the anterior lobe (DTa) and 1646 width of the posterior lobe (DTp) of the m1 and m3. Lines indicate average proportions. 1647 Provenance of data as indicated in Supplementary Table S1. Stephanorhinus hemitoechus specimens 1648 from Koskobilo: 1) left m1 (40): a) occlusal; b) buccal; and c) lingual views; 2) right m3 (MNCN 1649 46062): a) occlusal; b) buccal; and c) lingual views. 1650 1651 Figure 5. Comparison (in mm) of the Sus scrofa from Koskobilo to other Sus samples: size changes, 1652 as indicated by the width of the anterior lobe (DTa) of the m3 of wild and domestic Sus scrofa. The 1653 samples are arranged according to approximate age, old at the bottom and recent at the top. The 1654 fossil represented in the bottom of the images is a right mandible fragment preserving the m2-m3 1655 (label: 238). Provenance of data as indicated in Supplementary Table S1. Data for the Santimamiñe 1656 sample according to Castaños (1986). Note that the current fossil record from Iberian Peninsula is 1657 very limited. NL= Netherlands; D = Germany. 1658 1659 Figure 6. Size changes (in mm), as indicated by the width of the posterior lobe (DTp) of the m1 of 1660 the red deer Cervus elaphus. The samples are arranged according to approximate age, with older at 1661 the bottom and recent at the top. The two Koskobilo remains (red lines) are consistent with the size 1662 present in the c. 300 ka site of Galería (Sierra de Atapuerca), but also with the most recent Late 1663 Pleistocene and Holocene Iberian samples. Cueva de la Paloma level 2 is of Early Holocene age. 1664 Provenance of data as indicated in Supplementary Table S1. 1665 1666 Figure 7. Comparison of the cf. Megaceroides m3 and mandibular fragments from Koskobilo to 1667 other cervid samples: left m3 in a mandible fragment (243): a) occlusal, and b) lingual views; 2) left

35

1668 m3 (252): a) buccal, b) occlusal, and c) lingual views. Bivariate diagrams of the width of the 1669 anterior and posterior lobes of the m3 (DTa and DTp, respectively) and width of the mandible 1670 below the M3 (W). Lines indicate average proportions. Provenance of data as indicated in 1671 Supplementary Table S1. 1672 1673 Figure 8. Comparison of the cf. Megaceroides lower premolars and M3 from Koskobilo to other 1674 cervid samples. Bivariate diagrams of the length (DAP) and width of the anterior (DT) or posterior 1675 lobe (DTp) of the M3, p2 and p4. Lines indicate average proportions. Provenance of data as 1676 indicated in Supplementary Table S1. Specimens: 1) left p2 (68): a) occlusal b) buccal, and c) 1677 lingual views; 2) left p4 (70): a) occlusal, b) buccal, and c) lingual views; 3) left M3 (493): a) 1678 buccal, and b) occlusal views. 1679 1680 Figure 9. Selected felid, mustelid, and canid remains from Koskobilo. From left to right and from 1681 top to bottom: right hemimandible (145) of wild cat (Felis silvestris) in external (E) and internal (I) 1682 views; right upper canine (615) of leopard (Panthera pardus) in buccal (B), distal (D) and lingual 1683 (L) views; two left P4s (461 and 470) of Panthera spelaea in buccal (B) and lingual (L) views; left 1684 Mustela nivalis hemimandible preserving p3, m1-2 (509) in buccal view; different dhole remains: 1685 left hemimandible preserving p2-m1 (221) attributed to Cuon cf. alpinus europaeus, right m1 (232) 1686 attributed to Cuon cf. priscus in lingual (L), occlusal (O) and buccal (B) views, and right M1 (489) 1687 attributed to Cuon cf. alpinus europaeus in occlusal view; left maxilla preserving the M1-M2 (485) 1688 of a wolf (Canis cf. C. lupus) in occlusal view; right hemimandible (218) of a fox (Vulpes vulpes) in 1689 external (E) and internal (I) views. 1690 1691 Figure 10. Spotted hyena (Crocuta sp.) remains from Koskobilo: upper right canine (466) in buccal 1692 (B) and lingual (L) views; p3 (468) in buccal (B) and lingual (L) views. 1693 1694 Figure 11. Selected bear remains from Koskobilo. Deninger’s bear (Ursus cf. deningeri): 1695 incomplete maxilla and nasal bones (not shown) preserving the left M1-M2 (7) in occlusal view; 1696 both teeth are shown in more detail in buccal (top) and occlusal (bottom) views. Cave bear (Ursus 1697 spelaeus): left M2 (547) in buccal (top) and occlusal (bottom) views. Brown bear (Ursus arctos): 1698 right M2 (28) in buccal (top) and occlusal (bottom) views. Asian black bear (Ursus thibetanus): 1699 lower right canine (465) in labial (L) and buccal (B) views, and left M2 (34) in buccal (top) and 1700 occlusal (bottom) views. Scale bars = 2 cm, unless otherwise indicated. 1701 1702 Figure 12. Selected micromammals from Koskobilo. A) Pliomys coronensis right m1; B) Arvicola 1703 amphibius right m1; C) Microtus arvalis left m1; D) Microtus agrestis right m1; E) Talpa sp. right 1704 mandible fragment with m1-m2; F) Marmota marmota right mandible; G) M. marmota left maxilla 1705 preserving M1-M3; H) Talpa sp. left humerus; I) M. marmota right mandible with p4-m3; J) Castor 1706 fiber right mandible; K) C. fiber left maxilla with P4-M3; L) cf. Erinaceus, right humerus; M) C. 1707 fiber right mandible preserving p4-m1; N) Leporidae indet right maxilla preserving P3-M2; O) 1708 Myotis myotis left mandible. A-E, G, I, K, M-N: occlusal views; F, J, O: labial views; H: posterior 1709 view; L: anterior view. 1710 1711 Figure 13. Lateral (A) and medial (B) views of the Homo sapiens left talus and calcaneus from 1712 Koskobilo showing their articulation. 1713 1714 Figure 14. Bivariate scatter plot of selected measurements (in mm) of the Homo sapiens talus (A-C) 1715 and calcaneus (D), comparing the Koskobilo (Kos) remains to Neandertals, Middle Paleolithic

36

1716 modern humans (MPMH), Upper Paleolithic modern humans (UPMH) and the Sima de los Huesos 1717 (SH) Middle Pleistocene sample. The solid line indicates the 95% equiprobability ellipse of modern 1718 human variation. Kos-r = Koskobilo right calcaneus, Kos-l = Koskobilo left calcaneus. 1719 1720 Figure 15. Barbary macaque (Macaca sylvanus) partial m3 (200) from Koskobilo: original fossil 1721 (left) and 3D surface model (right) in occlusal, buccal and lingual views. 1722 1723 Figure 16. Avian remains from Koskobilo. a) Black grouse (Tetrao tetrix) right tarsometatarsus 1724 (268), dorsal view. b) Rock ptarmigan (Lagopus muta) right tarsometatarsus (272), dorsal view. c) 1725 Grey partridge (Perdix perdix) right tarsometatarsus (397), dorsal view; d) Red-billed chough 1726 (Pyrrhocorax pyrrhocorax) left coracoid (271), ventral view; e) Rock/Stock dove (Columba 1727 livia/oenas) right carpometacarpus (401), dorsal view; f) lark (Alaudidae indet.) right humerus 1728 (264), caudal view. 1729

37 Figure 01 Click here to access/download;Figure;Figure01new.tif Figure 02 Click here to access/download;Figure;Figure02new.tif Figure 03 Click here to access/download;Figure;Figure03new.tif Figure 04 Click here to access/download;Figure;Figure04new.tif Figure 05 Click here to access/download;Figure;Figure05new.tif Figure 06 Click here to access/download;Figure;Figure06.tif Figure 07 Click here to access/download;Figure;Figure07.tif Figure 08 Click here to access/download;Figure;Figure08new.tif Figure 09 Click here to access/download;Figure;Figure09new.tif Figure 10 Click here to access/download;Figure;Figure10.tif Figure 11 Click here to access/download;Figure;Figure11new.tif Figure 12 Click here to access/download;Figure;Figure12.tif Figure 13 Click here to access/download;Figure;Figure13new.tif Figure 14 Click here to access/download;Figure;Figure14.tif Figure 15 Click here to access/download;Figure;Figure15.tif Figure 16 Click here to access/download;Figure;Figure16new.tif

Supplementary Te xt S1 Comparative samples used in this study.

Rhinoceroses, cervids, suids, ursids The rhinoceros, cervid, suid and ursid species studied here are listed in Supplementary Table S1.

Canids In order to facilitate the identification and metrical comparison of the Cuon and Canis remains from Koskobilo extant Cuon alpinus (Museo Anatómico de la Universidad de Valladolid) and iberian Canis lupus (Museo Nacional de Ciencias Naturales y Estación Biológica de Doñana) specimens have been studied.

Homo sapiens Several Homo fossil samples have been used (see Trinkaus, 1975a; Pablos et al., 2012, 2013, 2014, 2017, 2019, Borgel et al. in press; Pearson et al., 2020 for details) for metric and morphological comparisons of the Koskobilo human pedal remains. We used Neandertal and samples. Our early modern human sample is divided into Middle Paleolithic modern humans (MPMH) and Upper Paleolithic modern humans (UPMH). The MPMH sample is composed mainly of the MIS 5 fossils from Skhul and Qafzeh (McCown and Keith, 1939; Vandermeersch, 1981). The MIS-6 Omo-Kibish 1 specimen is considered a MPMH despite its age of around 195 ka (McDougall et al., 2008; Pearson et al., 2008), and the fact that it shows some morphological differences relative to the Late Pleistocene modern humans (Trinkaus, 2005; Pearson et al., 2008; Pablos et al., 2012, 2018). Our UPMH sample is composed of western Eurasian Upper Paleolithic modern humans. Moreover, we included as a comparative population the Middle Pleistocene sample from the Sima de los Huesos (SH) site at Atapuerca (Burgos, Spain) in order to consider the possible ancestral patterns of pedal morphology (Pablos et al., 2013, 2014, 2017; Arsuaga et al., 2014, 2015). In addition, data from five recent/late Holocene comparative samples are included; the Hamann-Todd Osteological Collection from the North American 20th century (Cleveland Museum of Natural History; n = 164), the San Pablo Medieval collection (Universidad de Burgos; n = 45), the pre-dynastic Egyptian collection of the site of Keneh (Harvard Peabody Museum; n = 50), the Serbian Mistihalj medieval collection (Harvard Peabody Museum; n = 50), and the Woodland Amerindian collection from the site of Libben, Ohio (Kent State University; n = 40). In some of the comparative specimens, the antimeres of a given bone are preserved (e.g., 1 and 2, Amud 1, Shungir 1, Tabun 1, and the Shanidar, Skhul, Qafzeh, Dolní Vĕstonice and Předmostí samples). In these cases we averaged the available bilateral measurements to provide a mean value for each individual. In other cases/sites, the association of individuals is not clear (e.g.: Sima de los Huesos, Cro-Magnon, Krapina and Moula Guercy samples); for those sites we considered the bones separately.

2 Supplementary Table S1 Material studied for comparison in the different diagrams (species and locality). Collection acronyms (see Supplementary Table S2) indicate where the material was studied or where it is kept presently. In addition references are given to papers describing the same taxon from the same locality and the classifications used in these papers. In the case of the ursids, we list both the specimens studied by us and the reference only in those cases in which we have obtained data from bibliography.

Species Locality Collectiona Reference Previous identification

S. hundsheimensis Vallonnet MPRM Lacombat, 2005 Stephanorhinus hundsheimensis

S. hundsheimensis Dorn Dürkheim FISF Franzen et al., 2000 Stephanorhinus etruscus

S. hundsheimensis West Runton NHM Breda et al., 2010 Stephanorhinus hundsheimensis

S. hundsheimensis Voigtstedt IQW Kahlke, 1965b Dicerorhinus etruscus

S. hundsheimensis Süssenborn IQW Kahlke, 1969b Dicerorhinus etruscus

S. hundsheimensis Soleilhac MCP Lacombat, 2005 Stephanorhinus hundsheimensis

S. hundsheimensis Randersacker BSP Rutte, 1958 Dicerorhinus etruscus

S. hundsheimensis Mauer SMNK, RKUH Schreiber, 2005 Stephanorhinus hundsheimensis

S. hundsheimensis Mosbach NMM, SMNS Loose, 1975 Dicerorhinus etruscus

S. hundsheimensis Hundsheim NMW, IPUW Toula, 1902, 1906 Rhinoceros hundsheimensis

S. etruscus Huelago MNCN Cerdeño, 1989 Stephanorhinus cf. etruscus

S. etruscus Olivola IGF Mazza, 1988 Stephanorhinus etruscus

S. etruscus Valdarno IGF Mazza, 1988 Stephanorhinus etruscus

S. etruscus Il Tasso IGF Mazza, 1988 Stephanorhinus etruscus

S. aff etruscus El Molinar MAMCVM Van der Made and Montoya, 2008 Stephanorhinus sp.

S. aff etruscus Huescar 1 MNCN Cerdeño, 1989 Dicerorhinus etruscus brachycephalus

S. aff etruscus Atapuerca TD “base” MB Cerdeño and Sánchez, 1988 Stephanorhinus etruscus Atapueca TD4-5 CENIEH-ICTS Van der Made, 1999 Stephanorhinus etruscus

S. aff etruscus Cueva Victoria MAC Van der Made, 2015 Stephanorhinus aff. etruscus

S. hemitoechus Arago LPTUP Lacombat, 2006 Stephanorhinus hemitoechus

S. hemitoechus Bilzingsleben FBFSUJ Van der Made, 2000 Stephanorhinus hemitoechus

S. hemitoechus Steinheim am Murr SMNS Staesche, 1941 Dicerorhinus hemitoechus

S. hemitoechus Azokh 1/V ASMHCS Van der Made et al., 2016 Dicerorhinus hemitoechus

S. hemitoechus Neumark Nord 1 FBFSUJ / LVH Van der Made, 2010 Stephanorhinus hemitoechus

S. hemitoechus Ehringsdorf IQW Kahlke, 1975a Dicerorhinus hemitoechus

S. hemitoechus Taubach IQW Kahlke, 1977a Dicerorhinus hemitoechus

S. hemitoechus Rheinebene NMM Von Koenigswald (1988) Dicerorhinus hemitoechus (Rhine sediments)

S. hemitoechus Baradello MAMCVM Van der Made and Montoya, 2008 Stephanorhinus hemitoechus

S. hemitoechus Alcoi - Plaza de la Republica MAMCVM Van der Made and Montoya, 2008 Stephanorhinus hemitoechus

S. kirchbergensis Tiraspol VMM Beliajeva and David, 1971 Dicerorhinus kirchbergensis

S. kirchbergensis Mosbach NMM, SMNS Loose, 1975 Dicerorhinus kirchbergensis Schroeder, 1903

S. kirchbergensis Bilzingsleben FBFSUJ / LHV Van der Made, 2000 Stephanorhinus aff. kirchbergensis

S. kirchbergensis Steinheim an der Murr SMNS Staesche, 1941 Dicerorhinus merckii

S. kirchbergensis Murr SMNS

S. kirchbergensis Kirchberg SMNS Jäger, 1839 Rhinoceros kirchbergensis

S. kirchbergensis Neumark Nord 1 FBFSUJ / LHV Van der Made, 2010 Stephanorhingus kirchbergensis

S. kirchbergensis Ehringsdorf IQW Kahlke, 1975a Dicerorhinus kirchbergensis

S. kirchbergensis Taubach IQW Kahlke, 1977a Dicerorhinus kirchbergensis

S. kirchbergensis Rheinebene NMM Von Koenigswald, 1988 Dicerorhinus kirchbergensis (Rhine sediments) Loose, 1975 Dicerorhinus kirchbergensis

Coelodonta Chlum NMP

Coelodonta Maastricht-Belvedère NMMaa Van Kolfschoten, 1985 Coelodonta antiquitatis

Coelodonta Steinheim an der Murr SMNS

Coelodonta Ehringsdorf IQW Kahlke, 1975a Coelodonta antiquitatis

3 Coelodonta Backleben IQW

Coelodonta Heldrungen IQW

Coelodonta Kahla IQW

Coelodonta Rheineene SMNS Von Koenigswald, 1988 Coelodonta antiquitatis

Sus strozzii Upper Valdarno IGF, AVP Azzaroli, 1954 Sus strozzii

Sus strozzii Gerakarou AUT Koufos, 1986 Sus strozzii

Sus strozzii Senèze UCBL (cast orig. NMB)

Sus strozzii Ceyssaguet MNPE

Sus scrofa Koneprusy NMP, PIMUZ

Sus scrofa West Runton NHM

Sus scrofa Trimingham NHM

Sus scrofa Isernia la Pineta

Sus scrofa Mauer SMNK

Sus scrofa Mosbach NMMai Küthe, 1933 Sus scrofa mosbachentsis

Sus scrofa Hundsheim

Sus scrofa Petralona AUT Tsoukala and Guérin, 2016 Sus scrofa priscus

Sus scrofa Bilzingsleben FBFSUJ

Sus scrofa Ehringsdorf IQW Hünermann, 1975 Sus scrofa

Sus scrofa Taubach IQW Hünermann, 1977 Sus scrofa

Sus scrofa Burgtonna IQW Hünermann, 1978 Sus scrofa

Sus scrofa Valdavara-3 IPHES Vaquero et al., 2018 Sus scrofa

Sus scrofa Pinilla del Valle UCM (at present MAR)

Sus scrofa Jaurens Faure and Guérin, 1983 Sus scrofa

Sus scrofa Rotherberg MNB

Sus scrofa Veghel NBC

Sus scrofa Wiene NBC

Sus scrofa Dinther NBC

Sus scrofa Amsterdam NBC

Sus scrofa Recent HUJ

Sus scrofa Recent GSM

Sus scrofa Recent Netherlands ZMA (at present NBC)

Sus scrofa Recent Germany NBC, HUJ

Sus scrofa Cueva de Saldarañao ETSI

Sus scrofa Recent Spain MNCN, UPV-EHU

S. scrofa domestic Petersborough GMA

S. scrofa domestic Iruñea MNCN

S. scrofa domestic Gewande IVAU

S. scrofa domestic Veghel NBC

S. scrofa domestic Dinther NBC

S. scrofa domestic Heeswijk NBC

S. scrofa domestic Venenburg NBC

S. scrofa domestic Heusden Sluisput NBC

S. scrofa domestic Wassenaar NBC

S. scrofa domestic Rotterdam Maastunnel NBC

S. scrofa domestic Werkendam NBC

S. scrofa domestic Tjummarum NBC

S. scrofa domestic Hengelo Sluisput NBC

S. scrofa domestic Heesbeen NBC

S. scrofa domestic Cueva de Saldarañao ETSI

S. scrofa domestic Dorestad (VII-IX century) NBC

S. scrofa domestic Pretoric (XV century) LAUT (now IPHES)

Megaceroides Ubeidiya HUJ Geraads, 1986 Praemegaceros verticornis

Megaceroides Mosbach NMM Soergel, 1927 Cervus megaceros mosbachensis; Kahlke, 1960 Orthogonoceros verticornis and Orthogonoceros sp.

4 Megaceroides Atapuerca TD8 CENIEH-ICTS Van der Made et al., 2017 Megaceroides solilhacus

Megaceroides Tiraspol GIN Kahlke, 1971 Praemegaceros verticornis

Megaceroides Voigtstedt IQW, SMNS Kahlke, 1965a Praemegaceros sp. and Praemegaceros verticornis

Megaceroides West Runton NHM Azzaroli, 1953 Megaceros verticronis

Megaceroides Süssenborn IQW, SMNS Kahlke, 1969a Praemegaceros verticornis

Megaceroides Soleilhac MCP Azzaroli, 1979 Megaceros (Megaceroides) solilhacus

Megaceroides Megalopolis BGR Sickenberg, 1976 Praemegaceros verticornis

Megaceroides Ponte Galeria MPUR Ambrosetti, 1967 Megaceros (Megaceroides) verticornis dendroecrus

Megaceroides Petralona AUT Tsoukala, 1989 Praemegaceros verticornis

Megaceroides Atapuerca TG MBu Van der Made et al., in prep. Megaceroides

Megaloc. savini Pakefield NHM Azzaroli, 1953

Megaloc. savini Voigtstedt IQW Kahlke, 1965a Praedama sp.

Megaloc. savini Süssenborn IQW Kahlke, 1969a Praedama süssenbornensis

Megaloc. savini Ponte Galería MPUR

Megaloc. savini Cúllar de Baza MNCN Azanza and Morales, 1989

Megaloc. savini Mundesley NHM Azzaroli, 1953 Megaceros savini, (in part) Megaceros dawkinsi

Megaloc. matritensis Madrid area MNCN, MAN, MSI, de Andrés and Aguirre, 1975 Praedama MAR Van der Made and Tong, 2008 Megaloceros aff. savini 2 Mazo, 2010 Megaloceros savini Van der Made, 2019 Megaloceros matritensis

Megaloc. giganteus Rheinebene NMM Von Koenigswald, 1988 Megaloceros giganteus (Rhine sediements) Van der Made and Tong, 2008

Megaloc. giganteus Ireland NHM Lister, 1994 Megaloceros giganteus

Cervus elaphus Dorn Dürkheim FISF Franzen et al., 2000

Cervus elaphus Voigtstedt IQW Kahlke, 1965a Cervus acoronatus

Cervus elaphus West Runton NHM Lister et al., 2010 Sus scrofa

Cervus elaphus Stránská Skála Brno

Cervus elaphus Soleilhac IQW

Cervus elaphus Mauer SMNK Beninde, 1937 Cervus elaphus priscus

Cervus elaphus Mosbach NMM Kahlke, 1960, Beninde, 1937 Cervus acoronatus

Cervus elaphus Arago LPTUV

Cervus elaphus Petralona AUT Tsoukala, 1989 Cervus elaphus

Cervus elaphus Riano

Cervus elaphus Azokh VI, V, III ASMHCS Van der Made et al., 2016 Cervus elaphus

Cervus elaphus Atapuerca TG MBu Van der Made, 1999 Cervus elaphus

Cervus elaphus Clacton NHM

Cervus elaphus Steinheim and Murr SMNS Beninde, 1937

Cervus elaphus Neumark Nord FBFSUJ

Cervus elaphus Ehringsdorf IQW Kahlke, 1975b

Cervus elaphus Schweinskopf Turner, 1990

Cervus elaphus Taubach IQW Kahlke, 1977b

Cervus elaphus Binagady MBa

Cervus elaphus Lehringen HMV Houben, 2003 Cervus elaphus Sickenberg, 1969

Cervus elaphus Rheinebene NMM, RMSM Von Koenigswald, 1988

Cervus elaphus Pinilla del Valle - Camino UCM

Cervus elaphus Cueto de la Mina MNCN

Cervus elaphus Cueva Morín MNCN

Cervus elaphus Cueva de la Paloma MNCN

Cervus elaphus Recent, Georgia GSM

Cervus elaphus Recent, Spain MNCN

U. deningeri L'Escale Bonifay, 1971

U. deningeri La Romieu, Nauterie MNPE

U. deningeri Lezetxiki Gordailua Villaluenga Martínez, 2013

5 U. deningeri Bear’s Cave Tchernov and Tsoukala, 1997

U. deningeri Petralona Kurten and Poulianos, 1977, 1981

U. deningeri Sima de los Huesos MNCN, MCNB García, 2003 Torres et al., 2005

U. deningeri Jagsthausen SMNS

U. deningeri Hundsheim NHMW

U. deningeri Grotte de la Carrière Jiangzuo et al., 2019

U. deningeri Santa Isabel de Ranero ARKM, MCNB

U. deningeri Mosbach SMNS

U. spelaeus Lezetxiki GORD Villaluenga Martínez, 2013

U. spelaeus Astigarragako kobea GORD Villaluenga Martínez, 2013

U. spelaeus Labeko Koba GORD Villaluenga Martínez, 2013

U. spelaeus Ekain GORD Villaluenga Martínez, 2013

U. spelaeus Muniziaga II ARKM Villaluenga Martínez, 2013

U. spelaeus Troskaeta GORD

U. spelaeus Arrikrutz GORD

U. spelaeus Amutxate ETSI

U. spelaeus Askondo HON

U. spelaeus El Toll MCNB

U. spelaeus Belasú la garrotxa (Sardenesi) MCNB

U. spelaeus Font de Gaume MNPE

U. spelaeus Sartanette MBR

U. spelaeus Ardeche MBR

U. spelaeus Sartanette MBR

U. spelaeus Mialet MBR

U. spelaeus Kugelsteinhöhle II UJM

U. spelaeus Lurgrotte UJM

U. spelaeus Badlhöle UJM

U. spelaeus Drachenhöle b. Mixnit UJM

U. arctos Los Rincones UNIZAR Sauqué et al., 2014

U. arctos Arcoia García-Vázquez, 2015

U. arctos Gaztelu GORD

U. arctos Uribearruako Leizia I GORD

U. arctos Saldarrañao Torres, 1988

U. arctos La Canal Fuerte García-Vázquez, 2015

U. arctos Pozo La Veiga’l Retuertu García-Vázquez, 2015

U. arctos Sima de Somiedo García-Vázquez, 2015

U. arctos Les Cèdres MBR

U. arctos La Masque MBR

U. arctos Vallescure MBR

U. arctos Adaouste MBR

U. arctos Bau de l'Aubesier MBR

U. arctos Jaurens ULB

U. arctos Lazaret Valensi, 1994

U. arctos Maspino NMB

U. arctos Steienmark Repolust UJM

U. arctos Kugelsteinhöle UJM

U. arctos Heppenloch Kurtén, 1959

U. arctos Grays Thurrock Kurtén, 1959

U. arctos Recent MNCN

U. arctos Recent MNHN

U. arctos Recent MNPE

U. arctos Recent ZSM

U. arctos Recent GNM

6 U. thibetanus Recent CENIEH-ICTS

U. thibetanus Bolomor Sarrión Montaña and Fernández Peris, 2006

U. thibetanus Laaerberg NHMW

U. thibetanus Cimay MNPE Crégut-Bonnoure, 1997

U. thibetanus Les Cèdres MBR Crégut-Bonnoure, 1997

U. thibetanus Bruges NHMN Crégut-Bonnoure, 1997

U. thibetanus Boule Crégut-Bonnoure, 1997

U. thibetanus La Terrase Crégut-Bonnoure, 1997

U. thibetanus Reale Crégut-Bonnoure, 1997

U. thibetanus Gajtan Fistani and Crégut-Bonnoure, 1993

U. thibetanus Blanot Fistani and Crégut-Bonnoure, 1993

U. thibetanus Mauer NHMW, SMNS Baryshnikov, 2010b

U. thibetanus Ehringsdorf SMW Baryshnikov, 2010b

U. thibetanus Mosbach Bonifay, 1971

U. thibetanus Chlum NMP Baryshnikov, 2010b

U. thibetanus Kudaro 1 ZIN Baryshnikov, 2010b

U. thibetanus ZIN Baryshnikov, 2010b

U. thibetanus Treugolnaya ZIN Baryshnikov, 2010b a See Supplementary Table S2.

7 Supplementary Table S2 Acronyms of the collections where material was studied. ARKM Arkeologi Museoa, Bilbao ASMHCS Artsakh State Museum of History and Country Study, Stepanakert AVP Accademia Valdarnese del Poggio, Montevarchi AUT Aristotle University of Thessaloniki BGR Bundesanstalt für Geowisenschaften und Rohstoffe, Hannover BSP Bayerische Staatssammlung für Paläontologie und historische Geologie, München CENIEH-ICTS Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Colección Osteológica de Anatomía Comparada del CENIEH-ICTS; Colecciones Paleontológicas) ETSI Escuela Tecnica Superior de Ingenieros de Minas y Energía de la Universidad Politecnica de Madrid. FBFSUJ Forschungsstelle Bilzingsleben, Friedrich Schiller Universität Jena FISF Forschungsinstitut Senckenberg, Frankfurt GMA Geologisch Museum Artis, Amsterdam. GIN Geological Institute, Moscow GORD Gordailua, Gipuzkoako Ondare Bildumen Zentroa, Irun HON Hontza Museoa Fundazioa, Mañaria HUJ Hebrew University, Jerusalem IGF Istituto di Geologia, now Museo di Storia Naturale, Firenze (Florence) IPUW Institut für Paläontologie der Universität, Wien (Vienna) IQW Institut für Quartärpaläontologie Weimar, now Forschungsstation für Quartärpaläontologie of the Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Weimar IVAU Instituut Voor Aardwetenschappen, Utrecht LNEG Museu Geológico Lisboa. Laboratório Nacional de Energia e Geologia LPTUP Laboratoire de Prehistoire de Tautavel, Université de Perpignan LVH Landesmuseum für Vorgeschichte, Halle MAC Museo de Arqueología de Cartagena MAMCVM Museu Arqueològic Municipal "Camil Visedo Moltó", Alcoy MAN Museo Arqueológico Nacional, Madrid MAR Museo Arqueológico Regional, Alcalá de Henares MBa Museum of Baku MBR Museum & Bibliothèque Requien, Avignon MBu Museo de Burgos MCNB Museu de Ciències Naturals de Barcelona. MCP Musée Crozatier, Le Puy-en-Velay MNB Museum für Naturkunde, Berlin. MNCN Museo Nacional de Ciencias Naturales, Madrid MNHN Muséum National Histoire Naturelle, Paris MNPE Musée national de Préhistoire, les Eyzies MPUR Museo di Paleontologia, Istituto de Geologia e Paleontologia, Università di Roma NHM Natural History Museum, London NHMW Naturhistorische Museum Wien NMB Naturhistorisches Museum Basel NMMaa Natuurhistorisch Museum, Maastricht NMMai Naturhistorisches Museum, Mainz NMP Naródní Muzeum, Prague. PIMUZ Paläontologisches Institut und Museum der Universität, Zürich

8 RMSM Reiss-Museum der Stadt Mannheim. SMNK Staatliches Museum für Naturkunde, Karlsruhe SMNS Staatliches Museum für Naturkunde, Stuttgart UCM Universidad Complutense, Madrid UJM Universalmuseum Joanneum Graz ULB Université Claude Bernard Lyon UPV-EHU Universidad del País Vasco-Euskal Herriko Unibertsitatea UNIZAR Universidad de Zaragoza VMM Vernadzki Museum, Moscow ZMA Zoölogisch Museum, Amsterdam; presently transferred to NBC ZSM Zhoukoudiean Site Museum

9 Supplementary Tex t S2 Comparison of the Koskobilo canid remains to Lycaon We have compared the canid remains to fossils attributed to genus Lycaon and to Lycaon pictus. This genus is present during the lower Pleistocene (e.g., Venta Micena and Cueva Victoria) and its latest European populations (L. lycaonoides) are from Vallparadís (0.83 Ma). More recent records have been found in late Middle Pleistocene (MIS 6-7, Hayonim), with features and dimensions similar to the extant African species (L. pictus). The lower dentition of L. lycaonoides can be characterized by an m1 with a reduced talonid with two cuspids: hypoconid more developed, located towards de the lingual edge in a more central position, and a very reduced entoconid in the lingual border, m2 with a developed protoconid and the presence of m3. The upper molars present a trigone with a well developed depression, while the depression between the protocone and the hypocone is smaller. Its dental dimensions are above those of Cuon and more similar to Canis. The lower dentition of L. pictus is characterized by a talonid with a single cusp, an m2 with a trigone showing a single cuspid and the presence of m3 (Stiner et al., 2001; Martínez-Navarro and Rook, 2003; Madurell-Malapeira et al., 2013). The comparison between Lycaon and the Koskobilo specimens 221 (hemimandible with p2- m1), 230 (m1), 232 (m2), and 489 (M1), confirms our attribuion of these specimens to Cuon. From a morphological point of view, the presence of a talonid with a single cusp discards L. lycaonoides. In the case of L. pictus, the morphology and dimensions of the m1 are closer to Cuon, but the presence of an anterior denticle in the p4 and the absence of the m3 in Koskobilo discards Lycaon and confirms the presence of Cuon. Moreover, the Koskobilo M1 has the typical Cuon morphology with the presence of a depression in the talon and the absence of torsion. From a chronological point of view, genus Cuon is present in the Iberian Peninsula since the Middle Pleistocene (c. 250 ka BP; García, 2003) to the end of the Late Pleistocene with some suggestions of survival into the Holocene (Pérez Ripoll et al., 2010), and the remains from Koskobilo fit within this chronological framework perfectly. Regarding the Koskobilo remains attributed to genus Canis, we can rule out their assignation to genus Lycaon in the following instances: 222 (hemimandible with p3-p4), 486 (maxilla with M1-M2), 485 (M1), 487 (M1), 216 (P3) and 224 (P2). The M1 show a Canis distinct morphological pattern, including the distal-wards torsion, a p4 without an anterior denticle, and their dimensions are within the extant Canis lupus variation. Finally, from a biochronological point of view, the latest European painted dogs have a late lower Pleistocene chronology (Madurell-Malapeira et al., 2013), and none of the fossils from Koskobilo point to such an old chronology.

Supplementary Te xt S3 Statistical and osteometric analysis of the human pedal remains A comparative univariate analysis of all of the variables was carried out for the Koskobillo foot remains. To compare the individual values from this fossil with the averages from the different samples, Z-scores were calculated when the comparative sample size was ≥4, and a value of 1.96 was considered significant (p < 0.05; Sokal and Rohlf, 2003). The reference samples were also compared, and we adjusted the p-values for these comparisons using the Dunn-Sidák method (1 - (1 – α)1/n) (Rafter et al., 2002).This method established a more conservative significance level of p < 0.025. For statistical analysis, we have used STATISTICA 8.0 (Statsoft, 2007).

10 Supplementary Figure S2. Stephanorhinus hemitoechus left p3 (label 50) covered with a speleothem before (top) and after cleaning the speleothem surface on the occlusal view (bottom left) and on the lingual surface (bottom right).

11 Supplementary Figure S3. Occlusal view of the Stephanorhinus hemitoechus left p3 (label 50) after being sampled.

12 Supplementary Figure S4. Additional selected Stephanorhinus hemitoechus upper dentition remains from Koskobilo: 1) Right M1/2 (label: MNCN 60060): a) occlusal, and b) buccal views; 2) Left M1/2 (label: 45): occlusal view; 3) Left M3 (label: MNCN 46061): a) occlusal, and b) buccal views; 4) Left P4 (label: 39): a) buccal, and b) occlusal views; 5) Right P4 (label: 47): occlusal view.

13 Supplementary Table S3 Measurements (in mm) of the upper teeth of Stephanorhinus hemitoechus from Koskobilo. Collection Label Element Side DAP DAPb DTa DTp Hli Hci MN 38 P3 l -- -- 44.1 -- MN 46 P3/4 l >36.4 ------19.9 11.5? MN 570 P3/4 r ------50.2 19.5 11.8 MN 47 P4 r 38.2 36.2 52.1 50.7 21.6 8.7 MN 39 P4 l 41.3 37.9 52.7 51.8 20.4 9.0 MN 49 M1 r -- >38.9 -- -- MN 42 M1/2 l 54.9 51.0 -- 59.2 MN 45 M1/2 l 55.7 52.5 >56.5 -- 19.9 11.8 MNCN 60060 M1/2 r >50.4 >49.8 -- -- MN 622 M3 r 59.6 55.0 MNCN 46061 M3 l 58.8 52.3 54.5 MNCN = Museo Nacional de Ciencias Naturales (Madrid); MN = Museo de Navarra. l = left; r = right. Measurements follow Van der Made (2010): DAP = antero-posterior diameter. DAPb = antero-posterior diameter in the base. DTa = maximum transverse diameter of the anterior lobe of the tooth. DTp = maximum transverse diameter of the posterior lobe of the tooth. H = height. Hli = distance between the lower border of the crown and the point where the bases of the lingual cusps meet. Hci = shortest distance between the cingulum and the lower border of the crown.

14 Supplementary Table S4 Measurements (in mm) of the lower teeth of Stephanorhinus hemitoechus from Koskobilo. Collection Label Element Side DAP DAPb DTa DTp H Valley shape MN 576 d3/4 l 43.9 41.9 22.1 23.8 MN 575 p2 l 28.7 >26.1 16.4 19.9 MN 50 p3 l 38.9 33.6 21.3 24.7 >39.6 MN 48 p3 l 33.6 33.6 20.7 25.5 --V MN 51 p3 r ------24.9 p4 -- -- >25.2 -- MN 573 p4 l 44.3 43.6 28.0 28.7 MN 571 p4 l 42.4 41.3 25.4 28.4 >43.6 MN 621 m1/2 l 48.1 27.7 28.1 VV MN 574 m1/2 r >46.3 >46.7 27.4 27.0 VV MN 40 m1? l 56.0 54.0 30.7 32.2 42.2 VV MN 43 m2 l ------28.3 >23.6 MN 41 mx l ------28.9 29.1 --V MN 44 m3 l >51.9 >49.4 29.7 26.6 32.5 MNCN 46062 m3 r 50.6 49.1 25.9 25.9 29.5 PV MNCN = Museo Nacional de Ciencias Naturales (Madrid); MN = Museo de Navarra. l = left; r = right. Measurements follow Van der Made (2010): DAP = antero-posterior diameter. DAPb = antero-posterior diameter in the base. DTa = maximum transverse diameter of the anterior lobe of the tooth. DTp = maximum transverse diameter of the posterior lobe of the tooth. H = height.

15 Supplementary Table S5 Measurements (in mm) of the teeth of Sus scrofa from Koskobilo. Collection Label Element Side DAP DAPb DTa DTp DTpp H / Ha Upper teeth MN 239 P1 r ------P2 11.5 11.6 7.2 8.3 >6.4 P3 12.7 13.1 9.1 10.9 >6.8 MN 474 P3 r 15.1 13.1 9.7 10.8 >11.8 MN 475 P3 l 12.9 12.4 8.8 1.0 7.7 MN 476 P3 r 13.3 12.8 9.3 11.0 >7.2 Lower teeth MN 480 p3 l 14.4 12.4 6.4 6.8 >9.0 MN 479 m2 l 23.6 21.8 16.3 17.4 >5.8 MN 238 m2 r 20.3 19.1 15.2 15.0 >6.7 m3 37.9 37.9 15.5 16.4 13.1 9.3 MN = Museo de Navarra. l = left; r = right. DAP = antero-posterior diameter. DAPb = antero-posterior diameter in the base. DTa = maximum transverse diameter of the anterior lobe of the tooth. DTp = maximum transverse diameter of the posterior lobe of the tooth. Dtpp = maximum transverse diameter of the hypoconulid. H = height. Ha = anterior height.

16

Supplementary Table S6 Measurements (in mm) of the teeth of cf. Megaceroides from Koskobilo. Collection Label Element Side DAP DAPb DTa DTp DTpp W Upper teeth MN 490 M2 r 27.35 23.82 27.93 25.30 MN 493 M3 l 30.9 29.9 28.9 29.6 Lower teeth MN 68 p2 l 16.32 15.69 6.99 9.57 MN 69 p4 l >20.68 >18.95 >9.34 >12.01 MN 70 p4 l 21.07 20.28 11.60 12.82 MN 4 m2 l 26.58 25.72 18.20 18.10 MN 6 m2 r 25.14 22.98 17.88 18.54 MN 497 m2 r -- -- 19.66 -- MN 240 m3 l 39.4 39.2 17.1 16.0 10.2 MN 243 m3 l 39.8 38.8 >19.0 >16.8 9.8 30.3 MN 252 m3 l 40.6 40.2 19.0 17.5 9.7 l = left; r = right. DAP = antero-posterior diameter. DAPb = antero-posterior diameter in the base. DTa = maximum transverse diameter of the anterior lobe of the tooth. DTp = maximum transverse diameter of the posterior lobe of the tooth. Dtpp = maximum transverse diameter of the hypoconulid. H = height. W = width of the mandible at the m3.

18

Supplementary Table S7 Measurements (in mm) of the upper canine of leopard (Panthera pardus) from Koskobilo compared to other samples from the Iberian Peninsula. Site Chronology Side L W Reference Koskobilo Late Middle Right 12.8 10.5 This study Pleistocene?/LP Avenc de Joan LP 14.0 (12.7) Guitón 1 Sanchis et al., 2015 14.1 (12.7) S’Espasa 12.5 Estévez, 1975-76 Bolinkoba 14.1 11.5 12.1 11.0 LP Castaños, 1987 14.3 9.3 13.5 10.6 Algar da Manga 12.3 9.8 Cardoso and Regala, Larga 2006 Figueira Brava 12.9 10.5 Cardoso, 1993, 1996 Gruta do 14.7 10.2 Escoural 12.2 Lorga da Dine 14.3 10.3 L = length; W = width, LP= Late Pleistocene Values between parentheses are estimated.

20 Supplementary Table S8 Measurements (in mm) of the upper canines of spotted hyena (Crocuta crocuta/Crocuta spelaea) from Iberian sites and Pachycrocuta brevirostris from European sites. Site Location Taxon Level Chronology Label Side Length Width Reference Aprendices Zaragoza Crocuta 143.8 ± 38.9 ka 15.0 12.2 Sauqué et al., 2017 Arlanpe Bizkaia Crocuta A Late Pleistocene? ARL.H30.4.1.1 Left 14.4 9.1 Arceredillo Alonso et al. 2013 Crocuta 16.5 13.4 Crocuta 16.4 13.7 Crocuta 17.8 14.4 Castillo Cantabria Late Pleistocene Crocuta 17.0 13.0 Castaños, 2018 Crocuta 17.7 13.0 Crocuta 16.0 12.4 Crocuta 16.6 12.8 Crocuta TCB-441 14.6 Cueva del Búho Segovia Late Pleistocene Iñigo et al., 1998 Crocuta TCB-466 17.3 12.9 Polvorín Sima I Bizkaia Crocuta Late Pleistocene 18.9 13.8 Castaños, 1987 Portalón Tejadilla Segovia Crocuta 34.2-40.4 ka cal BP PG-2012/02/228 18.13 12.59 Sala et al., 2020; This study

Gombaszoeg Pachycrocuta Early Pleistocene UNM V59/1079 20.1 16.3 Sainzelle France Pachycrocuta Pliocene Type 24.0 Germany Pachycrocuta Early Pleistocene IQW1983/19555 21.9 15.8

Untermassfeld Germany Pachycrocuta Early Pleistocene IQW1987/21872 15.0 Germany Pachycrocuta Early Pleistocene IQW1990/23650 23.0 Turner and Antón, 1996 Germany Pachycrocuta Early Pleistocene IQW1990/23625 21.8 15.6 Pachycrocuta IGF 12470 22.4 15.2 Italy Plio-Pleistocene Val d'Arno Pachycrocuta IGF 838 21.0 15.3 Volga R Pachycrocuta Early Pleistocene 156/45 21.6 16.3

21 Supplementary Table S9 Measurements (in mm) of the p3 of spotted hyena (Crocuta crocuta/Crocuta spelaea) from Iberian sites and Pachycrocuta brevirostris from European sites. Site Location Taxon Level Chronology Label Side Length Width Reference Aizkirri Gipuzkoa Crocuta Late Pleistocene 23.4 Altuna, 1972 Aprendices Zaragoza Crocuta 143.8 ± 38.9 ka 21.0 15.5 Sauqué et al., 2017 Crocuta 23.3 15.4 Crocuta 21.1 15.1 Crocuta 22.3 16.7 Crocuta 24 16.6 Crocuta 21.5 15.3 Crocuta 23.5 17.4 Castillo Cantabria Crocuta Late Pleistocene 26.2 18.6

Crocuta 21.2 15.7 Castaños, 2018 Crocuta 22.7 17.5 Crocuta 22.2 15.2 Crocuta 23.3 18.4 Crocuta 23.9 16.2 Crocuta 23.4 15.4 TCB-112 21.3 16.6 Cueva del Búho Segovia Crocuta Late Pleistocene TCB-535 20.9 15.5 Iñigo et al., 1998 TCB-564 Right 20.0 15.1 Crocuta a+c > 45.9 ka 23.1 15.0 Crocuta d Late Pleistocene 21.1 15.5 Gabasa Huesca Crocuta f Late Pleistocene 21.0 15.6 Crocuta f Late Pleistocene 21.1 14.9 Crocuta g > 50.7 ka 21.0 15.2 Blasco and Montes, 1997 Gran Dolina (Atapuerca) Burgos Crocuta TD8 Middle Pleistocene TD8-28 21.0 15.5 García, 2003 Labeko koba Gipuzkoa Crocuta Sima Late Pleistocene 21.3 16.1 Altuna and Mariezkurrena, 2000

22 Crocuta Sima 21.7 16.5 Crocuta Sima 21.8 16.8 Crocuta Sima 22.5 16.8 Crocuta Sima 22.7 16.8 Crocuta IX 22.5 16.7 Crocuta VII 21.5 15.7 Crocuta VII 22.1 17.6 Crocuta VI 23.2 16.3 Crocuta Sima 22.7 16.5 Crocuta Sima 23.7 17.3 Crocuta Sima 25 18.7 Crocuta Sima 23.4 16.5 Crocuta IX 24.3 14.4 Crocuta VI 22.5 16.1 Crocuta 22.8 15.7 Leguin Navarre Late Pleistocene Arbizu et al., 2005 Crocuta 22.6 16.2 Pendo Cantabria Crocuta Late Pleistocene 26.3 15.1 Fuentes-Vidarte, 1980 PG-2012/02/208 22.3 16.2 Portalón Tejadilla Segovia Crocuta 34.2-40.4 ka cal BP SG-2017/06/45 22.7 15.6 SG-2017/06/22 24.6 18.4 Sala et al., 2020; own data Sima Abraham Andalusia Crocuta Ass 11 Late Pleistocene 23.5 17.5 Martínez-Sánchez et al., 2012 Torrejones Guadalajara Crocuta E2 Late Pleistocene T93-E2-32 21.2 16.3 This study Valdegoba Burgos Crocuta Late Pleistocene VB 20.9 15.8 García, 2003

Bacton England Pachycrocuta Early Pleistocene 288 962 24.5 17.3 Turner and Antón, 1996 Cueva Victoria Spain Pachycrocuta Early Pleistocene 24.7 19.4 Pons-Moyá, 1982

Gombaszoeg Pachycrocuta UNM V59/1024 23.6 17.9 Germany Early Pleistocene Turner and Antón, 1996 Pachycrocuta UNM V72,B7 24.4 17.9

23 Pachycrocuta UNM V60/1775 24.3 18.1 Pachycrocuta UNM V59/1020/38 26.0 Grosse-Marguerite France Pachycrocuta GM-92,01 23.4 17.1 Fourvel and Lateur, 2015 Incarcal Spain Pachycrocuta Early Pleistocene 26.3 17.6 Fourvel and Lateur, 2015 Pachycrocuta 296 25.3 19.0 Pachycrocuta 297 27.5 18.6

Manastirec Pachycrocuta 298 25.9 17.7 Kurtén and Garevski, 1989 Yugoslavia Middle Pleistocene Pachycrocuta ln.1.753 25.0 18.5 Pachycrocuta ln.1,699 25.1 17.1 Turner and Antón, 1996 Pachycrocuta ln.1.G.2.7 23.1 17.0 Sainzelle France Pachycrocuta Pliocene Type 26.0 19.0 Turner and Antón, 1996

Sainzelle France Pachycrocuta Pliocene sai 1 25.3 18.8 Turner and Antón, 1996 Salomé France Pachycrocuta 22.0 16.0 Fourvel and Lateur, 2015 Sidestrand England Pachycrocuta M17922 18.0 Pachycrocuta E 53583 23.7 19.4 Pachycrocuta E 53583 24.0 18.5 Pachycrocuta E 53583 24.7 19.2 Turner and Antón, 1996 Stranska Skala Pachycrocuta Middle Pleistocene E 53583 23.9 18.6 Pachycrocuta 1901 25.3 18.6 Pachycrocuta 2540 24.5 Pachycrocuta 22.9 18.2 Trois Pigeons France Pachycrocuta Early Pleistocene 26.0 18.2 Fourvel and Lateur, 2015 Pachycrocuta 1980/15918 22.5 18.0 Pachycrocuta 1986/21369 24.0 Turner and Antón, 1996 Untermassfeld Germany Pachycrocuta Early Pleistocene 1986/21369 23.7 Pachycrocuta 1990/23457 22.0 17.6 Pachycrocuta 1993/24369 23.5 17.8 Val d'Arno Italy Pachycrocuta Plio-Pleistocene IGF 834 22.9 17.0 Turner and Antón, 1996

24 Pachycrocuta IGF 838 23.4 16.6 Pachycrocuta M4478 23.6 17.5 Pachycrocuta VM 2271 25.2 15.6 Venta Micena Spain Early Pleistocene Turner and Antón, 1996 Pachycrocuta VM 3548 24.1 16.3 Volga R Russia Pachycrocuta Early Pleistocene 156/45 23.5 17.6 Turner and Antón, 1996

25 Supplementary Table S10 Measurements (in mm) of the p2, p3, m1 and m2 of Canis mosbachensis from Iberian sites used as comparative samples. P2 P3 M1 M2 Site Label Reference Side L W L W L W L W Cueva Victoria IMEDEA-C36 Right 14.3 17.4 7.9 11

IMEDEA-C6 Right 5.2 13.2 15.9 6.7 8.9 IMEDEA-C1 Left 14.4 16.5 7.8 10

IMEDEA-C1 Right 14.1 16.6 7.8 10 IMEDEA-C2 Left 10.9 4.5 12.7 4.7 12.9 14.6 7.7 9.6

IMEDEA-C2 Right 11.1 4.5 13 14.8 7.1 9 IMEDEA-C29d Left 13.5 5.1

IMEDEA-C29k Left 12.9 4.9 IMEDEA-C19b Right 12.7 15.1

IMEDEA-C19c Right 13.1 16.7 Bartolini Lucenti et al., 2017 IMEDEA-C19d Right 13.2 16.2

IMEDEA-C23b Left 7.4 10.9 IMEDEA-C23c Left 7.1 9.3

IMEDEA-C23d Left 7.8 11.5 IPS43145 Left 13.8 17.3

IPS43144 Right 13.3 15.7 IPS45637a Left 16.1

IPS45637b Left 7.7 10 IPS45637c Right 7.8 9.7

IPS45637d Right 13 15.1 IPS43410c Right 11.7 5.1

Vallparadís EVT22398 Left 11.8 4.7 13.3 5.3 14.7 16.1 7.8 10 EVT25504 Left 4.2 12.9 4.8 12.7 15.6 6.4 9 Bartolini Lucenti et al., 2017 EVT8351 Right 8.3 10.4 EVT6530 Left 13.8 16

Punta Lucero PL.771 Right 8.1 11.7 Gómez-Olivencia et al., 2015 Alcalá and Morales, 1989; Gómez- Huéscar HU1-66 A314 8.6 12.9 Olivencia et al., 2015

26 Supplementary Table S11 Measurements (in mm) of the p3 and p4 of Canis mosbachensis from Iberian sites used as comparative samples.

p3 p4 Site Label Side Reference L W L W Cueva Victoria IMEDEA-C3 Right 11.7 4.9 13.4 6.2 IMEDEA-C28 Right 11.1 12.4 5.6 Bartolini Lucenti et al., 2017 IMEDEA-C22 Right 11.4 4.6 IMEDEA-C37b Left 14.2 7 IPS43249 Left 14.6 6.9 Vallparadís EVT13840 Right 13.2 5.7 EVT25003 Left 11.5 5.1 13.1 5.8 Bartolini Lucenti et al., 2017 EVT24342 Right 12.4 5.1 14.2 6.3 EVT13840 Right 10.9 4.3 Punta Lucero PL.763 right 14.2 6.4 Gómez-Olivencia et al., 2015

27 Supplementary Table S12 Measurements (in mm) of fox (Vulpes vulpes) remains from Koskobilo compared to Middle Pleistocene and recent samples of V. vulpes and to a recent sample of V. lagopus. Upper M1 Upper M2 Lower M1 Lower M2 Reference Site/Sample Chronology Label Side L W L W L L (trigonid) W L W Late Middle Koskobilo or Upper 488 Left Pleistocene 10.3 12.7 6.0 8.7 This study 218 Right 15.9 10.9 6.4 7.1 5.9 This study 219 Right 14.6 9.3 5.9 This study 225 Left 16.7 11.0 6.4 7.5 5.6 This study

208 Left 15.8 9.7 6.6 This study

227 Left 7.7 5.4 This study Vulpes vulpes 9.79 ± 0.53 11.74 ± 0.72 5.75 ± 0.39 8.61 ± 0.67 15.86 ± 0.83 11.3 ± 0.6 6.12 ± 0.37 7.37 ±0.59 5.35 ± 0.6 Sima de los Middle (8.7-10.8) (9.9-13.0) (5.2-6.5) (7.5-9.6) (14.3-17.3) (9.9-12.5) (5.4-6.7) (6.3-8.4) (3.3-6.4) Huesos Pleistocene - n = 23 n = 23 n = 14 n = 14 n = 36 n = 36 n = 36 n = 28 n = 28 García, 2003 9.42 ± 0.38 12.79 ± 0.55 5.29 ± 0.38 8.31 ± 0.95 15.4 ± 0.65 5.84 ± 0.27 7.12 ± 0.38 5.15 ± 0.31 (8.6-10.4) (11.5-13.8) (4.2-6.3) (7.0-9.5) (14.4-16.8) (5.1-6.4) (6.1-7.9) (4.4-6.2) Gingerich and Recent Recent - n =50 n = 49 n = 51 n = 51 n = 50 n = 48 n = 51 n = 47 Winkler, 1979 9.5. ± 0.45 11.5 ± 0.61 15.3 ± 0.68 9.2 ± 0.54 6.02 ± 0.37 7.4 ± 0.45 5.34 ± 0.34 (8.4-10.4) (10.2-13.0) (13.2-16.7) (10.3-11.5) (5.1-6.8) (6.0-8.4) (4.6-6.6) Recent Recent - n = 55 n = 55 n = 76 n = 39 n = 76 n = 103 n = 103 Altuna, 2004 7.8 ± 0.45 9.4 ± 0.64 13.4 ± 0.71 9.0 ± 0.51 5.0 ± 0.34 5.7 ± 0.53 4.0 ± 0.31 (6.9-8.5) (8.0-10.4) (12.0-14.7) (8.0-10.0) (3.8-5.5) (4.3-6.6) (3.2-4.4) Vulpes lagopus Recent - n = 36 n = 36 n = 37 n = 35 n = 37 n = 37 n = 37 Altuna, 2004 L = length; W = width

28 Supplementary Table S13 Measurements (in mm) of Mustela nivalis from Koskobilo compared to other Mustela recent and fossil samples. Taxon Site Label Side Length of the Height of the Lm1 Wm1 Reference mandible mandible Mustela nivalis Koskobilo 507 Left 18.1 9.1 4.0 1.2 This study 508 Left 3.6 1.1 This study 509 Left 20.0 9.1 4.7 1.7 This study 511 Right (15.5) 7.5 3.6 1.3 This study 512 Left (18.0) 8.4 3.7 1.5 This study [16.8] 513 Left 4.8 1.7 This study 514 Left 4.5 1.6 This study 515 Right 4.7 1.7 This study 516 Right 3.6 1.5 This study Mustela nivalis Recent (Nantes) Mean ± SD 19.80 ± 1.89 - 4.45 ± 0.36 1.61 ± 0.17 Hugueney, 1975 (min-max) (15.1-21.7) (3.72-4.92) (1.28-1.78) n n = 17 n = 17 n = 17 La Fage Mean ± SD 18.00 ± 2.16 - 4.15 ± 0.4 1.41 ± 0.2 Hugueney, 1975 (Middle (min-max) (14.0-20.4) (3.24-4.96) (1.05-1.78) Pleistocene) n n = 31 n = 183 n = 183 TD10-11 Mean ± SD - - 4.33 ± 0.44 1.47 ± 0.23 García, 2003 (min-max) (3.23-4.92) (1.02-1.77) n n = 15 n = 15

Mustela erminia Recent (Iberia) Mean ± SD 25.14 ± 1.68 12.19 ± 5.73 ± 0.33 2.11 ± 0.18 García, 2003 (min-max) (21.9-27.8) (10.6-14.5) (5.1-6.3) (1.7-2.4) n n = 27 n = 26 n = 29 n = 29 L = length; W = width Values between parentheses are estimated. Values between [] are preserved values.

29 Supplementary Figure S7. Left Ursus deningeri or Ursus spelaeus mandible. The absence of teeth makes its taxonomic assessment more difficult. Based on the recorded measurements (Supplementary Table S14) we have performed a principal components analysis (PCA; Supplementary Figure S8), where this specimen is at the limits of our U. deningeri variation, which is within the U. spelaeus morphospace.

30 Supplementary Figure S8. Principal component analysis (based on the data from Supplementary Table S14) comparing the Koskobilo 545 mandible to other Ursus species. Its position at the limits of the morphospace of U. deningeri and the absence of teeth prevents us from making a specific assignment within the cave bear lineage (U. deningeri-U. spelaeus). The 95% equiprobability ellipses indicate the U. spelaeus sample (left) and the U. arctos sample (right). The eigenvalues and the correlations between the PCs and the original variables can be found in Supplementary Table S15.

31 Supplementary Table S14 Measurements (in mm) for the Koskobilo Ursus sp. (U. deningeri-U. spelaeus) complete adult mandible (545) to other bear samples.

Sample/Species Maximum Length Length of the Length of the Length of the Height of the Height of the Height of the Height of the Thickness of Thickness of Reference length between c dental series diastema molar series mandible at mandible at mandible at mandibular the mandible the mandible and m3 p4 m1 m3 condyle between p4 between m2 and m1 and m3 Koskobilo Side: left 309.4 158.0 102.0 56.6 86.4 64.5 63.3 72.2 23.4 22.6 25.0 This study U. deningeri Mean 283.94±21.17 144.34±10.20 94.47±5.27 53.25±8.24 78.75±4.10 61.35±7.10 59.89±9.46 66.84±8.10 23.63±2.98 21.15±3.17 24.74±3.96 Zapfe, 1946; (Min-Max) (234.9-320.0) (121.3-168.3) (82.9-106.0) (31.3-69.4) (69.8-87.2) (45.6-74.0) (32.7-72.7) (52.0-81.0) (17.3-30.8) (15.9-29.8) (19.5-34.0) Kurtén and n n = 33 n = 21 n = 31 n = 32 n = 22 n = 35 n = 25 n = 28 n = 28 n = 25 n = 27 Poulianos, 1981; Argant, 1991; García, 2003; Ballesio et al., 2003; Villaluenga Martínez, 2013; This study U. spelaeus Mean 297.52±25.06 155.51±10.93 102.72±6.13 52.23±8.06 86.68±5.37 63.78±9.55 64.59±8.21 71.03±9.31 26.05±3.66 22.73±2.99 27.07±3.32 Villaluenga (Min-Max) (248.5-358.4) (131.3-203.6) (84.9-115.9) (30.2-73.8) (71.5-103.0) (45.4-81.9) (47.1-83.6) (43.7-92.4) (20.7-33.9) (16.8-37.6) (20.5-36.9) Martínez, 2013; n n = 91 n = 115 n = 122 n = 132 n = 123 n = 134 n = 130 n = 132 n = 111 n = 139 n = 145 This study Cova Eirós Mean 296.70±4.73 151.80±6.20 97.90±5.76 56.10±2.84 82.60±5.81 61.50±4.80 62.9±5.88 65.8±3.82 25.50±1.96 Grandal d’Anglade, U. spelaeus (Min-Max) (290.1-307.5) (144-163.6) (90-107.9) (51.7-60.3) (76.4-96) (54.6-68.7) (54.4-73) (59.5-71.8) (22.1-27.8) - - 1993 females n n = 10 n = 11 n = 11 n = 11 n = 10 n = 11 n = 11 n = 11 n = 10 Cova Eirós Mean 333.70±7.79 164.20±19.91 99.80±7.50 57.70±8.72 86.80±1.62 74.20±4.65 75.90±5.65 81.00±3.98 27.80±2.05 Grandal d’Anglade, U. spelaeus (Min-Max) (322-347.1) (148.8-199) (88.9-105.7) (46.4-71.8) (85-88.9) (66.5-80.8) (70-81.8) (77.1-86) (25.3-30.7) - - 1993 males n n = 5 n = 5 n = 4 n = 6 n = 4 n = 6 n = 5 n = 5 n = 5

U. arctos Mean 216.34±27.06 111.22±10.27 77.94±5.64 32.75±6.77 65.89±4.70 41.43±6.74 39.94±8.30 45.27±7.48 15.93±2.10 14.09±2.56 18.66±2.91 Bonifay, 1971; (Min-Max) (168.5-276.4) (92.1-134.8) (64.4-90.4) (18.4-45.6) (56.3-79.2) (28.8-55.8) (25.3-56.5) (30.5-64.9) (11.9-23.3) (10.3-22.3) (14.2-27.5) Erdbrink, 1982; n n = 97 n = 87 n = 88 n = 100 n = 102 n = 100 n = 102 n = 102 n = 97 n = 101 n = 101 Torres, 1987; Baryshnikov, 2010a; García-Vázquez, 2015; This study All these variables were used in the PCA analysis (Supplementary Figure S8) except the height of the mandibular condyle.

32 Supplementary Table S15 Principal component-variable correlations (loadings) and percentage of total variance explained of the principal component analysis (based on the data from Supplementary Table S14) comparing the Koskobilo 545 mandible to other Ursus species.

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 % variance explained 91.118 3.329 2.213 1.080 0.777 0.439 0.376 0.329 0.168 0.108 Maximum length -0.325 0.127 0.032 0.081 -0.075 0.120 -0.620 0.681 -0.052 -0.011 Length between c and m3 -0.321 0.083 0.318 0.254 -0.052 -0.838 0.069 -0.002 0.110 -0.046 Length of the dental series -0.313 -0.497 0.284 0.022 0.006 0.079 -0.027 -0.153 -0.635 0.375 Length of the diastema -0.301 0.629 0.163 0.479 0.089 0.378 0.218 -0.190 -0.110 0.102 Length of the molar series -0.311 -0.496 0.298 0.203 0.150 0.331 0.122 0.010 0.524 -0.325 Height of the mandible in p4 -0.323 0.114 0.008 -0.513 0.158 0.014 0.463 0.348 0.225 0.456 Height of the mandible at m1 -0.325 0.153 0.006 -0.441 0.139 -0.003 0.116 -0.050 -0.381 -0.704 Height of the mandible at m3 -0.324 0.134 -0.005 -0.352 -0.035 0.021 -0.520 -0.592 0.313 0.179 Thickness of the mandible between p4 and m1 -0.316 -0.092 -0.374 0.060 -0.831 0.065 0.220 -0.025 0.026 -0.056 Thickness of the mandible between m2 and m3 -0.304 -0.160 -0.750 0.268 0.474 -0.139 -0.012 -0.047 -0.028 0.041

33

Supplementary Table S16 Measurements (in mm) of the Ursus upper dentition from Koskobilo compared to other bear samples. Upper Canine Upper P4 Upper M1 Upper M2 Site Taxon Level/Label (side) References L W L W L Anterior W Posterior W L Anterior W Koskobilo U. arctos 235 (right)/236(left) 18.5/19.1 13.9/13.8 This study Koskobilo U. arctos 233 (right) 15.7 13.4 This study Koskobilo U. arctos 32 (right) 15.8 12.7 This study Koskobilo U. arctos 27 (left) 36.8 This study Koskobilo U. arctos 28 (right) 37.5 19.1 Regourdou U. arctos - - 16.3± 0.67 11.37±0.2 22.29± 0.85 15.84 ± 0.69 16.36 ± 0.87 35.92 ± 2.25 18.57 ± 1.58 This study (Pleistocene) (15.73-17.05) (11.17-11.57) (21.57-24.21) (14.49-16.84) (15.03-18.03) (32.24-40.81) (16.54-22.4) n = 3 n = 3 n = 10 n = 10 n = 10 n = 12 n = 12 Recent (Balkans) U. arctos 14.93 ± 0.95 11.38 ± 0.60 21.06 ± 1.01 14.33 ± 0.72 15.58 ± 0.75 31.68 ± 2.01 16.57 ± 0.9 Wagner and Čermák, (13.1–17.3) (9.9–12.7) (19.2–23.7) (12.4–15.6) (13.9–17.5) (26.6–36) (14.9–18.6) 2012 - - n = 66 n = 55 n = 58 n = 60 n = 62 n = 58 n = 59

Koskobilo U. cf. deningeri 7 (left) 24.4 17.6 19.1 39.9 21.1 This study

Koskobilo U. deningeri/U.spelaeus 26 (left) 25.2 18.2 18.4 This study Koskobilo U. deningeri/U.spelaeus 549 (left) 26.5 17.8 18.0 This study Koskobilo U. deningeri/U.spelaeus 551 (right) 42.0 21.3 This study Koskobilo U. deningeri/U.spelaeus 565 (left) 41.5 20.1 This study

Koskobilo U. spelaeus 544 (right) 19.0 14.5 26.2 18.6 19.1 45.5 22.2 This study Koskobilo U. spelaeus 15 (right) 23.2 15.7 This study Koskobilo U. spelaeus 18 (right) 21.6 17.6 This study Koskobilo U. spelaeus 19 (left) 22.2 18.3 This study Koskobilo U. spelaeus 20 (left) 18.9 13.9 This study Koskobilo U. spelaeus 21 (right) 18.6 16.4 This study Koskobilo U. spelaeus 442 (left) 18.4 14.3 This study Koskobilo U. spelaeus 501 (left) 18.6 13.9 26.5 18.0 18.3 This study Koskobilo U. spelaeus 23 (left) 26.4 19.6 20.7 This study Koskobilo U. spelaeus 35 (left) 43.7 20.9 This study Koskobilo U. spelaeus 500 (right) 47.7 21.2 This study

35 Koskobilo U. spelaeus 547 (left) 47.4 24.2 This study

Koskobilo Ursus sp. 234 (left) 18.4 13.8 This study Koskobilo Ursus sp. 559 (left) 19.0 13.9 This study Koskobilo Ursus sp. 284 (left) 17.3 This study Koskobilo Ursus sp. 482 (right) 17.5 This study

Sima de los U. deningeri In situ 20.56 ± 2.98 16.17 ± 2.03 17.15 ± 0.95 12.74 ± 1.23 25.41 ± 1.01 17.52 ± 1.5 17.54 ± 1.65 40.57 ± 2.48 19.83 ± 1.24 García, 2003 Huesos (17.2-29.5) (13.2-20.0) (15.9-19.6) (10.9-16.2) (24.2-27.0) (15.8-20.2) (16.0-21.2) (36-44.9) (18.1-21.9) n = 33 n = 33 n = 32 n = 30 n = 32 n = 32 n = 32 n = 41 n = 40 Sima de los U. deningeri Not in situ 12.79 ± 2.34 12.33 ± 1.96 17.17 ± 1.03 13.3 ± 1.06 25.6 ± 1.4 17.81 ± 1.22 17.54 ± 1.46 39.67 ± 4.07 20.16 ± 1.36 García, 2003 Huesos (15.9-26.3) (13.15-20.3) (15.6-19.5) (11.2-15.9) (22.0-30.0) (13.7-20.5) (11.5-21.0) (18.8-45.3) (17.7-25.0) n = 25 n = 25 n = 42 n = 44 n = 89 n = 81 n = 87 n = 40 n = 41

Troskaeta U. spelaeus 20.2 ± 1.67 14.4 ±1.50 27.4 ± 1.43 19.3 ± 1.29 19± 1.11 43.8 ± 2.37 22.1 ± 1.04 Torres et al., 1991 - - (17.1-23.0) (10.9-16.8) (24.4-29.6) (16.7-21.6) (16.9-20.8) (39.5-49.0) (19-24.9) n = 27 n = 22 n = 39 n = 36 n = 33 n = 46 n = 45 Ekain U. spelaeus 21.3 ± 1.39 15 ± 1.15 29.3 ± 1.84 20.8 ± 1.43 20.2 ± 1.49 45.3 ± 2.54 23.3 ± 1.29 Torres et al., 1991 - - (18.2-23.5) (12.2-17.7) (25.2-33.3) (17.4-22.8) (17.5-23.8) (40-51.5) (20.5-26.6) n = 120 n = 110 n = 127 n = 122 n = 119 n = 111 n = 139 Arrikrutz U. spelaeus 20.4 ± 1.50 14.1 ± 1.05 29.0 ± 1.84 20.2 ± 1.38 20.1 ± 1.31 45.4 ± 2.62 23.5 ± 1.67 Torres et al., 1991 - - (17.5-21.6) (11.7-16.3) (25.2-33.3) (17.2-23.0) (17.7-23) (41.3-54.6) (22.1-28.5) n = 49 n = 49 n = 55 n = 49 n = 50 n = 64 n = 64 L = length; W = width.

36 Supplementary Figure S10. Bivariate comparison of the Koskobilo M1s to Pleistocene Ursus arctos (open circles), U. deningeri (grey circles) and U. spelaeus (black circles). The samples from Sima de los Huesos (U. deningeri; García, 2003) and Troskaeta, Arrikrutz and Ekain (U. spelaeus; Torres et al., 1991) are represented by the mean value and the lines represent one standard deviation.

37 Supplementary Figure S11. Bivariate comparison of the Koskobilo M2s to Pleistocene Ursus arctos (open circles), U. deningeri (grey circles) and U. spelaeus (black circles). The samples from Sima de los Huesos (U. deningeri; García, 2003) and Troskaeta, Arrikrutz and Ekain (U. spelaeus; Torres et al., 1991) are represented by the mean value and the lines represent one standard deviation.

38 Supplementary Table S17 Measurements (in mm) of the Ursus lower dentition from Koskobilo compared to other bear samples. Lower Canine Lower P4 Lower M1 Lower M2 Lower M3 Site Taxon Level/Label (side) References L W L W L W-anterior W-posterior L W-anterior W-posterior L W Koskobilo U. arctos 237(left)/389(right) 18.47/18.34 13.91/13.51 This study Koskobilo U. arctos 211 (right) 22.38 15.08 This study Regordou U. arctos 24.57± 0.79 16.21 ± 0.99 12.78± 0.54 7.34 ± 0.65 23.77 ± 1.14 9.73± 0.77 11.82 ± 0.71 25.54 ± 1.94 14.86± 1.25 15.46 ± 1.67 21.75± 1.22 16.55 ± 0.98 This study (Late Pleistocene) (23.44-25.5) (14.9-17.22) (12-13.61) (6.49-8.27) (21.1-25.8) (8.26-10.96) (10.52- (21.85- (12.93- (13.5-18.72) (19.97- (14.76- n = 5 n = 5 n = 9 n = 9 n = 11 n = 11 12.78) 29.34) 16.58) n = 11 24.31) 17.73) n = 11 n = 11 n = 11 n = 10 n = 10 Recent (Balkans) U. arctos 12.14 ± 1.00 6.86 ± 0.54 22.25 ± 1.05 8.70 ± 0.48 10.84 ± 0.65 22.93 ± 1.26 13.11 ± 0.77 14.08 ± 0.80 19.29 ± 1.44 14.08 ± 0.80 Wagner and (10.3–14.3) (5.9–8.6) (20.3–24.8) (7.6–9.4) (9.6–12.3) (20.5–25.3) (11.4–15.2) (12.4–16.2) (16.2–22.0) (12.3–16.2) Čermák, 2012 - - n = 52 n = 53 n = 51 n = 49 n = 49 n = 54 n = 53 n = 52 n = 38 n = 38

Koskobilo U. spelaeus 12 (left) 23.6 15.97 This study Koskobilo U. spelaeus 13 (right) 26.49 19.5 This study Koskobilo U. spelaeus 37 (left) 23.86 20.46 This study Koskobilo U. spelaeus 388 (right) 26.71 20.75 This study Koskobilo U. spelaeus 545 (left) 23.22 19.35 This study Koskobilo U. spelaeus 16 (left) 31.6 17.11 19.01 This study Koskobilo U. spelaeus 483 (left) 28.48 15.23 16.23 This study Koskobilo U. spelaeus 555 (left) 29.62 19.44 19.76 This study Koskobilo U. spelaeus 563 (left) 33.18 20 21.05 This study

Koskobilo U. spelaeus 17 (right) 30.51 21.35 This study Koskobilo U. spelaeus 550 (right) 24.3 18.73 This study Koskobilo U. spelaeus 543 (right) 23.39 19.42 This study

Koskobilo Ursus sp. 11 (right) 23.05 19.18 This study Koskobilo Ursus sp. 231 (left) 12.77 6.91 This study

Sima de los Huesos U. deningeri In situ 20.37 ± 2.31 16.07 ± 1.83 12.9 ± 1.21 8.35 ± 0.54 26.71 ± 0.98 10.11 ± 0.57 13.14 ± 0.63 27.0 ± 1.5 16.0 ± 0.6 16.0 ± 0.8 23.57 ± 2.06 17.44 ± 0.76 García, 2003 (18.0-27.7) (14.2-21.4) (10.5-15.4) (7.6-9.2) (25.3-28.6) (8.8-10.8) (12.4-14.7) (24.7-30) (15.0-16.8) (14.3-17) (19.5-26.8) (16.4-18.9) n = 19 n = 19 n = 25 n = 20 n = 15 n = 15 n = 15 n = 11 n = 12 n = 12 n = 20 n = 19 Sima de los Huesos U. deningeri Not in situ 21.53 ± 2.85 16.38 ± 2.18 13.14 ± 1.26 8.48 ± 0.69 27.22 ± 1.76 10.43 ± 0.83 13.21 ± 0.87 27.0 ± 1.8 16.0 ± 0.9 16.0 ± 1.1 24.0 ± 2.14 17.3 ± 1.10 García, 2003 (18.7-27.7) (14.3-22) (10.7-16.8) (6.8-10.5) (22.6-30.9) (8.4-12) (11.5-14.8) (23.4-33) (14.2-18.3) (14-18.8) (16.3-28.7) (15.3-20.3) n = 22 n = 22 n = 85 n = 90 n = 32 n = 31 n = 33 n = 63 n = 63 n = 64 n = 69 n = 69

39 Troskaeta U. spelaeus - - 14.6 ± 1.50 10.1 ± 1.43 28.9 ± 1.45 12.3 ±0.92 14.3 ±1.08 29.8 ± 2.09 17.9 ± 1.30 18.4 ± 1.48 25.0 ± 1.91 18.5 ± 1.44 Torres et al., (11.3-18.1) (7.9-16.1) (26.6-31.5) (10.3-14.3) (12.3-16.8) (24.1-34.3) (14.6-20.3) (14.3-21.3) (20.5-29.3) (15.0-22.0) 1991 n = 30 n = 30 n = 47 n = 46 n = 53 n = 72 n = 66 n = 62 n = 49 n = 46

Ekain U. spelaeus - - 15.6 ± 1.34 11.4 ± 1.08 30.8 ± 2.58 12.4 ± 0.80 14.8 ± 1.11 31.9 ± 1.67 18 ± 1.01 18.7 ± 1.15 27.1 ± 1.95 19.5 ± 1.70 Torres et al., (12.2-18.2) (9.6-14.2) (27.1-34.7) (10.6-14.7) (13-17.9) (27.5-35.8) (15.7-20.8) (16.3-21.8) (21.8-30.5) (16.3-25.0) 1991 n = 117 n = 119 n = 196 n = 203 n = 208 n = 208 n = 209 n = 202 n = 135 n = 133

Arrikrutz U. spelaeus - - 15.9 ± 0.98 10.7 ± 0.89 30.4 ± 1.68 12.3 ± 0.94 14.9 ± 0.96 30.4 ± 1.45 18.1 ± 1.21 19.2 ± 1.17 26.7 ± 1.93 20.0 ± 1.56 Torres et al., (13.5-17.6) (9.0-12.9) (27.4-33.2) (11.0-14.2) (12.6-16.6) (26.6-32.5) (15.2-20.8) (17.2-21.8) (22.2-30.5) (17.3-25.0) 1991 n = 32 n = 32 n = 54 n = 53 n = 52 n = 97 n = 92 n = 90 n = 86 n = 87

L = length; W = width.

40 Supplementary Table S18 Morphology of the M1 and M2 of Ursus cf. deningeri from Koskobilo compared to other Ursus samples.

Site/Species Upper M1 Upper M2 References Paracone Protocone Metacone Paracone Metacone Koskobilo Wide parastyle Small metaconule Metastyle present Simple Simple This study (label: 7) Ursus deningeri Small parastyle: 77.6% Small metaconule: 22.3% Metastyle absent: 2.16% Simple: 81.91% Simple: 11.7% Torres et al., 2005; this study (Iberian Wide parastyle: 22.4% Wide metaconule: 77.69% Metastyle present: 97.84% With parastyle: 18.08% Double: 67.02% Peninsula) n = 125 n = 139 n = 139 n = 94 Complex: 21.27% n = 94 Ursus spelaeus Small parastyle: 44.78% Small metaconule: 0.62% Metastyle absent: 3.78% Simple: 94.19% Simple: 39.35% Torres et al., 2005 (Iberian Wide parastyle: 55.21% Wide metaconule: 80% Metastyle present: 96.21% With parastyle: 5.8% Double: 60% Peninsula) n = 163 Complex: 19.37% n = 132 n = 155 Complex: 0.65% n = 160 n = 155 U. arctos Small parastyle: 47.37 Small metaconule: 91.89% Metastyle absent: 44.11% Simple: 85.71% Simple: 89.47% This study (recent) Wide parastyle: 52.63% Wide metaconule: 8.10% Small metastyle: 35.28% With parastyle: 14.28% Double: 7.89% n = 38 n = 37 Metastyle present: 20.59% n = 35 Complex: 2.63% n = 34 n = 38

41 Supplementary Table S19 Measurements (in mm) of the Ursus cf. deningeri palate thickness from Koskobilo compared to other bear samples.

Site/Species Palate thickness in M2 Reference Koskobilo (label: 7) 4.7 This study U. deningeri 6.43 ± 0.84 Santos, 2013 (5.57-7.84) n = 6 U. spelaeus 12.11 ± 2.37 Santos, 2013 (7.39-18.00) n = 55 U. arctos 2.37 ± 0.86 Santos, 2013 (1.44-4.55) n = 22

42 Supplementary Table S20 Measurements (in mm) of the Ursus thibetanus Upper M2 from Koskobilo (34; left) compared to other fossil specimens. Upper M2 Site Level/Label (side) References L Anterior W Koskobilo 34 (Left) 27.6 16.2 This study Bolomor (Left) 24.7 14.6 Sarrión Montaña and Fernández Peris, 2006 Reale IGF 4806 V 26.02 14.87 Crégut-Bonnoure, 1997 Bruges (Right) 28.62 15.29 Crégut-Bonnoure, 1997 Bruges (Left) 29.29 15.33 Crégut-Bonnoure, 1997 Les Cèdres C6 28.51 16.36 Crégut-Bonnoure, 1997 Les Cèdres C6 SII 28.37 15.97 Crégut-Bonnoure, 1997 Boule Mbrêche 28.36 16.54 Crégut-Bonnoure, 1997 La Terrase T5G2 27.09 15.08 Crégut-Bonnoure, 1997 Cimay 113 28.52 16.62 Crégut-Bonnoure, 1997 Gajtan 27.6 15.6 Fistani and Crégut-Bonnoure, 1993 Blanot 27.6 15.5 Fistani and Crégut-Bonnoure, 1993 L = length; W = width.

43 Supplementary Table S21 Measurements (in mm) of the Ursus thibetanus lower canine from Koskobilo (465; right) compared to other fossil specimens. Lower Canine Site Level/Label (side) References L W Koskobilo 465 (right) 17.1 12.3 This study Laaerberg 1998z0093-0010 (left) 18.7 12.2 This study; Baryshnikov, 2010b Laaerberg (right) 19.2 11.5 This study Cimay 112 (left) 21.4 14.1 This study; Bonifay, 1971 Cimay LGQM 118 25.9 15.3 Baryshnikov, 2010b Bruges NHMN n/n 24.4 15.0 Baryshnikov, 2010b Bruges NHMN n/n 19.6 14.4 Baryshnikov, 2010b Bruges NHMN n/n 20.4 14.3 Baryshnikov, 2010b Bruges NHMN n/n 19.3 13.9 Baryshnikov, 2010b Bruges NHMN n/n 20.6 13.9 Baryshnikov, 2010b Mauer SMNS 10166 20.0 13.6 Baryshnikov, 2010b Mauer SMNS 31186 21.6 16.2 Baryshnikov, 2010b Mauer NHMW 1999/42 cast 23.4 15.2 Baryshnikov, 2010b Ehringsdorf SMW 1996/51134 17.1 10.5 Baryshnikov, 2010b Ehringsdorf SMW 1996/8472 18.6 10.6 Baryshnikov, 2010b Mosbach 17.5 11.5 Bonifay, 1971 Mosbach 21.9 13.1 Bonifay, 1971 Chlum NMP Ra2121 22.1 14.6 Baryshnikov, 2010b Chlum NMP Ra2132 22.8 13.8 Baryshnikov, 2010b Chlum NMP Ra2133 20.5 14.9 Baryshnikov, 2010b Kudaro 1 ZIN 33174 19.3 13.1 Baryshnikov, 2010b Azykh Cave ZIN 32549 19.7 13.9 Baryshnikov, 2010b Treugolnaya ZIN n/n 21.0 Baryshnikov, 2010b

44

Supplementary Figure S13. Mean, minimum and maximum SDQ values (Heinrich, 1987) of Arvicola amphibius from Late Pleistocene (Maul et al., 2014; López-García et al., 2017; Rey- Rodríguez, 2015) compared to Arvicola sapidus from Abric Romaní (López-García, 2011), of Arvicola mosbachensis from Central Europe sites (Cuenca-Bescós et al., 2010) and of Arvicola aff. sapidus from Gran Dolina (Cuenca-Bescós et al., 1995).

46 Supplementary Table S22 Measurements (in mm) of the maxilla and upper teeth of Marmota marmota from Koskobilo. Maxilla Is P4 M1 M2 M3 Label Side L M1-M3 W1 W2 L L W L W L W L W 156 L 16.2 6.0 4.7 5.7 5.9 157 R 4.3 3.4 158 L 5.9 4.5 37.9 159 L 5.9 4.5 33.0 160 L 5.5 4.4 27.5 161 L 5.7 4.6 163 L 5.8 5.1 164 L 5.2 4.9 165 R 5.1 4.9 166 L 5.5 4.7 34.6 167 L 4.7 3.7 29.2 458 L 4.9 5.2 5.2 4.7 L = length; W = width; I = incissor

Supplementary Table S23 Measurements (in mm) of the mandibles and lower teeth of Marmota marmota from Koskobilo. Mandible Ii p4 m1 m2 m3 Label Side Total H- L- L P4- L M1- L mand diast M3 M3 W1 W2 L W L W L W L W 255 R 76.8 33.2 15.5 20.4 14.4 6.2 4.6 5.3 5.5 5.3 4.6 5.6 4.5 5.5 7.2 256 L 23.1 16.1 4.8 5.1 455 L 5.4 6.0 457 R 20.0 4.7 4.1 5.2 4.5 459 R 6.0 7.5 460 R 21.1 15.4 4.9 5.1 4.8 4.3 5.4 4.8 5.9 7.5 L = length; W = width; H = height; diast = diastema; I = incissor H-mand = from the digastric eminence to the mesial part of the p4 alveolus.

47 Supplementary Table S24 Measurements (in mm) of the teeth and mandible of Castor fiber from Koskobilo. L- Ii p4 m1 m2 m3 Element (label) Side diast L P4- L M1-M3 H- M3 mand L W L W L W L W L W Maxilla with L 28.2 19.6 8.6 8.0 6.5 8.3 6.65 6.55 5.9 5.9 P4-M3 (154) P4 (155) R 9.5 8.2 P4 (AR.6) L 8.9 7.4 Complete R 21.0 33.0 23.4 30.1 9.0 8.2 9.6 8.2 8.0 7.6 7.7 7.4 7.8 6.5 mandible (477) L = length; W = width; H = height; diast = diastema; Ii = incissor H-mand = from the digastric eminence to the mesial part of the p4 alveolus.

48

Supplementary Table S25 Measurements (in mm), indices and non-metrical traits of the Homo sapiens talus from Koskobilo compared to different samples. Koskobilo Variable Neandertals SH MPMH UPMH MH-HTH MH-Lib MH-Spab MH-Ken MH-Mist (552)(left)

50.9 ± 3.3 51.9 ± 3.5 53.3 ± 4.5 53.3 ± 4.4 52.8 ± 4.0 50.5 ± 3.2 50.5 ± 3.6 48.1 ± 3.1 53.6 ± 3.6 M1 – Talar length 52.7 (46.0-56.9) (46.7-57.0) (46.9-59.1) (44.8-63.0) (43.9-61.8) (42.7-54.8) (44.2-57.4) (42.9-55.4) (45.9-60.4) n = 22 n = 18 n = 8 n = 30 n = 162 n = 40 n = 45 n = 50 n = 50 54.5 ± 3.6 55.4 ± 4.0 57.1 ± 2.3 59.3 ± 5.2 57.5 ± 4.7 50.9 ± 3.3 54.5 ± 4.0 M1a – Total length 57.0 (49.8-61.1) (47.9-62.5) (54.5-60.0) (51.1-69.3) (45.7-70.5) (41.7-56.8) (46.7-61.3) - - n = 17 n = 16 n = 5 n = 22 n = 162 n = 40 n = 45 44.5 ± 4.6 41.8 ± 3.2 43.5 ± 2.5 44.6 ± 3.6 41.1 ± 3.6 39.9 ± 2.9 M2 – Total breadth 42.5 (36.3-51.2) (36.6-48.3) (40.0-47.0) (37.0-53.0) (33.0-50.5) - (35.5-44.2) - - n = 21 n = 18 n = 8 n = 21 n = 162 n = 45 43.4 ± 4.0 40.9 ± 3.2 42.4 45.1 ± 5.0 41.1 ± 3.9 44.9 ± 3.2 38.6 ± 3.0 41.2 ± 3.3 46.2 ± 3.6 M2b – Articular breadth 40.7 (35.9-50.9) (35.6-47.6) (39.7-47.2) (37.2-54.0) (30.9-51.4) (38.1-51.5) (31.8-43.9) (35.0-52.3) (33.6-52.4) n = 14 n = 20 n = 3 n = 20 n = 162 n = 40 n = 45 n = 50 n = 50 30.8 ± 3.1 28.9 ± 2.4 32.3 ± 1.3 31.0 ± 3.0 29.0 ± 4.0 29.3 ± 2.0 M3 – Talar height 29.9 (26.4-36.0) (24.9-32.5) (30.2-34.0) (22.0-35.0) (15.9-35.8) - (26.0-33.2) - - n = 20 n = 18 n = 6 n = 23 n = 112 n = 45 32.6 ± 2.9 30.3 ± 2.7 31.1 ± 3.7 33.4 ± 3.1 31.5 ± 2.7 32.1 ± 2.3 30.7 ± 2.2 29.1 ± 2.2 33.0 ± 2.6 M3-1 – Medial height 30.2 (27.9-37.8) (25.4-33.7) (27.5-34.6) (27.0-39.0) (25.9-38.2) (27.5-37.5) (26.6-35.8) (24.0-35.4) (27.7-40.7) n = 14 n = 17 n = 4 n = 15 n = 162 n = 40 n = 45 n = 50 n = 50 33.4 ± 3.3 33.3 ± 2.6 32.8 ± 3.8 34.4 ± 3.3 33.1 ± 2.9 31.0 ± 2.0 32.0 ± 2.5 31.0 ± 2.6 34.4 ± 2.9 M4 – Trochlear length 34.6 (28.3-38.8) (29.4-38.2) (26.2-37.8) (28.8-42.0) (25.8-39.9) (26.9-35.2) (27.0-38.2) (25.2-36.1) (28.0-40.5) n = 24 n = 19 n = 8 n = 30 n = 162 n = 40 n = 45 n = 50 n = 50 29.5 ± 2.7 29.1 ± 2.3 27.9 ± 2.9 30.0 ± 2.6 29.0 ± 2.5 27.3 ± 2.0 28.4 ± 2.4 26.8 ± 2.3 30.3 ± 2.4 M5 – Trochlear breadth 28.8 (25.0-34.1) (25.5-34.2) (23.3-31.6) (25.0-34.7) (21.0-35.7) (23.7-31.3) (24.0-33.2) (23.4-33.5) (26.5-34.4) n = 22 n = 20 n = 8 n = 31 n = 162 n = 40 n = 45 n = 50 n = 50 26.9 ± 2.7 27.0 ± 2.2 24.4 ± 3.9 24.2 ± 2.2 26.1 ± 2.6 25.6 ± 2.1 M5-1 – Posterior trochlear 26.9 (21.8-31.5) (24.0-32.6) (19.0-30.0) (20.0-28.5) (29.9-31.7) - (21.3-30.4) - - breadth n = 19 n = 18 n = 8 n = 12 n = 112 n = 45 M5-2 – Anterior trochlear 29.7 30.4 ± 3.1 30.2 ± 2.5 30.2 ± 3.4 31.2 ± 2.3 30.3 ± 2.5 - 29.6 ± 2.5 - -

52 (26.0-35.3) (26.5-35.6) (24.8-35.0) (27.5-35.5) (24.9-35.8) (24.7-35.0) breadth n = 20 n = 19 n = 8 n = 13 n = 112 n = 45 26.0 ± 3.1 24.9 ± 1.5 24.1 ± 1.6 26.1 ± 2.8 23.7 ± 2.4 25.1 ± 2.3 23.6 ± 2.1 M7 – Lateral malleolar 23.5 (20.4-30.1) (22.5-27.9) (21.5-26.5) (21.8-30.4) (16.7-30.0) (20.4-30.9) (20.0-29.9) - - oblique height n = 23 n = 20 n = 6 n = 13 n = 162 n = 40 n = 45 10.5 ± 2.5 13.2 ± 2.0 10.8 ± 1.3 10.3 ± 1.4 9.4 ± 2.2 8.9 ± 1.4 8.1 ± 1.9 7.7 ± 1.4 8.1 ± 1.6 M7a – Lateral malleolar 8.2 (7.0-15.6) (8.9-16.2) (9.0-12.2) (8.0-12.8) (2.9-15.1) (6.5-12.0) (4.4-13.7) (4.3-11.2) (3.7-11.5) breadth n = 18 n = 20 n = 6 n = 12 n = 112 n = 40 n = 45 n = 50 n = 50 18.7 ± 2.1 20.5 ± 1.9 19.2 ± 2.3 21.7 ± 4.1 23.1 ± 2.9 21.1 ± 1.9 20.9 ± 2.4 20.1 ± 1.9 21.5 ± 2.0 M8 – Head-neck length 22.8 (13.8-22.5) (17.3-24.2) (15.5-23.0) (14.0-30.6) (16.3-29.3) (18.5-25.4) (15.7-27.0) (16.4-24.7) (18.6-26.3) n = 27 n = 18 n = 7 n = 22 n = 112 n = 40 n = 45 n = 50 n = 50 34.2 ± 3.6 30.4 ± 2.2 32.9 ± 3.3 34.2 ± 3.2 32.5 ± 2.9 33.2 ± 2.7 31.9 ± 3.0 30.3 ± 2.6 33.7 ± 2.5 M9 – Length of the head 30.0 (25.5-38.8) (27.4-34.2) (28.2-36.6) (28.0-41.3) (23.7-40.6) (28.4-39.5) (25.6-38.0) (23.4-36.1) (27.7-40.5) n = 23 n = 18 n = 7 n = 20 n = 161 n = 40 n = 44 n = 50 n = 50 22.3 ± 2.2 21.8 ± 1.9 21.7 ± 2.7 22.6 ± 2.5 22.3 ± 2.2 21.6 ± 1.9 22.1 ± 1.8 20.9 ± 2.1 22.4 ± 2.2 M10 – Breadth of the 21.5 (18.3-27.2) (18.2-24.6) (18.2-26.0) (18.0-27.0) (16.5-27.5) (18.4-26.3) (18.2-26.4) (17.5-29.6) (16.5-26.6) head n = 21 n = 18 n = 8 n = 20 n = 162 n = 40 n = 45 n = 50 n = 50 31.9 ± 3.5 31.3 ± 1.9 32.3 ± 2.9 34.3 ± 3.4 31.2 ± 2.7 31.3 ± 2.1 30.8 ± 2.4 30.7 ± 2.3 34.3 ± 3.0 M12 – Length of calcaneal 31.2 (26.3-37.4) (28.1-34.3) (28.3-37.3) (27.5-41.0) (23.2-36.6) (26.0-36.0) (26.4-36.1) (26.2-35.6) (29.0-40.5) posterior articular surface n = 21 n = 17 n = 8 n = 18 n = 162 n = 40 n = 45 n = 50 n = 50 21.8 ± 1.8 21.6 ± 1.6 22.0 ± 2.2 22.6 ± 2.5 21.5 ± 2.1 21.5 ± 1.5 20.9 ± 1.7 20.4 ± 1.9 22.8 ± 1.8 M13 – Breadth of calcaneal 21.2 (17.6-24.7) (18.5-24.9) (18.5-24.5) (19.0-27.0) (16.5-27.0) (18.4-24.3) (17.9-25.0) (16.4-25.8) (19.1-26.4) posterior articular surface n = 20 n = 20 n = 8 n = 21 n = 162 n = 40 n = 45 n = 50 n = 50 6.9 ± 1.5 8.1 ± 1.3 5.3 ± 1.1 8.4 ± 1.7 8.0 ± 1.8 6.6 ± 0.9 8.8 ± 1.2 5.9 ± 0.8 6.4 ± 0.9 M14 – Depth of calcaneal 11.01-4,6,8,9 (5.5-10.3) (5.4-10.2) (4.0-6.7) (6.4-10.6) (4.5-12.6) (4.7-8.1) (5.8-12.3) (4.1-8.8) (4.0-8.0) posterior articular surface n = 12 n = 19 n = 4 n = 5 n = 162 n = 40 n = 45 n = 50 n = 50 31.5 ± 3.2 32.1 ± 2.3 29.8 ± 2.4 31.2 ± 3.2 31.8 ± 2.8 28.1 ± 2.3 31.6 ± 2.7 D4 – Lateral malleolar 32.8 (27.0-37.2) (29.2-36.6) (27.0-33.4) (26.1-34.2) (24.5-40.1) (23.4-34.8) (26.6-38.8) - - length n = 18 n = 20 n = 5 n = 8 n = 112 n = 40 n = 45 15.2 ± 1.3 14.5 ± 2.3 16.0 15.8 ± 1.4 13.6 ± 1.7 13.2 ± 1.6 E2 – Breadth of calcaneal 13.1 (12.1-16.8) (9.2-19.2) (14.3-17.7) (9.3-17.6) - (10.5-16.2) - - middle articular surface 4 n = 15 n = 17 n = 1 n = 6 n = 111 n = 45 L2 – Lateral height 31.7 30.8 ± 2.8 28.9 ± 2.3 - 31.4 ± 1.2 29.7 ± 4.1 - 30.6 ± 2.1 - -

53 (26.1-35.1) (25.1-32.9) (30.2-32.8) (17.9-36.0) (26.7-33.9) n = 14 n = 20 n = 4 n = 112 n = 45 30.6 ± 3.0 31.1 ± 2.4 30.1 33.1 ± 3.0 31.1 ± 3.0 30.7 ± 2.6 L13 – Medial malleolar 33.1 (24.7-26.7) (24.5-35.0) (30.1-30.1) (30.1-36.5) (23.9-38.8) - (26.0-36.5) - - length n = 14 n = 15 n = 3 n = 4 n = 112 n = 45 5.6 ± 1.1 4.7 ± 1.0 5.3 ± 1.0 5.6 ± 1.3 5.0 ± 1.1 P24 – Sulcus tali 7.42,7 (4.2-7.2) (3.3-7.1) - (4.2-6.5) (1.2-9.0) - (3.4-7.3) - - breadth n = 12 n = 18 n = 5 n = 112 n = 45 23.7 ± 3.2 22.7 ± 1.5 22.3 ± 1.9 25.0 ± 3.3 22.6 ± 2.4 22.9 ± 2.1 22.7 ± 2.2 21.3 ± 1.8 24.0 ± 2.1 T6 – Lateral malleolar 25.18 (18.5-28.8) (20.3-25.3) (20.5-24.3) (20.5-32.0) (15.9-28.5) (19.0-28.3) (18.2-28.9) (17.6-26.4) (19.0-29.1) height n = 18 n = 20 n = 4 n = 13 n = 112 n = 40 n = 45 n = 50 n = 50 64.1 ± 2.8 58.3 ± 3.0 59.0 ± 5.9 60.9 ± 2.8 59.8 ± 3.0 63.6 ± 2.9 60.8 ± 2.8 60.5 ± 2.2 61.6 ± 2.8 M3-1 × 100 / M1 57.41,6 (60.0-69.8) (50.2-62.1) (51.1-65.2) (56.0-65.2) (51.6-70.2) (57.3-70.5) (52.9-66.5) (55.9-64.7) (55.5-69.0) n = 14 n = 16 n = 4 n = 13 n = 162 n = 40 n = 45 n = 50 n = 50 65.8 ± 3.4 63.6 ± 2.3 61.7 ± 6.6 64.3 ± 2.9 62.7 ± 3.2 61.5 ± 3.2 63.3 ± 3.7 64.5 ± 3.2 64.3 ± 3.3 M4 × 100 / M1 65.8 (60.6-71.6) (60.8-70.6) (48.7-70.4) (59.3-71.9) (53.0-70.2) (53.9-68.2) (55.8-70.8) (58.7-70.9) (54.9-71.9) n = 21 n = 17 n = 8 n = 30 n = 162 n = 40 n = 45 n = 50 n = 50 87.8 ± 6.7 88.0 ± 5.6 89.1 ± 6.3 88.3 ± 5.2 87.8 ± 5.5 88.3 ± 5.7 85.1 ± 9.6 88.0 ± 6.1 86.7 ± 6.4 Trochlear index (M5 × 100 / (73.2- (77.1- (75.4- (75.4- 83.0 (78.7-94.6) (74.0-97.6) (70.6-96.6) (70.5-103.4) (68.2-98.9) M4) 100.0) 105.1) 103.5) 105.5) n = 21 n = 18 n = 8 n = 162 n = 50 n = 30 n = 40 n = 45 n = 50 89.4 ± 4.2 90.4 ± 4.4 80.7 ± 4.5 77.7 ± 5.2 86.0 ± 5.0 86.6 ± 4.4 M5-1 × 100/M5-2 90.53,4, (83.2-99.4) (83.7-96.9) (74.7-88.2) (70.5-85.3) (71.4-96.5) - (74.2-96.7) - - n = 19 n = 16 n = 8 n = 12 n = 112 n = 45 Fusion of anterior and 96.3%b 100% 100.0% 88.9% 71.3% 91.5%b 84.4%b 91.3%b absent - medial facetsa n = 27 n = 17 n = 6 n = 18 n = 115 n = 100 n = 45 n = 92 Mean ± standard deviation, range () and sample size (n) are shown. See Pablos et al. (2013, 2019) for an explanation of abbreviations and definition of variables. Kos = Koskobilo. L = Left. SH = Sima de los Huesos (Pablos et al., 2013). MPMH = Middle Paleolithic modern humans. UPMH = Upper Paleolithic. MH = Modern Humans. HTH = Hamann-Todd Osteological Collection. Lib = Libben Amerindians from Trinkaus (1975a). Spab = San Pablo Medieval collection. Ken = Keneh Egyptians (Trinkaus, 1975a). Mist = Mistihalj collection. Bold letters and superscript indicate significant differences with some of the samples (Z-score > 1.96 in absolute terms; p < 0.05); 1 = Neandertals. 2 = SH. 3 = MPMH. 4 = UP. 5 = HTH. 6 = Libben-Amerindians. 7 = San Pablo Medieval collection. 8 = Keneh Egyptian collection. 9 = Mistihalj collection. a = Data from Trinkaus (1975a, b), Pablos et al. (2012, 2013, 2019) and present study. b = These percentages include type B (partially fused) and C (completely fused) articular calcaneal facets after Trinkaus (1975b).

54 Supplementary Table S26 Measurements (in mm), indices and non-metrical traits of the Homo sapiens calcanei from Koskobilo compared to different samples. Koskobilo Koskobilo Variable Neandertals SH MPMH UPMH MH- HTH MH-Lib MH-Spab (554) (right) (553)(left)

79.8 ± 6.4 78.5 ± 5.1 78.6 ± 3.9 79.1 ± 7.4 78.9 ± 5.7 75.4 ± 5.9 M1 - Maximum 76.1 75.8 (71.2-90.4) (72.2-86.6) (75.0-82.0) (58.5-96.0) (67.0-92.7) - (65.5-93.5) length n = 11 n = 13 n = 4 n = 28 n = 164 n = 46 74.0 ± 5.9 74.9 ± 4.9 78.0 74.2 ± 6.8 73.6 ± 5.2 72.8 ± 4.5 70.4 ± 5.4 M1a - Total length 72.1 71.5 (66.8-85.9) (67.4-81.9) (77.0-79.0) (56.0-85.5) (62.7-85.9) (63.9-80.0) (60.7-86.6) n = 10 n = 13 n = 2 n = 25 n = 114 n = 40 n = 46 44.2 ± 3.4 44.6 ± 3.0 44.0 ± 2.2 43.1 ± 3.0 40.0 ± 3.7 40.6 ± 2.9 40.1 ± 2.7 M2 - Medial 42.3 41.6 (38.5.0-47.5) (39.1-48.8) (40.8-45.9) (37.5-50.5) (29.6-51.1) (32.2-46.7) (34.5-46.2) breadth n = 13 n = 14 n = 4 n = 28 n = 164 n = 40 n = 46 28.9 ± 2.1 30.7 ± 1.8 28.1 24.4 ± 2.0 26.6 ± 2.8 25.9 ± 2.4 M3 - Minimum 27.5 - (26.6-33.0) (28.1-32.8) (27.2-29.0) (21.0-28.3) (20.2-36.0) - (21.1-32.7) breadth n = 9 n = 10 n = 2 n = 16 n = 164 n = 46 39.9 ± 3.3 39.0 ± 1.6 42.6 38.8 ± 4.8 36.0 ± 3.5 36.5 ± 3.7 M4 - Body height 39.8 37.8 (34.4-44.6) (36.2-42.1) (39.8-45.5) (31.3-52.0) (28.4-47.0) - (30.3-45.4) n = 9 n = 12 n = 3 n = 18 n = 164 n = 46 45.5 ± 3.9 43.1 ± 2.0 44.2 43.9 ± 3.7 42.7 ± 3.6 M4a - Maximum 44.7 44.8 (39.8-50.1) (39.0-46.9) - (38.1-50.8) (36.4-52.7) - (36.6-51.6) height n = 9 n = 12 n = 3 n = 114 n = 46 59.7 ± 5.7 58.3 ± 4.3 58.0 58.0 ± 4.7 56.7 ± 4.6 53.9 ± 3.6 54.1 ± 4.1 M5 - Body length 54.7 55.6 (50.8-67.6) (51.6-65.0) (55.0-60.0) (49.8-67.7) (42.8-69.5) (46.6-61.0) (47.5-68.7) n = 11 n = 13 n = 3 n = 21 n = 164 n = 40 n = 46 41.6 ± 2.6 45.0 ± 3.3 48.0 42.5 46.1 ± 4.0 44.0 ± 3.7 M5a - Load arm 44.9 45.8 (41.1-48.1) (41.3-52.0) (33.9-49.7) (36.8-55.5) - (36.5-52.6) length n = 8 n = 13 n = 1 n = 3 n = 114 n = 46 M6 - 15.2 ± 3.3 17.6 ± 2.4 13.6 ± 1.3 14.6 ± 2.5 14.2 ± 2.6 12.6 ± 1.8 11.8 ± 1.8 Sustentacular 13.2 12.72 (9.6-21.0) (12.7-21.3) (11.5-15.0) (9.2-18.6) (9.5-24.1) (9.1-17.7) (8.1-16.9v breadth n = 13 n = 14 n = 5 n = 22 n = 114 n = 40 n = 46 M7 - Tubercle 47.3 45.5 45.1 ± 4.8 44.5 ± 2.1 46.9 44.8 ± 5.1 42.5 ± 4.1 43.2 ± 3.2 42.7 ± 4.2

55 (36.0-52.9) (41.5-48.0) (43.8-50.0) (34.2-55.0) (33.4-54.6) (37.3-51.7) (33.5-52.1) height n = 10 n = 12 n = 2 n = 18 n = 164 n = 40 n = 46 M9 - Length of 31.1 ± 3.5 31.7 ± 2.0 31.7 31.6 ± 3.0 29.9 ± 3.0 28.9 ± 2.0 29.2 ± 2.7 talar posterior 30.4 30.8 (24.7-37.7) (28.8-35.5) (30.4-32.5) (26.0-36.6) (19.7-39.2) (25.0-34.0) (25.2-35.4) articular surface n = 14 n = 14 n = 3 n = 21 n = 164 n = 40 n = 46 M10 - Breadth of 24.4 ± 1.8 21.9 ± 1.9 25.3 23.3 ± 2.7 21.7 ± 2.1 21.4 ± 1.6 21.4 ± 1.8 talar posterior 22 22.7 (21.3-27.5) (18.7-25.3) (24.2-26.0) (18.9-31.2) (17.5-28.6) (18.0-24.2) (18.0-25.1) articular surface n = 13 n = 15 n = 3 n = 21 n = 164 n = 40 n = 46 20.6 ± 3.2 23.1 ± 2.4 19.4 20.8 ± 2.8 18.8 ± 2.4 M11 - Talar 21.3 21.0 (16.8-25.8) (19.9-27.9) - (17.2-21.5) (14.5-29.0) - (13.8-24.9) articular height n = 8 n = 14 n = 2 n = 114 n = 46 25.8 ± 5.5 27.3 ± 2.0 24.5 27.7 ± 5.0 24.7 ± 2.4 24.7 ± 2.3 M12 - Cuboid 27.1 28.7 (15.0-30.9) (23.6-29.9) (22.0-33.7) (19.7-30.8) - (20.0-30.5) artic. breadth n = 7 n = 13 n = 1 n = 5 n = 113 n = 46 22.5 ± 3.9 20.5 ± 1.4 30.0 24.9 ± 3.4 20.4 ± 2.3 19.5 ± 1.6 M13 - Cuboid 20.6 18.8 (18.2-28.0) (19.4-23.7) (21.3-30.0) (12.0-24.8) - (14.6-23.8) artic. height n = 6 n = 11 n = 1 n = 5 n = 113 n = 45 BO43 - Breadth of 13.0 ± 2.3 14.2 ± 1.3 13.2 ± 1.1 12.0 ± 1.5 11.7 ± 1.3 talar middle 11.7 11.52 (8.7-15.9) (12.2-16.9) - (11.7-14.5) (7.5-15.5) - (8.6-14.3) articular surface n = 12 n = 14 n = 6 n = 114 n = 46 E1 - Length of 22.0 ± 3.1 24.1 ± 3.6 22.6 21.1 ± 3.3 19.4 ± 2.6 talar middle 20.0 20.9 (16.3-25.3) (19.0-28.4) - (20.9-24.7) (13.0-30.0) - (13.3-25.0) articular surface n = 8 n = 13 n = 3 n = 114 n = 45 31.7 ± 3.8 34.2 ± 3.1 30.8 32.7 ± 3.3 33.7 ± 3.0 S5 - Basal breadth 34.3 - (25.1-35.3) (31-40.4) - (29.8-31.8) (24.6-41.1) - (27.8-39.8) of the tubercle n = 7 n = 12 n = 2 n = 114 n = 46 56.1 ± 5.1 57.4 ± 2.6 56.5 54.6 ± 3.1 50.7 ± 4.3 53.3 ± 2.7 M2 / M1 55.6 54.9 (47.3-62.7) (53.9-61.9) (54.3-59.2) (49.2-61.0) (41.9-62.3) - (47.1-60.2) n = 11 n = 13 n = 3 n = 25 n = 164 n = 46 36.7 ± 3.8 38.9 ± 3.3 35.3 31.0 ± 1.5 33.7 ± 2.9 34.4 ± 2.3 M3 / M1 36.1 - (31.7-44.1) (33.6-44.3) (35.3-35.4) (28.7-34.0) (25.5-41.3) - (30.0-39.4) n = 9 n = 10 n = 2 n = 16 n = 164 n = 46 Sustentacular 45.3 44.13 52.9 ± 14.2 65.8 ± 11.5 47.6 ± 1.3 51.1 ± 11.2 53.2 ± 12.2 45.8 ± 8.7 42.0 ± 7.6

56 index (M6 × 100/ (32.9-79.2) (43.6-81.2) (46.2-48.9) (30.5-73.2) (31.2-88.7) (28.4-66.3) (29.0-65.6) (M2-M6)] n = 13 n = 14 n = 4 n = 21 n = 114 n = 40 n = 46 74.8 ± 3.0 74.3 ± 1.8 73.0 72.0 ± 2.9 71.8 ± 2.9 71.8 ± 2.0 M5/ M1 71.9 73.3 (70.7-80.5) (71.1-76.8) (72.0-74.1) (65.6-75.8) (57.2-80.1) - (65.7-75.1) n = 11 n = 13 n = 3 n = 19 n = 164 n = 46 Fusion of anterior 92.3 %b 100% 100% 83.3%b 61.4% 47.5% 43.5%b absent absent and medial facetsa n = 13 n = 13 n = 5 n = 18 n = 114 n = 100 n = 46 Mean ± standard deviation, range () and sample size (n) are shown. See Pablos et al. (2014, 2019) for an explanation of abbreviations and definition of variables. Kos = Koskobillo; Calc. = calcaneus; R = Right; L = Left. SH = Sima de los Huesos (Pablos et al., 2014). MPMH = Middle Paleolithic modern humans. UPMH = Upper Paleolithic. MH = Modern Humans. HTH = Hamann-Todd Collection. Lib = Libben Amerindians from Trinkaus (1975a). Spab = San Pablo Medieval collection. Bold letters and superscript indicate significant differences with some of the samples (Z-score > 1.96 in absolute terms; p < 0.05); 1 = Neandertals. 2 = SH. 3 = MPMH. 4 = UP. 5 = HTH. 6 = Libben-Amerindians. 7 = San Pablo Medieval collection. a = Data from Trinkaus (1975a, b), Pablos et al. (2014, 2019) and present study. b = These percentages include type B (partially fused) and C (completely fused) articular talar facets after Trinkaus (1975b).

57

Supplementary references

Alcalá, L., Morales, J., 1989. Los carnívoros del Pleistoceno medio de Cúllar de Baza-1 y Huéscar-1 (Cuenca de Guadix-Baza). Trabajos sobre el Neógeno-Cuaternario 11, 215-223. Altuna, J., 1972. Fauna de mamíferos de los yacimientos prehistóricos de Guipúzcoa. Munibe 24, 1-492. Altuna, J., 2004. Estudio biométrico de Vulpes vulpes L y Alopex lagopus L. Contribución a su diferenciación en los yacimientos paleolíticos cantábricos. Munibe (Antropologia-Arkeologia) 56, 45-59. Altuna, J., Mariezkurrena, K., 2000. Macromamíferos del yacimiento de Labeko Koba (Arrasate, País Vasco). Munibe (Antropologia-Arkeologia) 52, 107-181. Ambrosetti, P., 1967. Cromerian Fauna of the Rome Area. Quaternaria, 9: 267-283. Andrés, I. de, Aguirre, E., 1975. Un molde endocraneano de Praedama (Cervido) del Pleistoceno medio de Madrid. Quaternaria, 18: 303-330. Arbizu, M., Álvarez-Lao, D., Adan, G.E., 2005. Una guarida de Crocuta crocuta en Leguín (Echauri, Navarra). Munibe (Antropologia Arkeologia) 57, 131-138. Arceredillo Alonso, D., Gómez-Olivencia, A., San Pedro-Calleja, Z., 2013. La fauna de macromamíferos de los niveles pleistocenos de la cueva de Arlanpe (Lemoa, Bizkaia). In: Rios -Garaizar, J., Garate Maidagan, D., Gómez- Olivencia, A. (eds.), La cueva de Arlanpe (Lemoa): ocupaciones humanas desde el Paleolítico Medio antiguo hasta la Prehistoria reciente. Bizkaiko Foru Aldundia, Bilbao, pp. 123-160. Argant, A., 1991. Carnivores quaternaires de Bourgogne. Doc. Lab. Géologie Lyon 15, 301 p. Arlegi, M., Rios-Garaizar, J., Rodríguez-Hidalgo, A., López-Horgue, M.A., Gómez-Olivencia, A., 2018. Koskobilo (Olazti, Nafarroa): nuevos hallazgos y revisión de las colecciones. Munibe Antropologia-Arkeologia 69, 21-41. Arsuaga, J.L., Martínez, I., Arnold, L.J., Aranburu, A., Gracia-Téllez, A., Sharp, W.D., Quam, R.M., Falguères, C., Pantoja-Pérez, A., Bischoff, J., Poza-Rey, E., Parés, J.M., Carretero, J.M., Demuro, M., Lorenzo, C., Sala, N., Martinón-Torres, M., García, N., Alcázar de Velasco, A., Cuenca-Bescós, G., Gómez-Olivencia, A., Moreno, D., Pablos, A., Shen, C.-C., Rodríguez, L., Ortega, A.I., García, R., Bonmatí, A., Bermúdez de Castro, J.M., Carbonell, E., 2014. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344, 1358-1363. Arsuaga, J.L., Carretero, J.M., Lorenzo, C., Gómez-Olivencia, A., Pablos, A., Rodríguez, L., García-González, R., Bonmatí, A., Quam, R.M., Pantoja-Pérez, A., Martínez, I., Aranburu, A., Gracia-Téllez, A., Poza-Rey, E., Sala, N., García, N., Alcázar de Velasco, A., Cuenca-Bescós, G., Bermúdez de Castro, J.M., Carbonell, E., 2015. Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. Proceedings of the National Academy of Sciences 112, 11524-11529. Azanza, B., Morales, J.,1989. Los artiodáctilos de Huélago, Huéscar-1 y Cúllar de Baza-1 (cuenca de Guadix-Baza, Granada). Trabajos sobre el Neogeno-Cuaternario 11, 289-315. Azzaroli, A., 1954, Filogenesi e biologia di Sus strozzii e di Sus minor. Palaeontografia ltalica 48, 41-76. Azzaroli, A., 1953. The deer of the Weybourn Crag and Forest Bed of Norfolk. The Bulletin of the British Museum (Natural History) 2/1, 3-96. Azzaroli, A., 1979. Critical remarks on some giant deer (genus Megaceros Owen) from the Pleistocene of Europe. Palaeontographia Italica 71, 5-16. Ballesio, R., Barth, P., Gély, B., Philippe, M., Rosa, M., 2003. Contribution à l'étude des Ursidés pléistocènes des gorges de l'Ardèche et de leurs plateaux : les restes d'Ursus deningeri de la grotte des Fées, à Vallon-Pont- d'Arc (Ardèche). In: Cahiers scientifiques du Muséum d'histoire naturelle de Lyon - Centre de conservation et d'étude des collections, tome 7, 5-51. Bartolini Lucenti, S., Alba, D.M., Rook, L., Moyà-Solà, S., Madurell-Malapeira, J., 2017. Latest Early Pleistocene wolf-like canids from the Iberian Peninsula. Quaternary Science Reviews 162, 12-25. Baryshnikov, G.F., 2010a. Late Pleistocene brown bears (Ursus arctos) from the Caucasus. Russian Journal of Theriology 9, 9-17. Baryshnikov, G., 2010b. Middle Pleistocene Ursus thibetanus (Mammalia, Carnivora) from Kudaro caves in the Caucasus. Proceedings of the Zoological Institute RAS 314, 67-79. Beliajeva, E., David, A.I., 1971. Fam. Rhinocerotidae Owen, 1845. In: K.V. Nikiforofa, E.I. Beliajeva, E.A. Vangengeim, N.A. Konstantinova, K.N. Negadaev-Nikonov (eds.) 1971. Pleistocene of Tiraspol. Publishing House Shtiintsa – Kisthinev, 124-134. Beninde, J., 1937. Über die Edelhirschformen von Mosbach, Mauer und Steinheim ad Murr. Paläontologische Zeitschrift 19/1-2, 79-116. Blasco, M.F., Montes, L., 1997. Los hiénidos del yacimiento musteriense de Gabasa 1 (Huesca, España). Bolskan 14, 9- 27. Bonifay, M.-F., 1971. Carnivores quaternaires du sud-est de la France. Éditions du Muséum, Paris. Borgel, S., Latimer, B., McDermott, Y., Sarig, R., Pokhojaev, A., Abulafia, T., Goder-Goldberger, M., Barzilai, O., May, H., In press. Early Upper Paleolithic human foot bones from , Israel. Journal of Human Evolution. doi: https://doi.org/10.1016/j.jhevol.2019.102668.

61 Breda, M., Collinge, S.E., Parfitt, S.A., Lister, A.M., 2010. Metric analysis of ungulate mammals in the early Middle Pleistocene of Britain, in relation to taxonomy and biostratigraphy I: Rhinocerotidae and Bovidae. Quaternary International 228, 136-156. Cardoso, J.L., 1993. Contribuição para o conhecimento dos grandes mamíferos do Plistocénico Superior de Portugal. Câmara municipal de Oeiras. Cardoso, J.L., 1996. Les grands Mammifères du Pléistocène supérieur du Portugal. Essai de synthèse. Geobios 29, 235- 250. Cardoso, J.L., Regala, F.T., 2006. O Leopardo, Panthera pardus (L., 1758), do Algar da Manga Larga (Planalto de Santo António, Porto de Mós). Castaños, P., 1987. Los carnívoros prehistóricos de Vizcaya. Kobie. Paleoantropologia 16, 7-76. Castaños, P.M., 2018. Los carnívoros de la excavación histórica de El Castillo, in: Castaños, P.M. (Ed.), El Castillo: Historia de una fauna olvidada. La fauna de las excavaciones históricas (1910-1914) de la cueva de El Castillo (Puente Viesgo, Cantabria). Monografías del Museo de Prehistoria y Arqueología de Cantabria, Cantabria (Spain), pp. 244-266. Cerdeño, E., 1989. Rhinocerotidae (Mammalia, Perissodacytla) de la cuenca Guadix-Baza. Trabajos sobre el Neógeno- Cuaternario 11, 273-286. Cerdeño, E., Sánchez, B., 1988. Le Rhinocéros du Pléistocène moyen d'Atapuerca (Burgos, Espagne). Geobios 21(1), 81-99. Crégut-Bonnoure, E., 1997. The Saalian Ursus thibetanus from France and Italy. Geobios 30, 285-294. Cuenca-Bescós, G., Agustí, J., Lira, J., Melero Rubio, M., Rofes, J., 2010. A new species of water vole from the Early Pleistocene of Southern Europe. Acta Palaeontologica Polonica 55(4), 565-580. Cuenca-Bescós, G., Canudo, J.I., Laplana, C., 1995. Los Arvicólidos (Rodentia, Mammalia) de los niveles inferiores de Gran Dolina (Pleistoceno Inferior, Atapuerca, Burgos, España). Revista Española de Paleontología 10, 202- 218. Erdbrink, D.P.B., 1982. More fossil bear remains in some Dutch collections. Scripta Geologica 6, 1-14. Estévez, J., 1975-76. Hallazgo de una pantera en el Pleistoceno catalán. Speleon 22, 171-178. Faure, M., Guérin, C., 1983. Le Sus scrofa (Mammalia, Artiodactyla, Suidae) du gisement pléistocène supérieur de Jaurens à Nespouls, Corrèze, France. Publications du musée des Confluences 21, 45-63. Fistani, A., Crégut-Bonnoure, E., 1993. Découverte d'Ursus thibetanus (Mammalia, Carnivora, Ursidae) dans le site Pléistocène moyen de Gajtan (Shkoder, Albanie). Geobios 26, 241-263. Fourvel, J.-B., Lateur, N., 2015. Comment on two Pachycrocuta brevirostris (Aymard, 1846) mandibles from the Early Pleistocene in south-eastern France: Grosse Marguerite Cave (Aiguèze) and Trois Pigeons Swallow hole (Nîmes). Paleo 26, 187-200. Franzen, J.L., Gliozzi, E., Jellinkek, T., Scholger, R., Weidenfeller, M., 2000. Die spätpleistozäne Fossillagerstätte Dorn-Dürkheim 3 und ihre Bedeutung für die Rekonstruktion der Entwicklung des rhenishen Flusssystems. Senkenbergiana Lethaea 80, 305-353. Fuentes-Vidarte, C., 1980. Estudio de la fauna de El Pendo, in: González Echegaray, J. (Ed.), El yacimiento de la cueva de El Pendo (excavaciones de 1953 a 1957). Consejo Superior de Investigaciones Científicas (CSIC), Madrid (Spain), pp. 215-238. García, N., 2003. Osos y otros carnívoros de la Sierra de Atapuerca. Fundación Oso de Asturias, Oviedo. García-Vázquez, A., 2015. Caracterización del oso pardo (Ursus arctos L.) fósil en el NW de la Península Ibérica: datos morfométricos y moleculares, Universidade da Coruña. Geraads, D., 1986. Les ruminants du Pléistcène d'Oubeidyeh (Israel). Mémoires et Travaux du Centre de Récherches français de Jérusalem 5, 143-180. Gingerich, P.D., Winkler, D.A., 1979. Patterns of variation and correlation in the dentition of the red fox, Vulpes vulpes. Journal of Mammalogy 60, 691-704. Gómez-Olivencia, A., Sala, N., Arceredillo, D., García, N., Martínez-Pillado, V., Rios-Garaizar, J., Garate, D., Solar, G., Libano, I., 2015. The Punta Lucero Quarry site (Zierbena, Bizkaia): a window into the Middle Pleistocene in the Northern Iberian Peninsula. Quaternary Science Reviews 121, 52-74. Grandal d'Anglade, A., 1993. Estudio Paleontológico de los restos de Ursus spelaeus ROSENMÜLLER-HEINROTH 1794 (Mammalia, Carnivora, Ursidae) de Cova Eirós (Triacastela, Lugo, NW de la Península Ibérica), Universidade da Coruña. Heinrich, W.-D., 1987. Neue Ergebnisse zur Evolution und Biostratigraphie von Arvicola (Rodentia, Mammalia) im Quartär Europas. Zeitschrift für Geologische Wissenschaften 15, 389-406. Houben, C., 2003. Die Wirbeltierfauna aus dem letzten Interglazial von Lehringen (Niedersachsen, Deutschland). Eiszeitalter und Gegenwart, 52, 25-39. Hugueney, M., 1975. Les Mustélidés (Mammalia, Carnivora) du gisement pléistocène moyen de la Fage (Corrèze). Publications du musée des Confluences 13, 29-46. Hünermann, K.A., 1975. Sus scrofa Linné aus dem Pleistozän von Weimar-Ehringsdorf. Paläontologische Abhandlungen 23, 251-263.

62 Hünermann K.A., 1977. Sus scrofa L. aus dem Jungpleistozän von Taubach bei Weimar in Thüringen. Quartärpaläontologie 2, 225-235. Hünermann K.A., 1978. Das Wildschwein (Sus scrofa L.) aus dem Jungpleistozän von Burgtonna in Thüringen. Quartärpaläontologie 3, 123-127. Iñigo, C., Molero, G., Maldonado, E., 1998. Los carnívoros del yacimiento pleistoceno de cueva del Búho (Segovia, España) y sus huellas de actividad. Estudios Geológicos 54, 65-73. Jäger, G.F., 1839. Über die fossilen Säugethiere, welche in Würtemberg in verschiedenen Formationen aufgefunden worden sind, nebst geogrnostische Bermerkungen über diese Formationen. Stuttgart, Carl Erhard. Jiangzuo, Q., Liu, J., Chen, J., 2019. Morphological homology, evolution and proposed nomenclature for bear dentition. Acta Palaeontologica Polonica 64, 693-710. Kahlke, H.D., 1960. Die Cervidenreste aus den altpleistozänen Sanden von Mosbach (bibrich-Wiesbaden). Teil 1 Die Geweihe, Gehörne und Gebisse. Abhandlungen der Deutsche Akademie der Wissenschaften zu Berlin. Klasse für Chemie, Geologie und Biologie 1959, 4-75. Kahlke, H.D., 1965a. Die Cerviden-Reste aus den Tonen von Voigtstedt in Thüringen. Paläontologische Abhanlungen, A 2, 379-426. Kahlke, H.D., 1965b. Die Rhinocerotiden-Reste aus den Tonen von Voigtststet in Thüringen. Paläontologische Abhandlugnen A 2: 451-520. Kahlke, H.D., 1969a. Die Cerviden-Reste aus den Kiesen von Süssenborn bei Weimar. Paläontologische Abhandlungen A 3, 547-609. Kahlke, H.D., 1969b. Die Rhinocerotiden-Reste aus den Kiesen von Süssenborn bei Weimar. Paläontologische Abhandlungen A 3, 667-709. Kahlke, H.D., 1971. Cervidae Gray, 1821. In: Nikiforova, K.V., Beliajeva, E.I.B., Vangengeim, E.A., Konstantinova, N.A., Negadaev-Nikonov, KN. (Eds.) Pleistocene of Tiraol. Publishing House Shtiintsa, Kishinev, 137-156. Kahlke, H.D., 1975a. Die Rhinocerotiden-Reste aus den Travertinen von Weimar-Ehringsdorf. Paläontologische Abhandlungen A, 23, 337-398. Kahlke, H.D., 1975b. Die Cerviden-Reste aus den Travertinen von Weimar-Ehringsdorf. Paläontologische Abhandlungen 23, 201-249. Kahlke, H.D., 1977a. Die Rhinocerotiden-Reste aus den Travertinen von Taubach. Quätarpaläontologie 2, 305-359. Kahlke, H.D., 1977b. Die Cervidenreste aus den Travertinen fon Taubach. Quartärpaläontologie 2, 209-223. Kolfschoten, T. van, 1985. The Middle Pleistocene (Saalian and Late Pleistocene Weichselian) mammal faunas from Maastricht-Belvédère, Southern Limburg, (The Netherlands). Mededelingen Rijks Geologische Dienst 39, 45- 74. Koenigswald, W. von, 1988. Zur Paläoklimatologie des lätzten Interglazials im Nordteil der Oberrheinebene. Gustav Fischer Verlag, New York, 1-327. Koufos, G.D., 1986. The presence of Sus strozzii in the Villafranchian (Villanyian) of Macedonia (Greece). Paläonotolgische Zeitschrift 60, 341-351. Kurtén, B., 1959. On the bears of the Holsteinian interglacial. Stockholm Contributions in Geology 2, 73-102. Kurtén, B., Garevski, R., 1989. Giant hyaena, Hyaena brevirostris Aymard (Mammalia, Carnivora), from the Middle Pleistocene of Manastirec, Yugoslavia. Annals Zoology Fennici 26, 145-147. Kurtén, B., Poulianos, A.N., 1977. New stratigraphic and faunal material from Petralona cave, with special reference to the Carnivora. Anthropos 4, 47-130. Kurtén, B., Poulianos, A.N., 1981. Fossil Carnivora of Petralona Cave: Status of 1980. Anthropos 8, 9-56. Küthe, K., 1933. Study of Sus scrofa mosbachensis from the Mosbach sand (Quaternary) and comparison with recent forms. Notizblatt Hesse Geol. Landes-Amt Darmstadt (V) 14, 117-124. Lacombat, F., 2005. Les rhinocéros fossiles des sites préhistoriques de l'Europe méditerranéenne et du Massif Central: Paléontologie et implications biochronologiques. BAR International Series 1419, 1-175. Lacombat, F., 2006. Morphological and biometrical differentiation of the teeth from Pleistocene species of Stephanorinus (Mammalia, Perissodactylas, Rhinocerotidae) in Mediterranean Europe and the Massif Central, France. Palaeontographica, Abt. A 274, 71-111.1-175. Lister, A.M., 1994. The evolution of the giant deer, Megaloceros giganteus (Blumenbach). Zoological Journal of the Linnean Society 112, 65-100. Lister, A.M., Parfitt, S.A., Owen, F.J., Collinge, S.E., Breda, M., 2010. Metric analysis of ungulate mammals in the early Middle Pleistocene of Britain, in relation to taxonomy and biostratigraphy II: Cervidae, Equidae and Suidae. Quaternary International 228, 157-179. Loose, H., 1975. Pleistocene Rhinocerotidae of W. Europe with reference to the recent two -horned species of Africa and S.E. Asia. Scripta Geologica 33, 1-59. López-García, J.M., 2011. Los micromamíferos del Pleistoceno superior de la Península Ibérica. Evolución de la diversidad taxonómica y cambios paleoambientales y paleoclimáticos. Saarbrücken (Alemania): Ed. Académica Española.

63 López-García, J.M., Blain, H.-A., Lozano-Fernández, I., Luzi, E., Folie, A., 2017. Environmental and climatic reconstruction of MIS 3 in northwestern Europe using the small-mammal assemblages from Caverne Marie- Jeanne (Hastière-Lavaux, Belgium). Palaeogreography, Palaeoclimatology, Palaeoecology 485, 622-631. Made, J. van der, 1999. Artiodactylos del yacimiento mesopleistoceno de Galería (Sierra de Atapuerca). In: Carbonell, E., Rosas, A., Diez, C. (Eds.): Ocupaciones humanas y paleoecología del yacimiento de Galería. Junta de Castilla y León, Valladolid, 143-167. Made, J. van der, 2000. A preliminary note on the rhinos from Bilzingsleben. Praehistoria Thuringica 4, 41-64. Made, J. van der, 2010. The rhinos from the Middle Pleistocene of Neumark Nord (Saxony-Anhalt). Veröffentlichungen des Landesamtes für Archäologie 62, 432-527. Made, J. van der, 2015. The rhinoceros Stephanorhinus aff. etruscus from the latest Early Pleistocene of Cueva Victoria (Murcia, Spain). Mastia 10, 359-383. Made, J. van der, 2019. The dwarfed “giant deer” Megaloceros matritensis n.sp. from the Middle Pleistocene of Madrid - A descendant of M. savini and contemporary to M. giganteus. Quaternary International 520, 110-139. Made, J. van der, Montoya, P., 2008. Rinocerontes del Pleistoceno de El Baradello, Plaça de la República y El Molinar en Alcoy, España. Recerques del Museu d'Alcoi 16, 7-18. Made, J. van der, Rosell, J., Blasco, R., 2017. Faunas from Atapuerca at the Early-Middle Pleistocene limit: the ungulates from level TD8 in the context of climatic change. Quaternary International 433, 296-346. Made, J. van der, Tong H.W., 2008. Phylogeny of the giant deer with palmate brow tines Megaloceros from west and Sinomegaceros from east Eurasia. Quaternary International 179, 135-162. Made, J. van der, Torres, T., Ortiz, J.E., Moreno-Pérez L., Fernández Jalvo, Y., 2016. The new material of large mammals from Azokh and comments on the older collections. In: Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L. (Eds.). Azokh caves and the Transcaucasian Corridor. Springer, Dordrecht, pp. 117-162. Madurell-Malapeira, J., Rook, L., Martínez-Navarro, B., Alba, D.M., Aurell-Garrido, J., Moyà-Solà, S., 2013. The latest European painted dog. Journal of Vertebrate Paleontology 33, 1244-1249. Martínez-Navarro, B., Rook, L., 2003. Gradual evolution in the African hunting dog lineage Systematic implications. Comptes Rendus Palevol 2, 695-702. Martínez-Sánchez, R.M., López-García, J.M., Alcalá-Ortíz, A., Blain, H.-A., Rabal-Garcés, R., Bretones-García, M.d., Rodríguez-Vidal, J., Martínez-Alegre, A., 2012. Bears and hyenas from the Latest Pleistocene of Southern Iberia: Sima de Abraham, Priego de Córdoba, Andalusia. Journal of Taphonomy 10, 545-559. Maul, L., Masini, F., Parfitt, L., Savorelli, A., 2014. Evolutionary trends in arvicolids and the endemic murid Mikrotia – New data and critical overview. Quaternary Science Reviews 96, 240-258. Mazo, A.V., 2010. Los macrovertebrados del Pleistoceno Medio del yacimiento de TAFESA (Madrid). Zona Arqueológica 14, 141-153. Mazza, P., 1988. The tuscan Early Pleistocene rhinoceros Dicerorhinus etruscus. Paleontographica Italica 75, 1-87. McCown, T.D., Keith, A., 1939. The of Mount Carmel. Clarendon Press, Oxford. McDougall, I., Brown, F.H., Fleagle, J.G., 2008. Sapropels and the age of hominins Omo I and II, Kibish, Ethiopia. Journal of Human Evolution 55, 409-420. Pablos, A., Lorenzo, C., Martínez, I., Bermúdez de Castro, J.M., Martinón-Torres, M., Carbonell, E., Arsuaga, J.L., 2012. New foot remains from the Gran Dolina-TD6 Early Pleistocene site (Sierra de Atapuerca, Burgos, Spain). Journal of Human Evolution 63, 610-623. Pablos, A., Martínez, I., Lorenzo, C., Gracia, A., Sala, N., Arsuaga, J.L., 2013. Human talus bones from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). Journal of Human Evolution 65, 79-92. Pablos, A., Martínez, I., Lorenzo, C., Sala, N., Gracia-Téllez, A., Arsuaga, J.L., 2014. Human calcanei from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). Journal of Human Evolution 76, 63-76. Pablos, A., Pantoja-Pérez, A., Martínez, I., Lorenzo, C., Arsuaga, J.L., 2017. Metric and morphological analysis of the foot in the Middle Pleistocene population of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). Quaternary International 433, 103-113. Pablos, A., Sala, N., Arribas, A., 2018. Taxonomic reassignment of the Paleolithic human navicular from Cueva de los Torrejones (Guadalajara, Spain). Archaeological and Anthropological Sciences 10, 1867-1880. Pablos, A., Gómez-Olivencia, A., Maureille, B., Holliday, T.W., Madelaine, S., Trinkaus, E., Couture-Veschambre, C., 2019. Neandertal foot remains from Regourdou 1 (Montignac-sur-Vézère, Dordogne, France). Journal of Human Evolution 128, 17-44. Pearson, O.M., Royer, D.F., Grine, F.E., Fleagle, J.G., 2008. A description of the Omo I postcranial skeleton, including newly discovered fossils. Journal of Human Evolution 55, 421-437. Pearson, O.M., Pablos, A., Rak, Y., Hovers, E., 2020. A partial Neandertal foot from the Late Middle Paleolithic of , Israel. 2020, 98-125.

64 Pérez Ripoll, M., Morales Pérez, J.V., Sanchis Serra, A., Aura Tortosa, J.E., Sarrión Montañana, I., 2010. Presence of genus Cuon in upper Pleistocene and initial Holocene sites of the Iberian Peninsula: new remains identified in archaeological contexts of the Mediterranean region. Journal of Archaeological Science 37, 437-450. Pons-Moyá, J., 1982. Hyaenidae (Carnivora, Mammalia) del Pleistoceno Inferior de la Cueva Victoria (Mucia, Espana). Endins 9, 45-48. Rafter, J.A., Abell, M.L., Braselton, J.P., 2002. Multiple comparison methods for means. SIAM Review 44, 259-278. Rey-Rodríguez, R. Reconstrucción paleoambiental y biocronológica del yacimiento del Paleolítico medio-superior de Cova Eirós (Triacastela, Lugo) a partir del análisis de las asociaciones de micromamíferos. Master’s thesis. Universitat Rovira i Virgili, Tarragona. Rutte, E., 1958. Die Fundstelle altpleistozäner Säugetiere von Randersacker bei Würzburg. Geologisches Jahrbuch 73, 737-754. Sala, N., Pablos, A., Gómez-Olivencia, A., Sanz, A., Villalba, M., Pantoja-Pérez, A., Laplana, C., Arsuaga, J.L., Algaba, M., 2020. Central Iberia in the Middle MIS 3. Paleoecological inferences during the period 34 - 40 cal kyr BP. Quaternary Science Reviews 228, 106027. Sanchis, A., Tormo, C., Sauqué, V., Sanchis, V., Díaz, R., Ribera, A., Villaverde, V., 2015. Pleistocene leopards in the Iberian Peninsula: New evidence from palaeontological and archaeological contexts in the Mediterranean region. Quaternary Science Reviews 124, 175-208. Santos, E., 2013. Estudio de las cavidades endocraneales de los úrsidos de la Sierra de Atapuerca y otros yacimientos contemporáneos. Patrones evolutivos e implicaciones biocronológicas. PhD Dissertation, Universidad de Burgos, Burgos. Sarrión Montañana, I., Fernández Peris, J., 2006. Presencia de Ursus thibetanus mediterraneus (Forsyth Major, 1873) en la Cova del Bolomor. Tavernes de la Valldigna, Valencia. Archivo de Prehistoria Levantina XXVI, 1-14. Sauqué, V., Rabal-Garcés, R., Cuenca Bescós, G., 2014. Carnivores from Los Rincones, a leopard den in the highest mountain of the Iberian range (Moncayo, Zaragoza, Spain). Historical Biology, 479-506. Sauqué, V., Rabal-Garcés, R., Madurell-Malapeira, J., Gisbert, M., Zamora, S., de Torres, T., Cuenca-Bescós, G., 2017. Pleistocene cave hyenas in the Iberian Peninsula: new insights from Los Aprendices cave (Moncayo, Zaragoza). Palaeontologia Electronica 20, 1-38. Schreiber, HD., 2005. Osteological investigations on skeleton material of (Rhinocerotidae, Mammalia) from the early Middle Pleistocene locality of Mauer near Heidelberg (SW-Germany). Quaternaire, Hors-série, 2, 103-111. Schroeder, H., 1903. Die Wirbeltierfauna des Mosbacher Sandes. I - Gattung Rhinoceros. Abh. K. Preuss. Geol. Landesanst, Neue Foige. 18. Sickenberg, O., 1969. Die Säugetierfauna der Kalkmergel von Lehringen (Krs. Verden/Aller) im Rahmen der eemzeitlichen Faunen Nordwestdeutschlands. Geologisches Jahrbuch. 87, 551-564. Sickenberg, O., 1976. Eine Säugetierfauna des tieferen Bihariums aus dem Becken von Megalopolis (Peloponnes, Griehenland). Anales géologiques des Pays Helleéniques 27, 25-73. Soergel, W., 1927. Cervus megaceros mosbachensis n. sp. und die Stammesgeschichte der Reisenhirsche. Abhandlungen der Senckenberischge naturforschende Gesellschaft 39, 365-408. Sokal, R.R., Rohlf, J., 2003. Biometry. The principles and practice of statistics in biological research, Third ed. W.H. Freeman and Company, New York. Staesche, K., 1941. Nashörner der Gattung Dicerorhinus aus dem Diluvium Württembergs. Abhandlungen der Reichsstelle für Bodenforschung, NF, 200, 1-148. StatSoft, Inc, 2007. STATISTICA (Data Analysis Software System), Version 8.0. www.statsoft.com. Stiner, M.C., Howell, F.C., Martínez-Navarro, B., Tchernov, E., Bar-Yosef, O., 2001. Outside Africa: Middle Pleistocene Lycaon from Hayonim Cave, Israel. Bollettino della Società Paleontologica Italiana 40, 293-302. Tchernov, E., Tsoukala, E., 1997. Middle Pleistocene (Early Toringian) carnivore remain from northern Israel. Quaternary Research 48, 122-136. Torres, T., 1987. Úrsidos del Pleistoceno Medio del Complejo de Atapuerca. In: Aguirre, E., Carbonell, E., Bermúdez de Castro, J. M. (eds.), El Hombre Fósil de Ibeas y el Pleistoceno de la Sierra de Atapuerca. Junta de Castilla y León, pp. 153-187. Torres, T.J., 1988. Osos (Mammalia, Carnívora, Ursidae) del Pleistoceno de la Península Ibérica. Boletin Geológico y minero 99, 1-316. Torres, T., Cobo, R., Salazar, A., 1991. La población de oso de las cavernas (Ursus spelaeus parvilatipedis n.ssp.) de Troskaeta'ko-Kobea (Ataun-Gipuzkoa) (Campaña de excavación de 1987 y 1988). Munibe (Antropologia Arkeologia) 43, 3-85. Torres, T., Ortiz, J.E., Cobo, R., Julià, R., Camacho, A., Puch, C., Llamas, J.F., 2005. Presence of two cave bear species in La Lucia cave (Lamasón, Cantabria, N Spain): Ursus deningeri von Reichenau and Ursus spelaeus Rosenmüller-Heinroth. Munibe (Antropologia Arkeologia) 57, 103-122. Toula, F., 1902. Das Nashorn von Hundsheim. Rhinoceros (Ceratotherium Osborn) hundsheimensis nov. form. Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt 19, 1-92.

65 Toula, F., 1906. Das Gebiss und Reste der Nadenbeine von Rhinoceros (Ceratothinus Osborn) hundsheimensis. Abhandlungen der kaiserlich-königlichen Geologischen Reichsanstalt 20, 1-38. Trinkaus, E., 1975. A functional analysis of the Neandertal foot. PhD Dissertation. University of Pennsylvania, Pennsylvania. Trinkaus, E., 2005. Early modern humans. Annual Review of Anthropology 34, 207-230. Tsoukala, E.S., 1989. Contribution to the study of the Pleisocene fauna of large mammals (Carnivora, Perissodactyla, Artiodactyla) from Petralona Cave, Chalkidiki (N. Greece). PhD Dissertation. Aristotle University of Thessaloniki, School of Geology - Scientific Annals 1/8, 1-360. Tsoukala, E., Guérin, C., 2016. The Rhinocerotidae and Suidae of the Middle Pleistocene from Petralona Cave (Macedonia, Greece). Acta Zool Bulgarica 68, 243-264. Turner, E., 1990. Middle and Late Pleistocene Macrofaunas from the Neuwied Basin Region (Rhineland-Palatinate) of west Germany. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 37, 133-403, plates 15-32. Turner, A., Antón, M., 1996. The giant hyaena, Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae). Geobios 29, 455-468. Vaquero, M., Made, J. van der, Blain, H.A., Ibáñez, N., López-García, J.M., Rivals, F., Alonso, S., Ameijenda, A., Bennàsar, M., Fernández-García, M., Lombera-Hermida, A. de, Valverde, I., 2018. Fauna, environment and human presence during MIS5 in the North of Spain: The new site of Valdavara 3. Comptes Rendus Palevol 17, 557-593. Valensi, P., 1994. Les grands mammiferes de la , . Étude paleontologique et biostratigraphique des carnivores- Archeozoologie des grandes faunes. Thèse doctorat du Museum National d'histoire Naturelle. Vandermeersch, B., 1981. Les hommes fossiles de Qafzeh (Israel). CNRS, Paris. Villaluenga Martínez, A., 2013. La evaluación de los úrsidos en medios kársticos de la cornisa cantábrica. Estudio tafonómico de conjuntos arqueológicos del Pleistoceno Superior y Holoceno. PhD Dissertation, Universidad del País Vasco-Euskal Herriko Unibertsitatea. Wagner, J., Čermák, S., 2012. Revision of the early Middle Pleistocene bears (Ursidae, Mammalia) of Central Europe, with special respect to possible co-occurrence of spelaeoid and arctoid lineages. Bulletin of Geosciences 87, 461-496. Zapfe, H., 1946. Die altpleistozänen Bären von Hundsheim in Niederösterreich. Jahrb. Geol. Bundensanstallt. Wien, XCI, 95-164.

66