TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression

Total Page:16

File Type:pdf, Size:1020Kb

TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression BASIC RESEARCH www.jasn.org TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression of Fibrotic Kidney Disease † † † Ivan G. Gomez,* Allie M. Roach,* Naoki Nakagawa, Aldo Amatucci,* † ‡ ‡ Bryce G. Johnson,* Kadeshia Dunn, Mark C. Kelly, Gamze Karaca,* Timothy S. Zheng,* ‡ † Suzanne Szak,* Claire M. Peppiatt-Wildman, Linda C. Burkly,* and Jeremy S. Duffield* *Research & Development, Biogen, Cambridge, Massachusetts; †Division of Nephrology, Departments of Medicine & Pathology, and Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; and ‡Medway School of Pharmacy, University of Kent, Chatham, Kent, United Kingdom ABSTRACT The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor su- perfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administra- tion of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-kB signaling path- ways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-kB signaling. In a genetic model of sponta- neous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, pre- served organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression. J Am Soc Nephrol 27: 3639–3652, 2016. doi: 10.1681/ASN.2015111227 Fibrosis is a central problem in many forms of including types VI, VIII, and XII, and other matrix chronic disease affecting internal organs including proteins including fibrillin, hyaluronan, and fibro- the liver, lung, heart, central nervous system, and nectin.2–4 Recently, genetic fate-mapping studies kidney. The deposition of pathologic fibrotic ma- have demonstrated that in virtually all organs, dis- terial between and within organ units, as well as the crete populations of resident mesenchymal cells cellular activation required for such deposition, form the cellular link between initial tissue injury have been strongly implicated in the perpetuation and excessive, pathologic matrix production by mi- and progression of chronic diseases. In the kidney, grating from their niche and depositing pathologic fibrosis manifests histologically as interstitial fibro- matrix as (myo)fibroblasts.2,5–12 In the kidney, sis, glomerulosclerosis, and arteriosclerosis.1 The numerical expansion and activation of myofibro- blasts is central to fibrosis. Although a number of Received November 13, 2015. Accepted February 16, 2016. cell types have the potential to produce and secrete Published online ahead of print. Publication date available at extracellular matrix (ECM) proteins, including ep- www.jasn.org. ithelial cells, endothelial cells, and leukocytes, it is Correspondence: Dr. Jeremy S. Duffield or Dr. Linda C. Burkly, myofibroblasts that produce the pathogenic, fibril- Biogen, Building 6, 115 Broadway, Cambridge, MA, 02142. lar collagenous matrix in vivo, especially collagen Email: jeremy.duffi[email protected] or [email protected] types I, III, V, VII, and XI, microfibril collagens Copyright © 2016 by the American Society of Nephrology J Am Soc Nephrol 27: 3639–3652, 2016 ISSN : 1046-6673/2712-3639 3639 BASIC RESEARCH www.jasn.org many of these mesenchymal cells are closely associated with Furthermore, release of TWEAK by increased blood flow capillaries, perform vascular functions, have mesenchymal in the kidney may be an early feature of the development stem cell characteristics, and may be referred to as pericytes of kidney disease.34 Since such microvascular problems are or perivascular cells.1,3,9,13,14 In the mouse kidney, many of recognized to drive kidney disease,14 and since pericytes are these perivascular cells lack expression of NG2 but express directly implicated in the fibrogenic process, we hypothe- PDGFRb, whereas in rat and human kidneys the expression sized that Fn14 may contribute to fibrogenesis by regulating of NG2 is more variable.15–17 pericyte functions directly. Here, we evaluate the role of The activation of pericytes results in migration from the Fn14 in the activation of kidney myofibroblast precursors, capillary to the interstitial space. This detachment from the as well as in the persistence of established myofibroblasts, capillary is associated with vascular instability, which may and determined its contribution to renal fibrogenesis and result in pathologic angiogenesis or capillary loss.3,13,18 Studies end organ failure. suggest that vascular instability and pericyte activation are di- rectly linked due the loss of survival signals, quiescence sig- nals, and basement membrane maintenance. Failure to resolve RESULTS these responses, either as a result of repetitive injury or loss of normal restorative mechanisms, appears to be central to the Fn14 is Expressed by Pericytes and Myofibroblasts in progression to chronic disease. the Kidney Although several secreted factors that contribute to cellular Tnfrsf12 (Fn14) and Tnfsf12 (TWEAK) were highly upregu- crosstalk and perpetuation of the fibrotic response have been lated in the setting of kidney injury with fibrosis caused by identified, including TGFb,VEGF,CTGF,WNTligands, surgical unilateral ureteral obstruction (UUO) (Figure 1, A Hedgehog ligands, and PDGFs, additional factors likely play and B). Flow cytometry-sorted pericytes from normal kid- critical roles in fibrogenesis. In particular, myofibroblasts neys, and activated pericytes (which progressively differentiate show activation of innate immune signaling pathways, sug- into myofibroblasts) sorted from diseased kidneys were eval- gesting that additional cytokine/receptor interactions contrib- uated for expression of Tnfrsf12 by quantitative PCR (qPCR). ute to their appearance and maintenance in a pathologic Tnfrsf12 was present in healthy pericytes and expression pro- state.3,4,11,19,20 gressively increased with disease (Figure 1B). In keeping with TNFreceptor and TNF superfamily receptor–signaling have high expression of Fn14 by myofibroblasts, kidney tissue been identified as potentially contributing to the pathogenesis sections from the UUO model were stained with anti-Fn14 of kidney diseases, including diabetic nephropathy, IgA ne- antibodies and costained with markers for myofibroblasts. phropathy, and lupus nephritis.21–25 TNF-related weak in- Fn14 was detected at high levels in interstitial myofibro- ducer of apoptosis (TWEAK) and its receptor fibroblast blasts, but was also detected in endothelial cells (Figure growth factor-inducible 14 (Fn14) are TNF superfamily 1C). A minority of injured epithelial cells also expressed a (TNFSF) members and have been implicated in models of low level of Fn14. Notably, only a subpopulation of myofi- kidney injury and disease, including models featuring renal broblasts appeared to express Fn14 and these were in the fibrosis, particularly where autoimmunity is thought to drive areas of greatest myofibroblast accumulation. Fn14 staining the pathogenesis. Such links with autoimmunity may derive in kidneys lacking Fn14 did not detect any specificsignal, from reports that TWEAK overexpression in vivo leads to the highlighting the specificity of this method for detecting pro- development of autoimmunity. However, the receptor and tein expression (Figure 1C, Supplemental Figure 1). A sim- ligand are upregulated in human chronic fibrosing diseases ilar pattern of staining was detected in biopsies from human of the kidney, such as FSGS and diabetic nephropathy, where CKD, where the majority of staining was detected in the there is no autoimmunity26,27; yet a role for this receptor and interstitium in myofibroblasts and endothelium (Supple- ligand directly in fibrogenesis remains undetermined.28–30 mental Figure 2). Fn14 expression was not detected in hu- Fn14 signaling via TNF receptor-associated factors has been man glomeruli. Further validation of these observations was reported to stabilize NF-kB–inducing kinase (NIK), thereby made in primary cultures of mouse kidney cells. Pericytes activating the P52/RelB NF-kB complex and causing down- expressed Fn14, seen as a single band by Western blotting. stream activation of NF-kB target genes, which have been Myofibroblasts, purified from chronically diseased and fi- suggested to be important factors in human kidney dis- brotic kidneys, expressed the receptor at significantly higher ease.31 Recently, we identified Fn14 (TNFRSF12)asanupre- levels. Epithelial and endothelial cells weakly expressed the gulated receptor on activated fibroblasts precursors, known receptor in vitro. Cultured macrophages did not express the as pericytes, and their pathologic counterparts in diseased receptor (Figure 1D). A similar pattern of expression was kidney, known as myofibroblasts. Transcripts
Recommended publications
  • GEMIN8 Antibody (C-Term) Blocking Peptide Synthetic Peptide Catalog # Bp17974b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 GEMIN8 Antibody (C-term) Blocking Peptide Synthetic peptide Catalog # BP17974b Specification GEMIN8 Antibody (C-term) Blocking GEMIN8 Antibody (C-term) Blocking Peptide - Peptide - Background Product Information The protein encoded by this gene is part of Primary Accession Q9NWZ8 the SMNcomplex, which is necessary for spliceosomal snRNP assembly in thecytoplasm and pre-mRNA splicing in the nucleus. The GEMIN8 Antibody (C-term) Blocking Peptide - Additional Information encoded proteinbinds to both SMN1 and the GEMIN6/GEMIN7 heterodimer, mediatingtheir interaction. This protein is found in nuclear Gene ID 54960 Gemini of Cajalbodies (gems) and in the cytoplasm. Three transcript variantsencoding Other Names the same protein have been found for this Gem-associated protein 8, Gemin-8, Protein gene. [providedby RefSeq]. FAM51A1, GEMIN8, FAM51A1 GEMIN8 Antibody (C-term) Blocking Format Peptides are lyophilized in a solid powder Peptide - References format. Peptides can be reconstituted in solution using the appropriate buffer as Carissimi, C., et al. J. Biol. Chem. needed. 281(48):37009-37016(2006)Carissimi, C., et al. J. Biol. Chem. 281(12):8126-8134(2006) Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. Precautions This product is for research use only. Not for use in diagnostic or therapeutic procedures. GEMIN8 Antibody (C-term) Blocking Peptide - Protein Information Name GEMIN8 Synonyms FAM51A1 Function The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome.
    [Show full text]
  • Fibrillarin from Archaea to Human
    Biol. Cell (2015) 107, 1–16 DOI: 10.1111/boc.201400077 Review Fibrillarin from Archaea to human Ulises Rodriguez-Corona*, Margarita Sobol†, Luis Carlos Rodriguez-Zapata‡, Pavel Hozak† and Enrique Castano*1 *Unidad de Bioquımica´ y Biologıa´ molecular de plantas, Centro de Investigacion´ Cientıfica´ de Yucatan,´ Colonia Chuburna´ de Hidalgo, Merida,´ Yucatan, Mexico, †Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, and ‡Unidad de Biotecnologıa,´ Centro de Investigacion´ Cientıfica´ de Yucatan,´ Colonia Chuburna´ de Hidalgo, Merida,´ Yucatan, Mexico Fibrillarin is an essential protein that is well known as a molecular marker of transcriptionally active RNA polyme- rase I. Fibrillarin methyltransferase activity is the primary known source of methylation for more than 100 methylated sites involved in the first steps of preribosomal processing and required for structural ribosome stability. High expression levels of fibrillarin have been observed in several types of cancer cells, particularly when p53 levels are reduced, because p53 is a direct negative regulator of fibrillarin transcription. Here, we show fibrillarin domain conservation, structure and interacting molecules in different cellular processes as well as with several viral proteins during virus infection. Additional supporting information may be found in the online version of this article at the publisher’s web-site Introduction progression, senescence and biogenesis of small nu- The nucleolus is the largest visible structure inside clear RNA and tRNAs proliferation and many forms the cell nucleus. It exists both as a dynamic and sta- of stress response (Andersen et al., 2005; Hinsby ble region depending of the nature and amount of et al., 2006; Boisvert et al., 2007; Shaw and Brown, the molecules that it is made of.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Targeting the Tryptophan Hydroxylase 2 Gene for Functional Analysis in Mice and Serotonergic Differentiation of Embryonic Stem Cells
    TARGETING THE TRYPTOPHAN HYDROXYLASE 2 GENE FOR FUNCTIONAL ANALYSIS IN MICE AND SEROTONERGIC DIFFERENTIATION OF EMBRYONIC STEM CELLS Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Dana Kikic, M.Sc. in Molecular biology and Physiology from Nis June, 2009 The doctorate studies were performed in the research group of Prof. Michael Bader Molecular Biology of Peptide Hormones at Max-Delbrück-Center for Molecular Medicine in Berlin, Buch Mai 2005 - September 2008. 1st Reviewer: Prof. Michael Bader 2nd Reviewer: Prof. Udo Heinemann date of defence: 13. August 2009 ACKNOWLEDGMENTS Herewith, I would like to acknowledge the persons who made this thesis possible and without whom my initiation in the world of basic science research would not have the spin it has now, neither would my scientific illiteracy get the chance to eradicate. I am expressing my very personal gratitude and recognition to: Prof. Michael Bader, for an inexhaustible guidance in all the matters arising during the course of scientific work, for an instinct in defining and following the intellectual challenge and for letting me following my own, for necessary financial support, for defining the borders of reasonable and unreasonable, for an invaluable time and patience, and an amazing efficiency in supporting, motivating, reading, correcting and shaping my scientific language during the last four years. Prof. Harald Saumweber and Prof. Udo Heinemann, for taking over the academic supervision of the thesis, and for breathing in it a life outside the laboratory walls and their personal signature.
    [Show full text]
  • Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
    Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
    UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.
    [Show full text]
  • Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6
    Research Collection Doctoral Thesis Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6 Author(s): Voigts-Hoffmann, Felix Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007303759 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ETH Zurich Dissertation No. 20189 Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 A dissertation submitted to ETH ZÜRICH for the degree of Doctor of Sciences (Dr. sc. ETH Zurich) presented by Felix Voigts-Hoffmann MSc Molecular Biotechnology, Universität Heidelberg born April 11, 1981 citizen of Göttingen, Germany accepted on recommendation of Prof. Dr. Nenad Ban (Examiner) Prof. Dr. Raimund Dutzler (Co-examiner) Prof. Dr. Rudolf Glockshuber (Co-examiner) 2012 blank page ii Summary Ribosomes are large complexes of several ribosomal RNAs and dozens of proteins, which catalyze the synthesis of proteins according to the sequence encoded in messenger RNA. Over the last decade, prokaryotic ribosome structures have provided the basis for a mechanistic understanding of protein synthesis. While the core functional centers are conserved in all kingdoms, eukaryotic ribosomes are much larger than archaeal or bacterial ribosomes. Eukaryotic ribosomal rRNA and proteins contain extensions or insertions to the prokaryotic core, and many eukaryotic proteins do not have prokaryotic counterparts. Furthermore, translation regulation and ribosome biogenesis is much more complex in eukaryotes, and defects in components of the translation machinery are associated with human diseases and cancer.
    [Show full text]
  • CXCR4 Pathway Retards Muscle Atrophy During Cancer Cachexia
    Oncogene (2016) 35, 6212–6222 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia GB Martinelli1, D Olivari1, AD Re Cecconi1, L Talamini1, L Ottoboni2, SH Lecker3, C Stretch4, VE Baracos4, OF Bathe5, A Resovi6, R Giavazzi1, L Cervo7 and R Piccirillo1 Cancer cachexia is a life-threatening syndrome that affects most patients with advanced cancers and causes severe body weight loss, with rapid depletion of skeletal muscle. No treatment is available. We analyzed microarray data sets to identify a subset of genes whose expression is specifically altered in cachectic muscles of Yoshida hepatoma-bearing rodents but not in those with diabetes, disuse, uremia or fasting. Ingenuity Pathways Analysis indicated that three genes belonging to the C-X-C motif chemokine receptor 4 (CXCR4) pathway were downregulated only in muscles atrophying because of cancer: stromal cell-derived factor 1 (SDF1), adenylate cyclase 7 (ADCY7), and p21 protein-activated kinase 1 (PAK1). Notably, we found that, in the Rectus Abdominis muscle of cancer patients, the expression of SDF1 and CXCR4 was inversely correlated with that of two ubiquitin ligases induced in muscle wasting, atrogin-1 and MuRF1, suggesting a possible clinical relevance of this pathway. The expression of all main SDF1 isoforms (α, β, γ) also declined in Tibialis Anterior muscle from cachectic mice bearing murine colon adenocarcinoma or human renal cancer and drugs with anticachexia properties restored their expression. Overexpressing genes of this pathway (that is, SDF1 or CXCR4) in cachectic muscles increased the fiber area by 20%, protecting them from wasting.
    [Show full text]
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • ASPA Gene Aspartoacylase
    ASPA gene aspartoacylase Normal Function The ASPA gene provides instructions for making an enzyme called aspartoacylase. In the brain, this enzyme breaks down a compound called N-acetyl-L-aspartic acid (NAA) into aspartic acid (an amino acid that is a building block of many proteins) and another molecule called acetic acid. The production and breakdown of NAA appears to be critical for maintaining the brain's white matter, which consists of nerve fibers surrounded by a myelin sheath. The myelin sheath is the covering that protects nerve fibers and promotes the efficient transmission of nerve impulses. The precise function of NAA is unclear. Researchers had suspected that it played a role in the production of the myelin sheath, but recent studies suggest that NAA does not have this function. The enzyme may instead be involved in the transport of water molecules out of nerve cells (neurons). Health Conditions Related to Genetic Changes Canavan disease More than 80 mutations in the ASPA gene are known to cause Canavan disease, which is a rare inherited disorder that affects brain development. Researchers have described two major forms of this condition: neonatal/infantile Canavan disease, which is the most common and most severe form, and mild/juvenile Canavan disease. The ASPA gene mutations that cause the neonatal/infantile form severely impair the activity of aspartoacylase, preventing the breakdown of NAA and allowing this substance to build up to high levels in the brain. The mutations that cause the mild/juvenile form have milder effects on the enzyme's activity, leading to less accumulation of NAA.
    [Show full text]