Esa Achievements

Total Page:16

File Type:pdf, Size:1020Kb

Esa Achievements ESA-AchieveCOVER 8/1/05 1:58 PM Page 1 BR-250 BR-250 ESA ACHIEVEMENTS more than thirty years of pioneering space activity ESA-Achieve 8/1/05 1:56 PM Page 1 BR-250 June 2005 more than thirty years of pioneering space activity Andrew Wilson ESA-Achieve 8/1/05 1:56 PM Page 2 Foreword 4 Envisat 220 Introduction 8 MSG 230 Integral 236 Europa 46 Mars Express 244 ESRO-2 50 SMART-1 254 ESRO-1 52 Rosetta 260 HEOS 54 Sloshsat 272 TD-1 58 ESRO-4 60 Coming Launches Cos-B 62 CryoSat 274 Geos 66 Venus Express 278 OTS 70 Galileo 284 ISEE-2 74 Metop 292 Meteosat 76 ATV 298 IUE 82 GOCE 304 Ariane-1/2/3/4 86 Columbus 310 Marecs 94 SMOS 324 Sirio-2 98 Proba-2 330 Contents Exosat 100 Planck 332 ECS 104 Herschel 338 Spacelab 108 Vega 344 Giotto 114 ERA 348 Olympus 120 ADM-Aeolus 352 Hipparcos 124 LISA Pathfinder 356 FOC/HST 128 Swarm 358 Ulysses 134 JWST 362 BR-250 “ESA Achievements (3rd edition)” ERS 144 Gaia 366 Eureca 152 BepiColombo 372 ISBN 92-9092-493-4 ISSN 0250-1589 ISO 156 EarthCARE 378 Compiled/ Andrew Wilson, SOHO 160 LISA 380 written by: ESA Publications Division Ariane-5 168 Solar Orbiter 384 Published by: ESA Publications Division, Cluster 182 ESTEC, Noordwijk, The Netherlands Huygens 188 Chronologies 388 TeamSat 200 Acronyms & 398 Design by: Leigh Edwards & Abbreviations Andrew Wilson ARD 202 XMM-Newton 206 Index 400 Price: €30 Artemis 210 © European Space Agency 2005 Proba-1 216 2 3 ESA-Achieve 8/1/05 1:56 PM Page 4 It is a privilege to be part of an organisation with such a rich heritage and exciting The second priority is Exploration. It is a very important priority for our future, potential as the European Space Agency (ESA). The Agency is at a turning point in creating the basis for increasing scientific benefits and for robust European its history, so it is an appropriate moment to document and reflect on the many participation in future large international cooperative space programmes successes of the past and those still under way, while preparing to head in beyond the lifetime of the International Space Station. Europe has always been new directions for the future. highly successful in this domain, as our scientific missions have proved time and again, and it now has a new momentum created in part by the Vision for The remarkable record stretches from humble beginnings in the Space Exploration of President George W. Bush. European spacecraft are now 1960s to ESA’s leading position today among the front rank of orbiting the Moon and Mars and one recently made the first-ever landing on space organisations, generating enormous benefits for its Member Titan, so we are building our future on concrete results. States and their citizens. The Agency has been responsible for developing systems that are now accepted as everyday – and The third priority groups together market technologies, essentially profitable – parts of our lives, leading to the creation of new telecommunications, technologies preparing for the long-term, and dual-use entities and companies responding to our needs. technologies. Technology programmes are a key element of an industrial policy that serve to consolidate the capabilities and competitiveness of European The Ariane rocket alone has provided an impressive return industry. on investment. It has long dominated the world’s commercial launch market, operated by the Arianespace Together, the GMES and technology initiatives provide the foundation for company. The new heavy-lift Ariane-5 is already building responding to the demands of European security policies. a significant reputation as the latest addition to the The three new initiatives build on the priorities defined by the Space Council, a Ariane family. The Meteosat weather satellite system joint meeting of the ESA Council and the European Union Council. ESA’s developed by ESA similarly led to the creation of Foreword relationship with the European Union has been strengthened substantially by a Eumetsat. The ECS communications satellites led to Framework Agreement essential for joint activities. The joint Space Council set Eutelsat, and the Marecs maritime satellites were vitally up by this Framework Agreement held its inaugural meeting in November 2004, important to Inmarsat. These are all now enterprises of the first time that the EU and ESA Councils have met to discuss space policy global importance. Likewise, ESA’s science programme is and the future of space in Europe. Close cooperation between our two second-to-none, and our Earth-observation satellites organisations lies at the heart of European space policy. The pioneering Galileo continue to return torrents of data. Our expertise is such satellite navigation system is but the first joint venture that will put space at the that we are welcomed as a major Partner in the service of European citizens. International Space Station. These missions are all included in this volume. Individual entries cover past, current and The Agency is preparing programme proposals on the basis of this strategy and approved future missions beyond this decade. will submit them to the ESA Ministerial meeting scheduled for December 2005. With these new directions, we can expect that the Agency has an equally Despite this superb record, the Agency cannot afford to stand productive future and a crucial role in the success of Europe. still. We have thus set three main priorities for the future. The first is Global Monitoring for Environment and Security, or GMES. The Jean-Jacques Dordain environment and security are two of the biggest concerns of Europe’s Director-General, European Space Agency citizens, and ESA has been working with the European Commission over the past few years to build a plan for future activities. The time has now come to implement that plan, based on the concrete results that we have already achieved in Earth observation, especially with ERS and Envisat. 4 5 ESA-Achieve 8/1/05 1:56 PM Page 6 Launch date Mission Launch date Mission Europa-I F1 5 Jun 1964 Launcher: test of stage-1 Proba-1 22 Oct 2001 Technology/Earth observation ESRO-2A* 29 May 1967 Science: cosmic rays, solar X-rays Envisat 1 Mar 2002 Earth observation ESRO-2B 17 May 1968 Science: cosmic rays, solar X-rays Meteosat-8 28 Aug 2002 Meteorology: Meteosat Second Generation ESRO-1A 3 Oct 1968 Science: Earth auroral and polar-cap phenomena, ionosphere Integral 17 Oct 2002 Science: gamma-ray astronomy Europa-I F7* 30 Nov 1968 Launcher: first orbital attempt Ariane-5ECA* 11 Dec 2002 Launcher: 9 t GTO-capacity, A5ECA debut HEOS-1 5 Dec 1968 Science: interplanetary medium, bow shock Mars Express 2 Jun 2003 Science: Mars orbiter & lander ESRO-1B 1 Oct 1969 Science: as ESRO-1A SMART-1 27 Sep 2003 Technology/science: lunar orbiter Europa-II F11* 5 Nov 1971 Launcher: orbital demonstration Rosetta 2 Mar 2004 Science: Comet rendezvous (2014-2015) HEOS-2 31 Jan 1972 Science: Earth polar magnetosphere, interplanetary medium Sloshsat 12 Feb 2005 Technology TD-1 12 Mar 1972 Science: UV, X-ray and gamma-ray astronomy *launch failure Only the debut launches of Ariane-1/2/3/4/5/5ECA, ESRO-4 26 Nov 1972 Science: Earth neutral atmosphere, ionosphere, Europa, Vega, Spacelab and ATV are shown. auroral particles Cos-B 9 Aug 1975 Science: gamma-ray astronomy Geos-1 20 Apr 1977 Science: dynamics of Earth magnetosphere OTS-1* 14 Sep 1977 Telecommunications: demonstrate European technologies ISEE-2 22 Oct 1977 Science: Sun/Earth relations and magnetosphere Meteosat-1 23 Nov 1977 Meteorology: pre-operational meteorological services IUE 26 Jan 1978 Science: ultraviolet astronomy OTS-2 12 May 1978 Telecommunications: demonstrated European technologies Geos-2 24 July 1978 Science: Earth magnetospheric fields, waves and particles Ariane-1 24 Dec 1979 Commercial launcher: first of 11 Ariane-1 launches Meteosat-2 19 Jun 1981 Meteorology: pre-operational meteorological services Marecs-A 20 Dec 1981 Telecommunications: maritime communications Marecs-B* 10 Sep 1982 Telecommunications: maritime communications Sirio-2* 10 Sep 1982 Meteorological data distribution & clock synchronisation Exosat 26 May 1983 Science: X-ray astronomy PLANNED Launch date Mission ECS-1 16 Jun 1983 Telecommunications: operational European Communications Satellite MSG-2 Aug 2005 Meteorology: Meteosat Second Generation Spacelab-1 28 Nov 1983 First of 22 manned Spacelab missions, plus Planned CryoSat Sep 2005 Earth observation: polar ice thickness Launches of multi-disciplinary First Spacelab Payload (FSLP) Venus Express Oct 2005 Science: Venus orbiter Ariane-2/3 4 Aug 1984 Commercial launcher: first of 17 Ariane-2/3 launches GSTB-V2 Dec 2005 Navigation: Galileo System Test Bed ESA, ESRO, ECS-2 4 Aug 1984 Telecommunications: operational European launches of Metop-2 Apr 2006 Meteorology: polar meteorological services Communications Satellite ATV 2006 Space station: Automated Transfer Vehicle debut Marecs-B2 10 Nov 1984 Telecommunications: maritime communications GOCE Sep 2006 Earth observation: Earth’s gravity field and geoid ELDO and ESA and Columbus 2006 Space station: research laboratory Giotto 2 Jul 1985 Science: Comet Halley and Comet Grigg- SMOS Mar 2007 Earth observation: soil moisture and ocean salinity Skjellerup encounters related Proba-2 Mar 2007 Technology/solar observation related ECS-3* 12 Sep 1985 Telecommunications: operational European Communications Satellite Planck Aug 2007 Science: map Cosmic Microwave Background missions ECS-4 16 Sep 1987 Telecommunications: operational European missions Herschel Aug 2007 Science: far-IR/sub-mm astronomy Communications Satellite Vega Nov 2007 Launcher:
Recommended publications
  • Ariane-5 Completes Flawless Third Test Flight
    r bulletin 96 — november 1998 Ariane-5 Completes Flawless Third Test Flight A launch-readiness review conducted on Friday engine shut down and Maqsat-3 was 16 and Monday 19 October had given the go- successfully injected into GTO. The orbital ahead for the final countdown for a launch just parameters at that point were: two days later within a 90-minute launch Perigee: 1027 km, compared with the window between 13:00 to 14:30 Kourou time. 1028 ± 3 km predicted The launcher’s roll-out from the Final Assembly Apogee: 35 863 km, compared with the Building to the Launch Zone was therefore 35 898 ± 200 km predicted scheduled for Tuesday 20 October at 09:30 Inclination: 6.999 deg, compared with the Kourou time. 6.998 ± 0.05 deg predicted. On 21 October, Europe reconfirmed its lead in providing space Speaking in Kourou immediately after the flight, transportation systems for the 21st Century. Ariane-5, on its third Fredrik Engström, ESA’s Director of Launchers qualification flight, left no doubts as to its ability to deliver payloads and the Ariane-503 Flight Director, confirmed reliably and accurately to Geostationary Transfer Orbit (GTO). The new that: “The third Ariane-5 flight has been a heavy-lift launcher lifted off in glorious sunshine from the Guiana complete success. It qualifies Europe’s new Space Centre, Europe’s spaceport in Kourou, French Guiana, at heavy-lift launcher and vindicates the 13:37:21 local time (16:37:21 UT). technological options chosen by the European Space Agency.” This third Ariane-5 test flight was intended ESA’s Director
    [Show full text]
  • AATSR Frequently Asked Questions (FAQ)
    AATSR Frequently Asked Questions (FAQ) Author : IDEAS+ AATSR QC Team (Telespazio VEGA UK) IDEAS+-VEG-OQC-REP-2117 Issue 3 14 December 2016 AATSR Frequently Asked Questions (FAQ) Issue 3 AMENDMENT RECORD SHEET The Amendment Record Sheet below records the history and issue status of this document. ISSUE DATE REASON 1 20 Dec 2005 Initial Issue (as AEP_REP_001) 2 02 Oct 2013 Updated with new questions and information (issued as IDEAS- VEG-OQC-REP-0955) 3 14 Dec 2016 General updates, major edits to Q37., new questions: Q17., Q25., Q26., Q28., Q32., Q38., Q39., Q48. Now issued as IDEAS+-VEG-OQC-REP-2117 TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................................ 5 1.1 The Third AATSR Reprocessing Dataset (IPF 6.05) ............................................................ 5 1.2 References ............................................................................................................................ 6 2. GENERAL QUESTIONS ........................................................................................................... 7 Q1. What does AATSR stand for? ........................................................................................ 7 Q2. What is AATSR and what does it do? ............................................................................ 7 Q3. What is Envisat? ............................................................................................................. 7 Q4. What orbit does Envisat use? ........................................................................................
    [Show full text]
  • Project Number: JMW-USC1
    Project Number: JMW-USC1 Department of Social Science and Policy Studies THE FUTURE OF UNMANNED SPACE: A SPECULATIVE ANALYSIS OF THE COMMERCIAL MARKET An Interactive Qualifying Project Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by ______________________________ Peter Brayshaw ______________________________ Brooks Farnham ______________________________ Jon Leslie December 16, 2004 _____________________________ ________________________________ Professor John M. Wilkes, Advisor Professor Peter Campisano, Co-Advisor Abstract: This report is one of many which deal with the unmanned space race. It is a prediction of who will have the greatest competitive advantage in the commercial market over the next 25 years, based on historical analogy. Background information on Russia, China, Japan, the United States and the European Space Agency, including the launch vehicles and launch services each provides, is covered. The new prospect of space platforms is also investigated. 2 Table of Contents Abstract: ...................................................................................................... 2 Table of Contents ......................................................................................... 3 Introduction ................................................................................................. 5 Literature Review ...................................................................................... 5 Project
    [Show full text]
  • 6. the INTELSAT 17 Satellite
    TWO COMMUNICATIONS SATELLITES READY FOR LAUNCH Arianespace will orbit two communications satellite on its fifth launch of the year: INTELSAT 17 for the international satellite operator Intelsat, and HYLAS 1 for the European operator Avanti Communications. The choice of Arianespace by leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads. Arianespace and Intelsat have built up a long-standing relationship based on mutual trust. Since 1983, Arianespace has launched 48 satellites for Intelsat. Positioned at 66 degrees East, INTELSAT 17 will deliver a wide range of communication services for Europe, the Middle East, Russia and Asia. Built by Space Systems/Loral of the United States, this powerful satellite will weigh 5,540 kg at launch. It will also enable Intelsat to expand its successful Asian video distrubution neighborhood. INTELSAT 17 will replace INTELSAT 702. HYLAS 1 is Avanti Communications’ first satellite. A new European satellite operator, Avanti Communications also chose Arianespace to orbit its HYLAS 2 satellite, scheduled for launch in the first half of 2012. HYLAS 1 was built by an industrial consortium formed by EADS Astrium and the Indian Space Research Organisation (ISRO), using a I-2K platform. Fitted with Ka-band and Ku-band transponders, the satellite will be positioned at 33.5 degrees West, and will be the first European satellite to offer high-speed broadband services across all of Europe.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Cloud Cci ATSR-2 and AATSR Dataset Version 3: a 17-Year Climatology of Global Cloud and Radiation Properties Caroline A
    Discussions https://doi.org/10.5194/essd-2019-217 Earth System Preprint. Discussion started: 11 December 2019 Science c Author(s) 2019. CC BY 4.0 License. Open Access Open Data Cloud_cci ATSR-2 and AATSR dataset version 3: a 17-year climatology of global cloud and radiation properties Caroline A. Poulsen1, Gregory R. McGarragh2, Gareth E. Thomas3,6, Martin Stengel4, Matthew W. Christensen5, Adam C. Povey7, Simon R. Proud5,6, Elisa Carboni3,6, Rainer Hollmann4, and Roy G. Grainger7 1Monash University, Melbourne, Australia 2Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK Now at Cooperative Institute for Research in the Atmosphere, Colorado State University 3Science Technology Facility Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire, UK 4Deutscher Wetterdienst, Frankfurter Str. 135, 63067, Offenbach, Germany 5Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK 6National Centre for Earth Observation, Reading RG6 6BB, UK 7National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K. Correspondence: Caroline Poulsen ([email protected]) Abstract. We present version 3 (V3) of the Cloud_cci ATSR-2/AATSR dataset. The dataset was created for the European Space Agency (ESA) Cloud_cci (Climate Change Initiative) program. The cloud properties were retrieved from the second Along- Track Scanning Radiometer (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) spanning 1995-2003 and the Advanced ATSR (AATSR) on board Envisat, which spanned 2002-2012. The data comprises a comprehensive set 5 of cloud properties: cloud top height, temperature, pressure, spectral albedo, cloud effective emissivity, effective radius and optical thickness alongside derived liquid and ice water path.
    [Show full text]
  • Drought and Effect of Vegetation on Aeolian Transport in the Aralkum
    Drought and effect of vegetation on aeolian transport in the Aralkum Timon Smeets 1 2 Drought and effect of vegetation on aeolian transport in the Aralkum MSc Thesis November-2020 Author: Timon Smeets Student number: 5559650 E-mail: [email protected] First supervisor: Geert Sterk Second supervisor: Gerben Ruessink MSc Programme: Earth Surface and Water Faculty of Geosciences Department of Physical Geography Utrecht University 3 Abstract This study focusses on the effects of the desiccation of the Aral Sea, which occurred ~50 years ago. The desiccation of the Aral Sea began a shift in climate and transformed the Aral Sea. The Aral sea that once was the livelihood of many changed into the Aralkum, a dessert which to this day destroys the lives of many. This study focusses on the shift in climate that occurred due to the desiccating of the Aral Sea, the dust storms originating from the Aralkum, and vegetation strategies that can limit the magnitude of these dust storms. This study used precipitation data and satellite imagery to analyse the shift in the meteorological climate and the resulting changes in vegetation. Using the Aerosol optical depth and local wind speed data, the temporal variation of dust storms and high wind events were analysed and linked. The effect of different types of vegetation on reducing wind erosion in the form of suspension and saltation was modelled using a cellular automaton approach. The climate has shifted into a wetter but warmer climate. The regions affected by this are the rangelands in proximity(0-500 km) to the Aral sea, which experienced soil salination and a significant loss in vegetation density.
    [Show full text]
  • BR-248 Part of Our Daily Lives
    BR-248 8/19/05 11:18 AM Page 3 BR-248 August 2005 Part of Our Daily Lives 3 BR-248 8/19/05 11:18 AM Page 1 Contents Satellite Telecommunications – Part of Our Daily Lives Satellite Telecommunications – What For? 2 Advantages over Terrestrial Systems 3 Orbits 4 The Satcom Market 5 Role of the European Space Agency 6 ESA Telecom Department 7 More Than 30 Years of Satcom Experience 8 Investing in New Technology 9 Broadcasting 10 SATMODE – A New Dimension for Interactive Satellite-based TV 11 Mobile Communications 12 Telemedicine – Medical Care from Space 13 Distance Learning via Satellite 14 Satellites Save Lives 15 Bridging the Digital Divide 16 AlphaBus, the New European Platform for the Next Generation of Telecommunications Satellites 17 AmerHis – The First Switchboard in Space 18 The Future of Satellite Telecommunications 19 1 BR-248 8/19/05 11:18 AM Page 2 Satellite Telecommunications – What For? Without us realising it, satellite communications permeate our lives. Many everyday events that we take for granted happen because telecommunications satellites are in orbit, 36 000 km above our heads - they are reliable and can be used in a plethora of ways. • Did you know that many news- • Did you know that when you make papers and magazines are a call from an aircraft or cruise boat, produced centrally, but printed it is transferred via satellite? locally? The content of the paper is sent to the printing plants using • Did you know that satellites are satellite links. being used for tele-education, telemedicine and video-confer- • Did you
    [Show full text]
  • Thales Alenia Space Experience on Plasma Propulsion
    Thales Alenia Space Experience on Plasma Propulsion IEPC-2007-301 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Michel LYSZYK* and Laurent LECARDONNEL.† Thales Alenia Space, Cannes, 06150, France Abstract: Thales Alenia Space experience on plasma propulsion has been developed in the frame of Stentor, Astra 1K and GEI programs with plasma propulsion systems using SPT100 thrusters manufactured by Fakel and commercialized by Snecma . The PPS (plasma propulsion system) use in house equipments such as Power Processing Unit (PPU) manufactured by TAS-ETCA in Charleroi and the Thruster Orientation Mechanism (TOM) manufactured by TAS-France in Cannes . The PPS subsystem is used on board our SpaceBus satellite family to perform North-South station keeping. The on going activity on the XPS (Xenon Propulsion System) is devoted to the next European platform Alphabus currently under joint development by Thales Alenia Space and Astrium with CNES and ESA support. The XPS uses also the PPU manufactured by TAS-ETCA , the TOM manufactured by TAS-France and the Xe tank developed by TAS-Italy ; it use also the PPS1350 thruster under qualification by Snecma , a xenon regulator and a latch valve under development at Marotta Ireland. I. Introduction HIS document describes the Thales Alenia Space experience gained through Stentor , Astra 1K , GEI, T Spacebus and Alphabus programs on plasma Hall effect thrusters propulsion subsystems . For Spacebus application a description of the subsystem is given together with the general achieved performances . For Alphabus application a general status of the on going activities is given . * Head of electric propulsion section, Propulsion Department, [email protected].
    [Show full text]
  • Design by Contract: the Lessons of Ariane
    . Editor: Bertrand Meyer, EiffelSoft, 270 Storke Rd., Ste. 7, Goleta, CA 93117; voice (805) 685-6869; [email protected] several hours (at least in earlier versions of Ariane), it was better to let the computa- tion proceed than to stop it and then have Design by to restart it if liftoff was delayed. So the SRI computation continues for 50 seconds after the start of flight mode—well into the flight period. After takeoff, of course, this com- Contract: putation is useless. In the Ariane 5 flight, Object Technology however, it caused an exception, which was not caught and—boom. The exception was due to a floating- point error during a conversion from a 64- The Lessons bit floating-point value, representing the flight’s “horizontal bias,” to a 16-bit signed integer: In other words, the value that was converted was greater than what of Ariane can be represented as a 16-bit signed inte- ger. There was no explicit exception han- dler to catch the exception, so it followed the usual fate of uncaught exceptions and crashed the entire software, hence the onboard computers, hence the mission. This is the kind of trivial error that we Jean-Marc Jézéquel, IRISA/CNRS are all familiar with (raise your hand if you Bertrand Meyer, EiffelSoft have never done anything of this sort), although fortunately the consequences are usually less expensive. How in the world everal contributions to this made up of respected experts from major department have emphasized the European countries, which produced a How in the world could importance of design by contract report in hardly more than a month.
    [Show full text]
  • FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
    Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel.
    [Show full text]
  • PORTUGUESE SPACE CATALOGUE PORTUGUESE SPACE CATALOGUE Fundação Para a Ciência E a Tecnologia (FCT) Is the National Funding Agency for Science and Research in Portugal
    PORTUGUESE SPACE CATALOGUE PORTUGUESE SPACE CATALOGUE Fundação para a Ciência e a Tecnologia (FCT) is the national funding agency for science and research in Portugal. FCT promotes internationally competitive and high impact science, technology and innovation across all areas of knowledge, including exact, natural and health sciences, engineering, social sciences and humanities. The FCT Space Office addresses all space related issues. It is strongly committed to strengthening the participation of Portuguese researchers and entrepreneurs in space-related activities and in bringing the benefits of developing space sciences, technologies and its applications to Portuguese citizens. Please reach us through [email protected] and on our website www.fct.pt. Towards the end of 2000, Portugal became a member state of the European Space Agency, thus paving the way to full participation in ESA technology and applications programmes. The success achieved by Portuguese companies and research institutes in the European Union programmes, namely in FP7, Copernicus (formerly known as GMES) and Galileo is proof that Portuguese companies and academia are both competitive and reliable partners. Indeed, Portugal contributes to most European Space programmes, covering key domains of space applications, ranging from satellite telecommunications, global navigation systems, Earth observation, space technology, space sciences and robotic exploration. The Portuguese Space Community is an active member of international networks, developing complex space technologies and participating in space science and exploration missions. This community is made up of innovative, knowledge- intensive companies, specialised research institutes and modern public institutions, all strongly engaged in advancing space science, technologies and their application in non-space sectors. Indeed, one of the success factors of the Portuguese Space Community is precisely the close links between companies and academia.
    [Show full text]