Basic Heat Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Basic Heat Treatment CHAPTER 2 BASIC HEAT TREATMENT As Steelworkers, we are interested in the heat treat- water vapor, and other various hydrocarbons. Fuel-fired ment of metals, because we have to know what effects furnaces can provide three distinct atmospheres when the heat produced by welding or cutting has on metal. you vary the proportions of air and fuel. They are called We also need to know the methods used to restore metal oxidizing, reducing, and neutral. to its original condition. The process of heat treating is the method by which metals are heated and cooled in a STAGES OF HEAT TREATMENT series of specific operations that never allow the metal to reach the molten state. The purpose of heat treating is Heat treating is accomplished in three major stages: to make a metal more useful by changing or restoring l its mechanical properties. Through heat treating, we can Stage l—Heating the metal slowly to ensure a make a metal harder, stronger, and more resistant to uniform temperature impact. Also, heat treating can make a metal softer and l Stage 2—Soaking (holding) the metal at a given more ductile. The one disadvantage is that no heat-treat- temperature for a given time and cooling the ing procedure can produce all of these characteristics in metal to room temperature one operation. Some properties are improved at the expense of others; for example, hardening a metal may l Stage 3—Cooling the metal to room temperature make it brittle. HEATING STAGE HEAT-TREATING THEORY The primary objective in the heating stage is to maintain uniform temperatures. If uneven heating oc- The various types of heat-treating processes are curs, one section of a part can expand faster than another similar because they all involve the heating and cooling and result in distortion or cracking. Uniform tempera- of metals; they differ in the heating temperatures and the tures are attained by slow heating. cooling rates used and the final results. The usual meth- ods of heat-treating ferrous metals (metals with iron) are The heating rate of a part depends on several factors. annealing, normalizing, hardening, and tempering. One important factor is the heat conductivity of the Most nonferrous metals can be annealed, but never metal. A metal with a high-heat conductivity heats at a tempered, normalized, or case-hardened. faster rate than one with a low conductivity. Also, the condition of the metal determines the rate at which it Successful heat treatment requires close control may be heated. The heating rate for hardened tools and over all factors affecting the heating and cooling of a parts should be slower than unstressed or untreated metal. This control is possible only when the proper metals. Finally, size and cross section figure into the equipment is available. The furnace must be of the heating rate. Parts with a large cross section require proper size and type and controlled, so the temperatures slower heating rates to allow the interior temperature to are kept within the prescribed limits for each operation. remain close to the surface temperature that prevents Even the furnace atmosphere affects the condition of the warping or cracking. Parts with uneven cross sections metal being heat-treated. experience uneven heating; however, such parts are less The furnace atmosphere consists of the gases that apt to be cracked or excessively warped when the heat- circulate throughout the heating chamber and surround ing rate is kept slow. the metal, as it is being heated. In an electric furnace, the atmosphere is either air or a controlled mixture of SOAKING STAGE gases. In a fuel-fired furnace, the atmosphere is the mixture of gases that comes from the combination of the After the metal is heated to the proper temperature, air and the gases released by the fuel during combustion. it is held at that temperature until the desired internal These gases contain various proportions of carbon mon- structural changes take place. This process is called oxide, carbon dioxide, hydrogen, nitrogen, oxygen, SOAKING. The length of time held at the proper 2-1 temperature is called the SOAKING PERIOD. The is used for metals that require a rapid cooling rate, and soaking period depends on the chemical analysis of the oil mixtures are more suitable for metals that need a metal and the mass of the part. When steel parts are slower rate of cooling. Generally, carbon steels are uneven in cross section, the soaking period is deter- water-hardened and alloy steels are oil-hardened. Non- mined by the largest section. ferrous metals are normally quenched in water. During the soaking stage, the temperature of the metal is rarely brought from room temperature to the HEAT COLORS FOR STEEL final temperature in one operation; instead, the steel is slowly heated to a temperature just below the point at You are probably familiar with the term red-hot as which the change takes place and then it is held at that applied to steel. Actually, steel takes on several colors temperature until the heat is equalized throughout the and shades from the time it turns a dull red until it metal. We call this process PREHEATING. Following reaches a white heat. These colors and the correspond- preheat, the metal is quickly heated to the final required ing temperatures are listed in table 2-1. temperature. During hardening, normalizing, and annealing, When apart has an intricate design, it may have to steel is heated to various temperatures that produce be preheated at more than one temperature to prevent color changes. By observing these changes, you can cracking and excessive warping. For example, assume determine the temperature of the steel. As an example, an intricate part needs to be heated to 1500°F for hard- assume that you must harden a steel part at 1500°F. Heat ening. This part could be slowly heated to 600°F, soaked the part slowly and evenly while watching it closely for at this temperature, then heated slowly to 1200°F, and any change in color. Once the steel begins to turn red, then soaked at that temperature. Following the final carefully note each change in shade. Continue the even preheat, the part should then be heated quickly to the heating until the steel is bright red; then quench the part. hardening temperature of 1500°F. The success of a heat-treating operation depends NOTE: Nonferrous metals are seldom preheated, largely on your judgment and the accuracy with which because they usually do not require it, and preheating you identify each color with its corresponding tempera- can cause an increase in the grain size in these metals. ture. From a study of table 2-1, you can see that close observation is necessary. You must be able to tell the COOLING STAGE difference between faint red and blood red and between dark cherry and medium cherry. To add to the difficulty, your conception of medium cherry may differ from that After a metal has been soaked, it must be returned of the person who prepared the table. For an actual to room temperature to complete the heat-treating proc- heat-treating operation, you should get a chart showing ess. To cool the metal, you can place it in direct contact the actual colors of steel at various temperatures. with a COOLING MEDIUM composed of a gas, liquid, solid, or combination of these. The rate at which the metal is cooled depends on the metal and the properties TYPES OF HEAT TREATMENT desired. The rate of cooling depends on the medium; therefore, the choice of a cooling medium has an impor- Four basic types of heat treatment are used today. tant influence on the properties desired. They are annealing, normalizing, hardening, and tem- pering. The techniques used in each process and how Quenching is the procedure used for cooling metal they relate to Steelworkers are given in the following rapidly in oil, water, brine, or some other medium. paragraphs. Because most metals are cooled rapidly during the hard- ening process, quenching is usually associated with ANNEALING hardening; however, quenching does not always result in an increase in hardness; for example, to anneal cop- In general, annealing is the opposite of hardening, per, you usually quench it in water. Other metals, such You anneal metals to relieve internal stresses, soften as air-hardened steels, are cooled at a relatively slow rate them, make them more ductile, and refine their grain for hardening. structures. Annealing consists of heating a metal to a Some metals crack easily or warp during quenching, specific temperature, holding it at that temperature for and others suffer no ill effects; therefore, the quenching a set length of time, and then cooling the metal to room medium must be chosen to fit the metal. Brine or water temperature. The cooling method depends on the 2-2 Table 2-1.—Heat Colors for Steel Table 2-2.—Approximate Soaking Periods for Hardening, Annealing, and Normalizing Steel metal and the properties desired. Some metals are Ferrous Metal furnace-cooled, and others are cooled by burying them To produce the maximum softness in steel, you heat in ashes, lime, or other insulating materials. the metal to its proper temperature, soak it, and then let Welding produces areas that have molten metal next it cool very slowly. The cooling is done by burying the to other areas that are at room temperature. As the weld hot part in an insulating material or by shutting off the furnace and allowing the furnace and the part to cool cools, internal stresses occur along with hard spots and together.
Recommended publications
  • Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon As Carburizer
    Materials Research, Vol. 12, No. 4, 483-487, 2009 © 2009 Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon as Carburizer Fatai Olufemi Aramidea,*, Simeon Ademola Ibitoyeb, Isiaka Oluwole Oladelea, Joseph Olatunde Borodea aMetallurgical and Materials Engineering Department, Federal University of Technology, Akure, Ondo State, Nigeria bMaterials Science and Engineering Department, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria Received: July 31, 2009; Revised: September 25, 2009 Due to the complexity of controlling parameters in carburization, there has been relatively little work on process variables during the surface hardening process. This work focuses on the effects of the carburizing temperature and time on the mechanical properties of mild steel carburized with activated carbon, at 850, 900 and 950 °C, soaked at the carburizing temperature for 15 and 30 minutes, quenched in oil, tempered at 550 °C and held for 60 minutes. Prior carburization process, standard test samples were prepared from the as received specimen for tensile and impact tests. After carburization process, the test samples were subjected to the standard test and from the data obtained, ultimate tensile strength, engineering strain, impact strength, Youngs’ moduli were calculated. The case and core hardness of the carburized tempered samples were measured. It was observed that the mechanical properties of mild steels were found to be strongly influenced by the process of carburization, carburizing temperature and soaking time at carburizing temperature. It was concluded that the optimum combination of mechanical properties is achieved at the carburizing temperature of 900 °C followed by oil quenching and tempering at 550 °C.
    [Show full text]
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • History of the Hardening of Steel : Science and Technology J
    HISTORY OF THE HARDENING OF STEEL : SCIENCE AND TECHNOLOGY J. Vanpaemel To cite this version: J. Vanpaemel. HISTORY OF THE HARDENING OF STEEL : SCIENCE AND TECHNOLOGY. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-847-C4-854. 10.1051/jphyscol:19824139. jpa- 00222126 HAL Id: jpa-00222126 https://hal.archives-ouvertes.fr/jpa-00222126 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, suppZ4ment au no 12, Tome 43, de'cembre 1982 page C4-847 HISTORY OF THE HARDENING OF STEEL : SCIENCE AND TECHNOLOGY 3. Vanpaemel Center for historical and socio-economical studies on science and technology Teer EZstZaan 41, 3030 Leuven, SeZgim (Accepted 3 November 1982) Abstract. - The knowledge of the hardening phenomenon was achieved through a very cumulative process without any dis- continuity or 'scientific crisis' . The history of the hardening shows a definite interrelationship between techno- logical approach (or the application-side) and academic science . The hardening of steel appears to have been an operation in common use among the early Greeks The Greek and Roman smiths knew, from experience, how to control the.
    [Show full text]
  • Guide to Non-Ferrous Metals
    14 Manufacturing Processes CHAPTER 2 Ferrous Materials and Non-Ferrous Metals and Alloys 2.1 INTRODUCTION Ferrous materials/metals may be defined as those metals whose main constituent is iron such as pig iron, wrought iron, cast iron, steel and their alloys. The principal raw materials for ferrous metals is pig iron. Ferrous materials are usually stronger and harder and are used in daily life products. Ferrous material possess a special property that their characteristics can be altered by heat treatment processes or by addition of small quantity of alloying elements. Ferrous metals possess different physical properties according to their carbon content. 2.2 IRON AND STEEL The ferrous metals are iron base metals which include all varieties of iron and steel. Most common engineering materials are ferrous materials which are alloys of iron. Ferrous means iron. Iron is the name given to pure ferrite Fe, as well as to fused mixtures of this ferrite with large amount of carbon (may be 1.8%), these mixtures are known as pig iron and cast iron. Primarily pig iron is produced from the iron ore in the blast furnace from which cast iron, wrought iron and steel can be produced. 2.3 CLASSIFICATION OF CARBON STEELS Plain carbon steel is that steel in which alloying element is carbon. Practically besides iron and carbon four other alloying elements are always present but their content is very small that they do not affect physical properties. These are sulphur, phosphorus, silicon and manganese. Although the effect of sulphur and phosphorus on properties of steel is detrimental, but their percentage is very small.
    [Show full text]
  • Comparative Properties of Wrought Iron Made by Hand Puddling and by the Aston Process
    RP124 COMPARATIVE PROPERTIES OF WROUGHT IRON MADE BY HAND PUDDLING AND BY THE ASTON PROCESS By Henry S. Rawdon and 0. A. Knight ABSTRACT The hand-puddling method of making wrought iron has not greatly changed for a century. More economical methods in the manufacture of thjs product is the crying need of the industry. A radically new process, recently developed, is now coming into commercial use, in which pig iron, which h>as been refined in a Bessemer converter, is poured into molten slag so as to produce intimate mingling of the two. A comparison of the properties of wrought iron made thus with that made by hand puddling forms the subject of this report. The test results failed to show any marked difference in the products of the two processes. The new product appears to have all of the essential properties usually connoted by the name—wrought iron, CONTENTS Page I. Introduction 954 1. Resume of the Aston process 955 II. Purpose and scope of the investigation 959 III. Materials and methods 960 1. Materials 960 (a) Pipe 960 (6) "Rounds" 961 (c) Slag 962 2. Methods 962 IV. Results 962 1. Composition 962 2. Density 964 3. Mechanical properties 965 (a) Pipe materials 965 (1) Tensile properties 965 (2) Torsional properties 970 (3) Flattening tests 971 (6) 1-inch rounds 972 (1) Tensile properties 972 (2) Torsional properties 973 (3) Impact resistance 973 4. Corrosion resistance 976 (a) Laboratory corrosion tests 976 (6) Electrolytic solution potential 979 5. Structural examination 979 (a) Pipe materials 980 (1) BaU 980 (2) Muck bar 980 (3) Skelp 981 (4) Pipe 981 (&) 1-inch rounds 981 (c) Slag 981 953 : 954 Bureau of Standards Journal of Research [vol.
    [Show full text]
  • Historical Iron by CLARA DECK, CONSERVATOR REVISIONS by LOUISE BECK, CONSERVATOR
    The Care and Preservation Of Historical Iron BY CLARA DECK, CONSERVATOR REVISIONS BY LOUISE BECK, CONSERVATOR Introduction Historical iron can be maintained for years of use and enjoyment provided that some basic care and attention is given to its preservation. The conservation staff of The Henry Ford have compiled the information in this fact sheet to help individuals care for their objects and collections. The first step in the care of collections is to understand and minimize conditions that can cause damage. The second step is to follow basic guidelines for care, handling and cleaning. Please note - this fact sheet will present a brief overview of the care of iron objects, stressing good storage as the best method of preservation. It does not address the serious problems of preserving archaeological metals excavated from land or marine sites. People who collect Un conserved archaeological artifacts should be aware that those types of objects are rarely stable if left untreated and require significant specialist intervention. Please contact a conservator if you need assistance with conservation of these materials. Iron is a common metal in historical collections. It is found in a variety of alloys, known as "ferrous metals", including wrought iron, cast iron and steel. Galvanized or tin-plated sheet is also a familiar material in historical collections. Ferrous metals are magnetic so the presence of iron can, therefore, be easily identified with the use of a magnet. Types of Damage Poor handling and inappropriate storage are the major causes of damage to iron artifacts and can result in corrosion and physical damage to the object.
    [Show full text]
  • C22 Metallurgy; Ferrous Or Non-Ferrous Alloys; Treatment of Alloys Or Non- Ferrous Metals
    C22B C22 METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON- FERROUS METALS Note(s) [2012.01] (1) Processes or devices specific to the transformation of iron ore or iron carbonyl into iron, either solid or molten, are classified in subclass C21B. (2) Processes or devices specific to: – processing of pig-iron or cast iron; – manufacture of wrought-iron, wrought-steel or carbon steel; – treatment in molten state of ferrous alloys; are classified in subclass C21C. (3) The following processes or devices are classified in subclass C21D: – processes specific to heat treatment of ferrous alloys or steels; – devices for heat treatment of metals or alloys. XXXX C22B C22B XXXX C22B PRODUCTION OR REFINING OF METALS (making metallic powder or suspensions thereof B22F 9/00; production of metals by electrolysis or electrophoresis C25); PRETREATMENT OF RAW MATERIALS Note(s) In this subclass, groups for obtaining metals include obtaining the metals by non-metallurgical processes, and obtaining metal compounds by metallurgical processes. Thus, for example, group C22B 11/00 covers the production of silver by reduction of ammoniacal silver oxide in solution, and group C22B 17/00 covers the production of cadmium oxide by a metallurgical process. Furthermore, although compounds of arsenic and antimony are classified in C01G, production of the elements themselves is covered by C22B, as well as the production of their compounds by metallurgical processes. Subclass indexes PRETREATMENT OF RAW MATERIALS ..................... 1/00, 4/00, REFINING OR REMELTING METALS .................................... 9/00 7/00 OBTAINING SPECIFIC METALS ................................ 11/00-61/00 PROCESSES FOR OBTAINING METALS ..................... 3/00, 4/00, 5/00 1 / 00 Preliminary treatment of ores or scrap [1, 2006.01] 3 / 00 Extraction of metal compounds from ores or 1 / 02 .
    [Show full text]
  • SOME NOTE8 on THE] Metallultgy of STEEL
    SOME NOTE8 ON THE] METALLUltGY OF STEEL. A Paper read by Brig.-General BA~NALL-WILD,C.M.G., before a SpeciaZ Meeting qf London Graduates held on Ma-y loth, 1918, at the Worlts of Messrs. Nupier Motors, Ltd, Acton. Downloaded from pau.sagepub.com at Purdue University Libraries on June 4, 2016 80218 NOTES ON THE METAI,LUHC;\ OF STEEI.. 4 89 BY BRIQ.-GENEXAI,BAONALL-WILD, C.M.G. (PASTPBESIDENT). L ii the basii €or such a large number of parts required in automobile construction that a brio€ study of the elementary problcnir connected with it< use is of value to all engineers con- nected vith ili(\ intiii<try Thesc notes arr not intende:l fc~rThe use of the metallurgiata in control of physical and chemical labora- tories whom the majority of firms now employ, but for thuse in charge of machining and other operations, to draw their attention t,o what may happen mhcn bteci is abiised and, above all, to point out to them tlic neccwitr for cnrefiil w,rekee1)ing JVitli~~utdif- fercntiation betn eeii the ,:ii*ious steels succcisful heat-treatment is impossible, and tlie higher grades of steel are practically useless unless heat-treated. In order to explain tlie nature of the changes which take plme in steel during heat-treatment it will be iiece ry to refer briefly to the iron-carbon eyuilibriiiiii diagram, Fig. 1, arranged so as to show the different states of the stoel under varying condikions of temperature. The vertical scale represents the temperature and tlie horizontal scale the percentage of carbon in the steel.
    [Show full text]
  • 717 the RADIOCARBON DATING and AUTHENTICATION of IRON ARTIFACTS P T Craddock1 • M L Wayman2 • a J T Jull3 the Radiocarbon Da
    The Radiocarbon Dating and Authentication of Iron Artifacts Item Type Article; text Authors Craddock, P. T.; Wayman, M. L.; Jull, A. J. T. Citation Craddock, P. T., Wayman, M. L., & Jull, A. J. T. (2002). The radiocarbon dating and authentication of iron artifacts. Radiocarbon, 44(3), 717-732. DOI 10.1017/S0033822200032173 Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 05/10/2021 15:01:32 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/654670 RADIOCARBON, Vol 44, Nr 3, 2002, p 717–732 © 2002 by the Arizona Board of Regents on behalf of the University of Arizona THE RADIOCARBON DATING AND AUTHENTICATION OF IRON ARTIFACTS P T Craddock1 • MLWayman2 • AJT Jull3 ABSTRACT. The continuing improvements in accelerator mass spectrometry (AMS) dating technology mean that it is pos- sible to work on ever smaller samples, which in turn, make an ever wider range of sample potentially available for dating. This paper discusses some of the difficulties arising with the interpretation of AMS dates obtained from carbon in iron. The over- riding problem is that the carbon, now in chemical combination with the iron, could have come from a variety of sources with very different origins. These are now potentially an iressolvable mixture in the iron. For iron made over the last millennium, there are the additional problems associated with the use of both fossil fuel and biomass fuel in different stages of the iron making, leading to great confusion, especially with authenticity studies.
    [Show full text]
  • Clearing the Confusion Over Wrought Iron
    Clearing the Confusion Over Wrought Iron Is it rod iron? Is it rot iron? Or is it wrought iron? By Todd Daniel One of the most confusing terms in the ornamental metals business is the phrase "wrought iron." However, the confusion is understandable since even dictionaries cannot agree on a single definition The first thing to clear up is the spelling. Many consumers spell the metal "rod iron" or "rot iron." Secondly, when the public talks about wrought iron, they could be referring to one of three things - actual wrought iron, hand forged items, or the "look" of wrought iron. Your challenge is to determine what the customer actually wants. When someone calls your shop and says he wants a "rod iron table," that person has something clear in mind. Chances are, he's thinking about an old piece of metal furniture that his grandfather made. The table he envisions is black, full of scrolls, and pretty. Now could that customer actually want genuine wrought iron? Not likely. Does he want something hammered out at the forge or is he just looking for the silvery black finish characteristic of wrought iron? In most cases, when your shop receives a "rod iron" call, you may have to play detective to find out what the customer is thinking about. You've probably had so many "rod iron" calls that you are used to them, but they are still a little frustrating. The following is an attempt to clear up some of the confusion about wrought iron by breaking the term down into its most commonly accepted definitions.
    [Show full text]
  • Corrosion of Ferrous Metals Underground
    Z TECHNICAL INFORMATION ON BUILDING MATFRIALS TIBM - 29 FOR USE IN THE DESIGN OF LOU^COST HOUSING ***** THE NATIONAL BUREAU OF STANDARDS UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON, D. C. August 7. 1956. CORROSION OF FERROUS METALS UNDERGROUND Corrosion of Buried, iron or steel differs in several important respects from the attack on similar material when exposed to air, (See TIBM Nos. 10 and 17), or when wholly or partly submerged in water (See TIBI! No. 22). The main factor governing corrosion is the nresence of oxygen and water together on the metal surface. Impurities in the air or the water are also iranortant factors. In soils, the atmosuhere often differs from ordinary air. In addition to a difference in oxygen content, there may he gaseous im- purities such as carbon dioxide, gases from decaying plants, hydrogen sulphide, etc,, which affect the corrosion rate. Air in the soil is nearly always saturated with water vapor, but certain imuurities which affect the corrosion rate under other conditions probably are not pres- ent. The access of soil air to the buried metal may vary considerably in different soils. In general the amount of oxygen available for corrosion at a given time or area is much less in soil corrosion than with atmospheric corrosion. Moreover, the amount of oxygen available varies on different parts of buried metal. Soil water always contains varying amounts of dissolved salts such as chlorides, sulphates, phos- phates and bicarbonates. These affect the ra.te of corrosion directly and indirectly by their effect on the acid or alkaline character of the water.
    [Show full text]
  • Iron Gates and Railings
    The Maintenance of Iron Gates and Railings Introduction Technological advancements in the 18th and 19th centuries enabled the mass Cast and wrought iron were production of wrought and cast iron, and popular building materials during iron production became a significant industry the late 18th and 19th centuries. in Scotland. Iron was used for a broad range Consequently, much of the of architectural purposes, ranging from architecture of this period used iron structural columns and beams, railings, gates and balconies, to detailed ornamentation such decoratively and structurally. The as finials and ridge cresting. In many cases, it retention of traditional ironwork is possible to identify the original makers and such as gates and railings can be foundries through their marks on surviving enormously beneficial to the quality cast work. and character of the building. Such period features enhance the appearance and value of traditional buildings, and are costly to replace if they are removed. This INFORM is intended to assist building owners and occupiers maintain and repair their existing iron gates and railings. Identifying the material l Wrought ironwork is less common in Scotland, although the use of wrought iron In order to establish how best to maintain or enjoyed a revival in the early 20th century. It repair ironwork, it is necessary to identify the tends to be quite delicate – scrolls and foliage type of iron it is made from: are common motifs – and, due to the specific craft skills involved in its working, slight l Cast ironwork is more commonly found variations of pattern and design are typical. in Scotland than wrought ironwork.
    [Show full text]