Km3net-Conceptual Design Report

Total Page:16

File Type:pdf, Size:1020Kb

Load more

KM3NeT: Conceptual Design Report KM3NeT Conceptual Design for a Deep‐Sea Research Infrastructure Incorporating a Very Large Volume Neutrino Telescope in the Mediterranean Sea 1 KM3NeT: Conceptual Design Report KM3NeT: Conceptual Design Report KM3NeT Conceptual Design Report for a Deep‐Sea Research Infrastructure Incorporating a Very Large Volume Neutrino Telescope in the Mediterranean Sea The wrecks dissolve above us; their dust drops down from afar ‐‐ Down to the dark, to the utter dark, where the blind white sea‐snakes are. There is no sound, no echo of sound, in the deserts of the deep, Or the great gray level plains of ooze where the shell‐burred cables creep. From: The Deep‐Sea Cables by Rudyard Kipling KM3NeT: Conceptual Design Report This document was edited by: John Carr, Greg Hallewell, Anne Holford, Uli Katz, Paul Kooijman, Luciano Moscoso, Paolo Piattelli and Petros Rapidis Cover design: Marc de Boer Work supported by the EU in the 6th Framework Programme under Contract Number 011937 KM3NeT: Conceptual Design Report P. Bagley, A. Holford, A. Jamieson, M. Priede University of Aberdeen, United Kingdom M. Ageron, J. Aubert, V. Bertin, S. Beurthey, M. Billault, A. Brown, J. Brunner, J. Busto, L. Caillat, A. Calzas, J. Carr, A. Cosquer, P. Coyle, C.iCurtil, D. Dornic, S. Escoffier, F. Gensolen, C. Gojak, G. Hallewell, P. Keller, P. Lagier, P. Payre, C. Reed University of Aix‐Marseille II and Centre de Physique de Particules de Marseille/IN2P3/CNRS, Marseille, France R. Bruijn, J. Koopstra, G. Lim, E. de Wolf University of Amsterdam, the Netherlands B. Baret, C. Donzaud, A. Kouchner, V. Van Elewyck APC–AstroParticule et Cosmologie–UMR 7164 (CNRS, Université Paris 7, CEA, Observatoire de Paris), Paris, France E.G. Anassontzis, L.K. Resvanis University of Athens, Greece S. Anvar, J. Ballet, F. Chateau, E. Delagnes, F. Druillole, D. Durand, I. Grenier, F. Guilloux, P. Kestener, P. Lamare, H. Le Provost, S. Loucatos, F. Louis, G. Maurin, L. Moscoso, C. Naumann, J.‐P. Schuller, T. Stolarczyk, B. Vallage, P. Vernin CEA Saclay, IRFU, 91191 Gif‐sur‐Yvette, France C. Rabouille CEA‐CNRS‐UVSQ , LSCE/IPSL, 91198 Gif‐sur‐Yvette, France D. Baccila, M. Borghini, M. Fassin, G. Gasparini, K. Schroeder, S. Sparnocchia, P. Traverso, K. Schroeder CNR –ISMAR, Ancona, Italy J.A. Aguilar, J. Bernabeu‐Verdu, J. Hernandez‐Rey, D. Real, F. Salesa, S. Toscano, J.D. Zornoza CSIC, Valencia, Spain P. Razis University of Cyprus F. Aharonian, D. Malishev, S. Delaney, L. Drury, S. Gabici, A. Hooper, A. Taylor Dublin Institute For Advanced Studies, Ireland G. Anton, R. Auer, T. Eberl, F. Fehr, U. Fritsch, K. Graf, B. Herold, J. Hößl, O. Kalekin, A. Kappes, U.F. Katz, R. Klein, C. Kopper, S.iKuch,, R. Lahmann, M. Millinger, H.iMotz, F. Schöck, R. Shanidze University of Erlangen, Germany A. Albert, F. Cohen, J. Ernenwein, D. Stubert‐Drouhin Université de Haut Alsace‐GRPHE, Mulhouse, France G. Chronis, I. Georgiadou, H. Kontoyiannis, V. Lykousis, E. Papadopoulos Hellenic Centre for Marine Research (HCMR), Greece N. Fragoulis, N. Gizani, K. Kalogirou, A. Leisos, A. Tsirigotis, S. Tzamarias Hellenic Open University, Patras, Greece R. Bellotti, M. Circella, R. Megna, G. De Ruvo, M. Ruppi INFN Sezione Bari and University of Bari, Italy M. Bazzotti, S. Biagi, G. Carminati, S. Cecchini, T. Chiarusi, G. Giacomelli, A. Margiotta, M. Spurio INFN Sezione Bologna and University of Bologna, Italy S. Aiello, L. Caponetto, A. Grimaldi, E. Leonora, D. Lo Presti, N. Randazzo, S Reito, G.V. Russo, D. Sciliberto, V. Sipala, S. Urso INFN Sezione di Catania and University of Catania, Italy M. Anghinolfi, A. Bersani, M.Battaglieri, R. Cereseto, R.DeVita, H. Costantini, K. Fratini, S. Minutoli, P. Musico, M.Osipenko, G.iRicco, M.Ripani,M. Taiuti, M. Brunoldi, D. Piombo, D. Torazza INFN Sezione Genova and University of Genova, Italy I. Amore, A. Anzalone, G. Cacopardo, R. Cocimano, R. Coniglione, A. D'Amico, C. Distefano, E. Migneco, M. Musumeci, A. Orlando, R. Papaleo, V. Pappalardo, P. Piattelli, G. Raia, G. Riccobene, A. Rovelli, P. Sapienza, M. Sedita INFN Laboratori Nazionali del Sud, Catania, Italy KM3NeT: Conceptual Design Report R. Habel, A. Martini, L. Trasatti INFN Laboratori Nazionali di Frascati, Italy G. Barbarino, G. De Rosa , S. Russo INFN Sezione Napoli and University of Napoli, Italy E. Castorina, V. Flaminio, R. Garaguso, D. Grasso, A. Marinelli, M. Morganti, C. Sollima INFN Sezione Pisa and University of Pisa, Italy F. Ameli, M. Bonori, A. Capone, G. De Bonis, F. Lucarelli, R. Masullo, F. Simeone, M. Vecchi INFN Sezione Roma and University of Roma 1, Italy B. Bigourdan, P. Bouquet, D. Choqueuse, G. Damy, J. Drogou, Z. Guédé, J. Marvaldi, J. Rolin, P. Valdy IFREMER, France G. Etiope, P. Favali, C. La Fratta, G. Marinaro Istituto Nazionale di Vulcanologia, Italy K. Lyons, T. Pradier, C. Racca Institut pluridisciplinaire Hubert Curien Strasbourg, ULP, CNRS, IN2P3, Strasbourg, France D. Felea, O. Maris, G. Pavalas, V. Popa, A. Radu, M. Rujoiu, D. Tonoiu Institute of Space Sciences, Machurele‐Bucharest, Romania N.Bellou, F. Colijn, P. Koske, T. Staller University of Kiel, Germany N. Kalantar‐Nayestanaki, H. Löhner KVI and University of Groningen, the Netherlands S. Bradbury, J. Rose, R.J. White University of Leeds, United Kingdom F. Jouvenot, C. Touramanis University of Liverpool, United Kingdom P. Kapribanos, D. Lenis, C. Markou, Y. Papazoglou, P. Rapidis, I. Siotis National Center of Scientific Research “Demokritos”, Athens, Greece A. Assis Jesus, H. Boer Rookhuizen, R. de Boer,M. Bouwhuis, C. Colnard, P. Decowski, E. Heine, J.iHogenbirk, M. van der Hoek, P. Jansweijer, M. de Jong, H. Kok, L. Kruijer, S.iMangano, S. Mos, H. Peek, E. Presani, D. Palioselitis, G. van der Steenhoven, J.Steijger, P. Timmer, P. Werneke, G. Wijnker NIKHEF, Amsterdam, the Netherlands H. van Haren, M. Smit Koninklijk Nederlands Instituut voor Onderzoek der Zee (NIOZ), Texel, the Netherlands S. Anasontzis, T. Athanasopoulos, A. Ball, A. Belias, A. Fotiou, Y. Kiskiras, A. Kostoglou, S. Koutsoukos, M. Maniatis, E.iMarkopoulos, A. Psallidas, L.K. Resvanis, G. Stavropoulos, V. Tsagli, G. Vermisoglou, V. Zhukov NOA / NESTOR, Pylos, Greece J. Perkin, L. Thompson University of Sheffield, United Kingdom F. Gasparoni, S. Giacopelli Tecnomare, Venice, Italy P. Kooijman University of Utrecht, the Netherlands C. Bigongiari, J. Zúñiga University of Valencia, Spain J. Alba, M. Ardid, M. Bou‐Cabo, F. Camarena, V. Espinosa, J. Martínez‐Mora, J. Ramis, J. Redondo, V. Sánchez‐Morcillo Universidad Politécnica Valencia / IGIC, Spain KM3NeT: Conceptual Design Report CONTENTS EXECUTIVE SUMMARY ............................................................................. 11 1 INTRODUCTION .................................................................................... 13 1.1 Scientific Objectives of Neutrino Telescope ......................................................................... 13 1.2 Neutrino Detection Techniques .......................................................................................... 13 1.3 Water/Ice Neutrino Telescope Projects ............................................................................ 14 1.4 Neutrino Interactions and Event Signatures ........................................................................ 14 1.5 Backgrounds ....................................................................................................................... 16 1.6 Observable Sky ................................................................................................................... 17 1.7 Associated Science Projects ................................................................................................. 18 1.8 Structure of the Report ....................................................................................................... 18 2 SCIENCE CASE ..................................................................................... 21 2.1 Astroparticle and Particle Physics ........................................................................................ 21 2.1.1 Point Sources ....................................................................................................................... 22 2.1.2 Diffuse Neutrino Flux .......................................................................................................... 28 2.1.3 Dark Matter ......................................................................................................................... 31 2.1.4 Exotic Particles .................................................................................................................... 32 2.1.5 Atmospheric Muons and Neutrinos .................................................................................... 33 2.1.6 Neutrino Cross Sections ...................................................................................................... 33 2.2 Associated Science .............................................................................................................. 34 3 THE KM3NET CONCEPT ..................................................................... 37 4 NEUTRINO TELESCOPE DESIGN GOALS ........................................ 43 5 PILOT PROJECTS ................................................................................. 47 5.1 ANTARES ............................................................................................................................. 47 7 KM3NeT: Conceptual Design Report 5.2 NEMO ................................................................................................................................
Recommended publications
  • First International Four Seas Conference

    First International Four Seas Conference

    CERN 97-06 31 July 1997 XC98FK266 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH FIRST INTERNATIONAL FOUR SEAS CONFERENCE Trieste, Italy 26 June-1 July 1995 PROCEEDINGS Editors: A.K. Gougas, Y. Lemoigne, M. Pepe-Altarelli, P. Petroff, C.E. Wulz GENEVA 1997 CERN-Service d'information scientifique-RD/975-200O-juiUet 1997 d) Copyright CKRN, Genève. IW7 Propriété littéraire et si'icnlirii|iic réservée Literary and scientific copyrights reserved in all pour tous les pays du monde. Ce document ne countries of the world. This report, or any part peut être reproduit ou traduit en tout ou en of it, may not be reprinted or translated partie sans l'autorisation écrite du Directeur without written permission of the copyright général du CHRN. titulaire du droit d'auteur. holder, the l)irector-(ieneral of CHRN. Dans les cas appropriés, et s'il s'agit d'utiliser However, permission will he freely granted for le document à des lins non commerciales, cette appropriate noncommercial use. autorisation sera volontiers accordée. II any patentable invention or registrable design l.c CHRN ne revendique pas la propriété des is described in the report, (T!RN makes no inventions hrevclablcs et dessins ou modèles claim to properly rights in it but offers it for the susceptibles de dépôt qui pourraient être free use of research institutions, manu- décrits dans le présent document; ceux-ci peu- facturers and others. CHRN, however, may vent être librement utilisés par les instituts de oppose any attempt by a user to claim any recherche, les industriels et autres intéressés.
  • Km3net/ORCA Telescopes

    Km3net/ORCA Telescopes

    Search for light sterile neutrinos with ANTARES and KM3NeT/ORCA telescopes A. Domi1,2, J. A. B. Coelho3, T. Thakore4, for the ANTARES and KM3NeT Collaborations 1 Università degli Studi di Genova, Genoa (Italy) - [email protected] 2 INFN-Genova, Genoa (Italy) 3 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay (France) - [email protected] 4 University of Cincinnati, Ohio (United States) - [email protected] VLVnT Workshop - 19/05/2021 1 Where are we with light sterile neutrinos? • Majority of experiments have confirmed the 3 flavour neutrino oscillations. • In parallel, anomalies observed in some oscillation experiments: Anomalies in Short baseline (SBL) Ref: Prog.Part.Nucl.Phys. 111 (2020) 103736 experiments •LSND: �� -> �e •MINIBooNE: �� -> �e / �� -> �e Gallium Anomalies: �e disappearance Reactor anomalies: e disappearance � Disagreement between appearance and disappearance NO ANOMALIES observed in / disappearance. Further observations needed! �� �� 2 Where are we with light sterile neutrinos? Cosmology • Constrains the effective number of relativistic species (Neff) in our universe. • A SBL neutrino would require Neff=4. • Measured Neff compatible with 3. -> Tension with SBL anomalies. • Tension relaxes when cosmological data are combined with astrophysical data. • Cosmological data alone can be compatible with • an eV-mass sterile neutrino only if its contribution to Neff is very small, • a larger Neff only if it comes from a nearly massless sterile particle. We need further observations: neutrino telescopes make it possible! 3 Sterile Neutrinos • Oscillations in the presence of sterile neutrinos are solutions of: 2 • Adding one sterile neutrino introduces 6 more free parameters: �m41 , 3 mixing angles (�14,�24,�34) and 2 more CP phases (�14, �24).
  • The ANTARES and Km3net Neutrino Telescopes: Status and Outlook for Acoustic Studies

    The ANTARES and Km3net Neutrino Telescopes: Status and Outlook for Acoustic Studies

    EPJ Web of Conferences 216, 01004 (2019) https://doi.org/10.1051/epjconf/201921601004 ARENA 2018 The ANTARES and KM3NeT neutrino telescopes: Status and outlook for acoustic studies Véronique Van Elewyck1,2, for the ANTARES and KM3NeT Collaborations 1APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, France 2Institut Universitaire de France, 75005 Paris, France Abstract. The ANTARES detector has been operating continuously since 2007 in the Mediterranean Sea, demonstrating the feasibility of an undersea neutrino telescope. Its superior angular resolution in the reconstruction of neutrino events of all flavors results in unprecedented sensitivity for neutrino source searches in the southern sky at TeV en- ergies, so that valuable constraints can be set on the origin of the cosmic neutrino flux discovered by the IceCube detector. The next generation KM3NeT neutrino telescope is now under construction, featuring two detectors with the same technology but different granularity: ARCA designed to search for high energy (TeV-PeV) cosmic neutrinos and ORCA designed to study atmospheric neutrino oscillations at the GeV scale, focusing on the determination of the neutrino mass hierarchy. Both detectors use acoustic devices for positioning calibration, and provide testbeds for acoustic neutrino detection. 1 Introduction Neutrinos have long been proposed as a complementary probe to cosmic rays and photons to explore the high-energy (HE) sky, as they can emerge from dense media and travel across cosmological dis- tances without being deflected by magnetic fields nor absorbed by inter- and intra-galactic matter and radiation. HE (>TeV) neutrinos are expected to be emitted in a wide range of astrophysical objects.
  • Detection of Geoneutrinos: Can We Make the Gnus Work For

    Detection of Geoneutrinos: Can We Make the Gnus Work For

    Detection of Geoneutrinos: Can We Make the Gnus Work for Us? John G. Learned Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 USA The detection of electron anti-neutrinos from natural radioactivity in the earth has been a goal of neutrino researchers for about half a century[21, 22, 23, 24, 25, 26]. It was accomplished by the KamLAND Collaboration in 2005[27], and opens the way towards studies of the Earth’s radioactive content, with very important implications for geology. New detectors are operating (KamLAND[3] and Borexino[2]), building (SNO+[4]) and being proposed (Hanohano, LENA, Earth and others) that will go beyond the initial observation and allow interesting geophysical and geochemical re- search, in a means not otherwise possible. Herein we describe the approaches being taken (large liquid scintillation instruments), the experimental and technical challenges (optical detectors, direc- tionality), and prospects for growth of this field. There is related spinoff in particle physics (neutrino oscillations and hierarchy determination), astrophysics (solar neutrinos, supernovae, exotica), and in the practical matter of remote monitoring of nuclear reactors. PACS numbers: I. INTRODUCTION: GEONEUTRINO STUDIES tivity required demands employment of expensive liquid STARTED scintillators in order to produce significant light (yielding 30-50 times that from a Cherenkov detector) and further, The preceding paper, “Why Geoneutrinos are almost all neutrino directionality is lost. Further, delicate Interesting”[1], really sets the stage for this contribu- care must be taken for radiopurity, now well understood tion to NU2008. McDonough explains that the flux of but not easy. geoneutrinos coming mainly from the natural radioactive The process employed for detection of the anti- decay chains of Uranium and Thorium from throughout neutrinos is the inverse beta decay, used by researchers the earth, serves as a tag for the abundance and loca- since the initial observations of these neutrinos by Cowan tion of these rare isotopes.
  • Pos(ICHEP2020)886

    Pos(ICHEP2020)886

    The Outer Detector (OD) system for the Hyper-Kamiokande experiment PoS(ICHEP2020)886 Stephane Zsoldos0,1,2,∗ 0Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom 1Department of Physics, University of California, Berkeley, CA 94720, Berkeley, USA 2Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA E-mail: [email protected], [email protected] Hyper-Kamiokande, scheduled to begin construction as soon as 2020, is a next generation under- ground water Cherenkov detector, based on the highly successful Super-Kamiokande experiment. It will serve as a far detector, 295 km away, of a long baseline neutrino experiment for the upgraded J-PARC beam in Japan. It will also be a detector capable of observing — far beyond the sensitivity of the Super-Kamiokande detector — proton decay, atmospheric neutrinos, and neutrinos from astronomical sources. An Outer Detector (OD) consisting of PMTs mounted behind the inner detector PMTs and facing outwards to view the outer shell of the cylindrical tank, would provide topological information to identify interactions originating from particles outside the inner detector. Any optimization would lead to a significant improvement for the physics goals of the experiment, which are the measurement of the CP leptonic phase and the determination of the neutrino mass hierarchy. An innovative new setup using small 3" PMTs is being proposed for the Hyper-Kamiokande OD. They would give better redundancy, spatial, and angular resolution, as there would be twice or three times more photosensors that the original 8" design proposal of the experiment, and for a reduced cost.
  • Ankur Sharma

    Ankur Sharma

    Ankur Sharma Date of Birth 2nd August 1991 Gender Male Nationality Indian Phone +46 76 447 51 45 Address Eklundshovsvägen 4B, Lgh 1104 Email [email protected] 752 37, Uppsala, Sweden [email protected] Research Interests Phenomenological studies of VHE emission from jets of AGNs; multi-messenger and multi-wavelength connection in blazars with neutrino, gamma-ray and X-ray data; gamma-ray astronomy; observability of point sources with Cherenkov neutrino telescopes; detection strategies for ultra-high energy neutrinos Education Jan 2017 - PhD in Physics - University of Pisa (Italy) Present Area of study - Astroparticle Physics, Neutrino Astrophysics - Astroparticles, Experimental Astrophysics & Astroparticle Physics - High Energy Experimental Physics Thesis Title - Analyzing the high energy activity of candidate blazars to constrain their observability by neutrino telescopes Supervisor - Dr. Antonio Marinelli ([email protected]) Aug 2009 - Integrated M.Sc. (M.Sc. + B.Sc.) in Applied Physics - Indian Institute of Technology (ISM), Dhanbad Feb 2015 Area of study - Applied Physics - Nuclear & Particle Physics, Classical Mechanics, Quantum Mechanics, Electrodynamics - Computer Networks, Microprocessors, C++, ForTran Sept 2013 - Erasmus Mundus India4EU II Exchange Mobility - University of Porto (Portugal) July 2014 Area of study - Master Thesis, Astronomy - Stellar Structure & Evolution, Cosmology - Optical Communication, Measurement Techniques & Instrumentation Thesis Title - Constraining the Parameter Space of Dynamical
  • Geo-Neutrino Program at Baksan Neutrino Observatory Geoneutrino

    Geo-Neutrino Program at Baksan Neutrino Observatory Geoneutrino

    Neutrino Geoscience 2019 Prague / Book of Abstracts The deep-sea neutrino detector KM3NeT/ORCA, currently being built in the Mediterranean Seanear Toulon (France), is optimized for the study of oscillations of atmospheric neutrinos in the few-GeV energy range, with the main goal to determine the neutrino mass hierarchy. This is possible due to matter effects that modify the probability of neutrino oscillations along their path through theEarth. Measuring the energy and angular distributions of neutrinos with ORCA can therefore also provide tomographic information on the Earth’s interior and more specifically on the electron density along the trajectory of the detected neutrino, complementary to standard geophysics methods. In this contribution the latest results of a study of the potential of ORCA for Earth tomography are presented. They are based on a full Monte Carlo simulation of the detector response and including systematic effects. It is shown that after ten years of operation ORCA can measure the electron density in both the lower mantle and the outer core with a precision of a few percent in the case of normal neutrino mass hierarchy. 40 Geo-neutrino program at Baksan Neutrino Observatory Authors: Albert Gangapshev1 ; Andrey Sidorenkov2 ; Bayarto Lubsandorzhiev2 ; Daniil Kudrin2 ; Dmitry Voronin2 ; Evgeny Veretenkin2 ; Evgeny Yanovich2 ; Galina Novikova2 ; Makhti Kochkarov2 ; Nikita Ushakov2 ; Tatiana Ibragimova2 ; Valery Kuzminov1 ; Valery Petkov3 ; Vladimir Gavrin2 ; Vladimir Kazalov2 ; Yury Gavrilyuk2 ; Yury Malyshkin4 1 INR RAS, KBSU 2 INR RAS 3 INR RAS, IA RAS 4 INR RAS, INFN A new neutrino program has been recently lunched at Baksan Neutrino Observatory. It is planned to deploy a 10-kiloton scale detector based on liquid scintillator in the existing shaft at a depth of 4800 m.w.e.
  • Acoustic Particle Detection – from Early Ideas to Future Benefits

    Acoustic Particle Detection – from Early Ideas to Future Benefits

    Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima Acoustic particle detection – From early ideas to future benefits Rolf Nahnhauer n Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany article info abstract The history of acoustic neutrino detection technology is shortly reviewed from the first ideas 50 years ago Keywords: to the detailed R&D programs of the last decade. The physics potential of ultra-high energy neutrino Cosmogenic neutrinos interaction studies is discussed for some examples. Ideas about the necessary detector size and suitable Ultra-high energy neutrino detection design are presented. Acoustic detection technology & 2010 Elsevier B.V. All rights reserved. 1. The dawn of neutrino astroparticle physics 2. First ideas about ‘‘particle sound’’ Very soon after the 1956 Science publication of Cowan et al. [1] Fifty years ago a well developed method to observe elementary about the discovery of neutrino interactions at the Savannah River particles in accelerator and cosmic ray experiments was to look for light reactor first ideas about experiments detecting neutrinos produced in they produced through Cherenkov radiation or scintillation effects the Earth atmosphere or in distant astrophysical sources appeared. In when passing transparent media. At accelerators bubble chambers his talk ‘‘On high energy neutrino physics’’ at the 1960 Rochester started their two decades lasting successful application, having their conference [2] Markov stated: ‘‘in papers by Zhelesnykh1 and myself working principle still under study. In this context Askaryan [6] (1958, 1960) possibilities of experiments with cosmic ray neutrinos published in 1957 a paper about ‘‘Hydrodynamic radiation from the are analyzed.
  • Sensitivity to Light Sterile Neutrino Mixing Parameters with Km3net/ORCA

    Sensitivity to Light Sterile Neutrino Mixing Parameters with Km3net/ORCA

    Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA S. Aielloa, A. Albertbb,b, M. Alshamsic, S. Alves Garred, Z. Alye, A. Ambrosonef,g, F. Amelih, M. Andrei, G. Androulakisj, M. Anghinolfik, M. Anguital, G. Antonm, M. Ardidn, S. Ardidn, J. Aublinc, C. Bagatelasj, B. Baretc, S. Basegmez du Preeo, M. Bendahmanc,p, F. Benfenatiq,r, E. Berbeeo, A. M. van den Bergs, V. Bertine, S. Biagit, M. Bissingerm, M. Boettcheru, M. Bou Cabov, J. Boumaazap, M. Boutaw, M. Bouwhuiso, C. Bozzax, H.Br^anza¸sy, F. Bretaudeauz, R. Bruijno,aa, J. Brunnere, R. Brunoa, E. Buisab, R. Buompanef,ac, J. Bustoe, B. Caiffik, D. Calvod, S. Campionad,h, A. Caponead,h, V. Carreterod, P. Castaldiq,ae, S. Celliad,h, M. Chababaf, N. Chauc, A. Chenag, S. Cherubinit,ah, V. Chiarellaai, T. Chiarusiq, M. Circellaaj, R. Cocimanot, J. A. B. Coelhoc,˚, A. Coleiroc, M. Colomer Mollac,d, R. Coniglionet, P. Coylee, A. Creusotc, A. Cruzak, G. Cuttonet, R. Dallierz, B. De Martinoe, M. De Palmaaj,al, I. Di Palmaad,h, A. F. D´ıazl, D. Diego-Tortosan, C. Distefanot, A. Domik,am,˚, C. Donzaudc, D. Dornice, M. D¨orran, D. Drouhinbb,b, T. Eberlm, A. Eddyamouip, T. van Eedeno, D. van Eijko, I. El Bojaddainiw, D. Elsaesseran, A. Enzenh¨ofere, V. Espinosan, P. Fermaniad,h, G. Ferrarat,ah, M. D. Filipovi´cao, F. Filippiniq,r, L. A. Fuscoe, T. Galm, J. Garc´ıaM´endezn, A. Garcia Sotoo, F. Garufif,g, Y. Gateletc, N. Geißelbrechtm, L. Gialanellaf,ac, E. Giorgiot, S. R. Gozziniad,h, R. Graciao, K. Grafm, G. Grellaap, D.
  • The Hyper-Kamiokande Experiment Francesca Di Lodovico Queen Mary University of London

    The Hyper-Kamiokande Experiment Francesca Di Lodovico Queen Mary University of London

    The Hyper-Kamiokande Experiment Francesca Di Lodovico Queen Mary University of London On behalf of the Hyper-K UK collaboration PPAP Meeting July 26, 2016 A Multi-purpose Experiment Comprehensive study of oscillation • CPV Supernova • Mass hierarchy with beam+atmosph. • 23 octant • Test of exotic scenarios Nucleon decay discovery potential Sun • All visible modes including p → 푒+ 0 + Accelerator and p→휈 퐾 can be advanced beyond (J-PARC) SK. • Reaching 1035yrs sensitivity Unique Astrophysics T2HK • Precision measurement of solar • High statistics Supernova with pointing capability and energy info. • Supernova relic (non-burst ) Proton observation is also possible decay Earth core's chemical composition Etc. 2 Inaugural Symposium of the HK proto- collaboration@Kashiwa, Jan-2015 12 countries, ~250 members and growing KEK-IPNS and • Proto-collaboration formed. UTokyo-ICRR • International steering group signed a MoU for • International conveners cooperation • International chair for international on the Hyper- board of representative (IBR) Kamiokande project. 26/July/2016 The Hyper-Kamiokande Experiment 3 Proto-Collaboration IRFU, CEA Saclay (France) Gifu University (Japan) Laboratoire Leprince-Ringuet, Ecole Polytechnique (France) High Energy Accelerator Research Organization (KEK) (Japan) Lancaster University (UK) Kobe University (Japan) Los Alamos National Laboratory (USA) Kyoto University (Japan) Louisiana State University (USA) Miyagi University of Education (Japan) National Centre for Nuclear Research (Poland) Nagoya University
  • A Deep Ocean Anti-Neutrino Detector Near Hawaii

    A Deep Ocean Anti-Neutrino Detector Near Hawaii

    Part I: Project Summary A Deep Ocean Anti-Neutrino Detector near Hawaii In Response to: CEROS-CORE-05-01 The National Defense Center of Excellence for Research in Ocean Sciences (CEROS) 73-4460 Queen Kaahumanu Highway, Suite 111 Kailua-Kona, Hawaii 96740 Objectives/Result: Design and initial component testing of a deep ocean anti-neutrino detector for the presence of both natural and man-made nuclear activity. Period of Performance: 12 months (June 2005 - May 2006) Funding Requirements: $686,000 Subcontractors: University of Hawaii, Manoa High Energy Physics Principal Investigator: Dr. Joseph Van Ryzin, President Makai Ocean Engineering, Inc. [email protected] Co-Principal Investigator: Dr. John Learned, Professor Department of Physics and Astronomy University of Hawaii, Manoa [email protected] Administrative Contact: Dr. Michael Nedbal Makai Ocean Engineering, Inc. [email protected] Contact Address: Makai Ocean Engineering, Inc. PO Box 1206 Kailua, Hawaii 96734 [email protected] Phone: (808) 259-8871 Fax (808) 259-8238 January 26, 2005 Project Summary A Deep Ocean Anti-Neutrino Detector near Hawaii Summary, Proposed Effort We propose to initiate a project to build a deep ocean detector to measure low energy anti-neutrinos from radioactive decays. These anti-neutrinos arise from decays throughout the Earth, from a theoretical natural reactor at the Earth's core, and from man-made nuclear reactors or nuclear weapon testing. Such a detector has great value for both geophysical science and nuclear proliferation deterrence. A proposed initial detector is conceptually shown in Figure 1; it is 20m in diameter. Subsequent nuclear deterrent detectors would most likely be even larger.
  • History of High-Energy Neutrino Astronomy

    History of High-Energy Neutrino Astronomy

    History of high-energy neutrino astronomy C. Spiering DESY, Platanenallee 6, D-15738 Zeuthen, Germany This talk sketches the main milestones of the path towards cubic kilometer neutrino telescopes. It starts with the first conceptual ideas in the late 1950s and describes the emergence of concepts for detectors with a realistic discovery potential in the 1970s and 1980s. After the pioneering project DUMAND close to Hawaii was terminated in 1995, the further development was carried by NT200 in Lake Baikal, AMANDA at the South Pole and ANTARES in the Mediterranean Sea. In 2013, more than half a century after the first concepts, IceCube has discovered extraterrestrial high-energy neutrinos and opened a new observational window to the cosmos { marking a milestone along a journey which is far from being finished. 1 From first concepts to the detection of atmospheric neutrinos The initial idea of neutrino astronomy beyond the solar system rested on two arguments: The first was the expectation that a supernova stellar collapse in our galaxy would be accompanied by an enormous burst of neutrinos in the 5-10 MeV range. The second was the expectation that fast rotating pulsars must accelerate charged particles in their Tera-Gauss magnetic fields. Either in the source or on their way to Earth they must hit matter, generate pions and neutrinos as decay products of the pions. The first ideas to detect cosmic high energy neutrinos underground or underwater date back to the late fifties (see 1 for a detailed history of cosmic neutrino detectors). In the 1960 Annual Review of Nuclear Science, K.