Hemolysin CB with Human C5a Receptors Γ Valentine Leukocidin

Total Page:16

File Type:pdf, Size:1020Kb

Hemolysin CB with Human C5a Receptors Γ Valentine Leukocidin Differential Interaction of the Staphylococcal Toxins Panton−Valentine Leukocidin and γ -Hemolysin CB with Human C5a Receptors This information is current as András N. Spaan, Ariën Schiepers, Carla J. C. de Haas, of October 1, 2021. Davy D. J. J. van Hooijdonk, Cédric Badiou, Hugues Contamin, François Vandenesch, Gérard Lina, Norma P. Gerard, Craig Gerard, Kok P. M. van Kessel, Thomas Henry and Jos A. G. van Strijp J Immunol 2015; 195:1034-1043; Prepublished online 19 June 2015; Downloaded from doi: 10.4049/jimmunol.1500604 http://www.jimmunol.org/content/195/3/1034 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2015/06/19/jimmunol.150060 Material 4.DCSupplemental References This article cites 46 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/195/3/1034.full#ref-list-1 Why The JI? Submit online. by guest on October 1, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Interaction of the Staphylococcal Toxins Panton–Valentine Leukocidin and g-Hemolysin CB with Human C5a Receptors Andra´s N. Spaan,*,†,‡ Arie¨n Schiepers,* Carla J. C. de Haas,* Davy D. J. J. van Hooijdonk,* Ce´dric Badiou,†,‡,x Hugues Contamin,{ Franc¸ois Vandenesch,†,‡,x,‖ Ge´rard Lina,†,‡,x,‖ Norma P. Gerard,#,** Craig Gerard,# Kok P. M. van Kessel,* Thomas Henry,†,‡,x and Jos A. G. van Strijp* Staphylococcus aureus is well adapted to the human host. Evasion of the host phagocyte response is critical for successful infection. The staphylococcal bicomponent pore-forming toxins Panton–Valentine leukocidin LukSF-PV (PVL) and g-hemolysin CB (HlgCB) target human phagocytes through interaction with the complement receptors C5aR1 and C5aR2. Currently, the appar- Downloaded from ent redundancy of both toxins cannot be adequately addressed in experimental models of infection because mice are resistant to PVL and HlgCB. The molecular basis for species specificity of the two toxins in animal models is not completely understood. We show that PVL and HlgCB feature distinct activity toward neutrophils of different mammalian species, where activity of PVL is found to be restricted to fewer species than that of HlgCB. Overexpression of various mammalian C5a receptors in HEK cells confirms that cytotoxicity toward neutrophils is driven by species-specific interactions of the toxins with C5aR1. By taking advantage of the species-specific engagement of the toxins with their receptors, we demonstrate that PVL and HlgCB differentially http://www.jimmunol.org/ interact with human C5aR1 and C5aR2. In addition, binding studies illustrate that different parts of the receptor are involved in the initial binding of the toxin and the subsequent formation of lytic pores. These findings allow a better understanding of the molecular mechanism of pore formation. Finally, we show that the toxicity of PVL, but not of HlgCB, is neutralized by various C5aR1 antagonists. This study offers directions for the development of improved preclinical models for infection, as well as for the design of drugs antagonizing leukocidin toxicity. The Journal of Immunology, 2015, 195: 1034–1043. taphylococcus aureus is one of the most common causes of vaccines has increased. Despite promising results in preclinical bacterial infections in humans worldwide (1). S. aureus models, a recent vaccine candidate failed in clinical trials (3). by guest on October 1, 2021 S causes various diseases ranging from superficial skin and The pathogen S. aureus is well adapted to the human host. Many soft tissue infections to severe invasive diseases. The emergence of of the pathogen’s virulence factors show different specificities across hospital-acquired and community-associated methicillin-resistant S. mammalian species frequently used during preclinical in vivo studies aureus (MRSA) strains has now become a global problem. As no (4). As a result, the contribution to pathophysiology of many of these new antibiotic agents are expected to be released in the near future virulence factors cannot be investigated in an integrated model for (2), interest in the development of alternative therapeutics and infection. More importantly, the potential of these virulence factors as vaccine or drug targets cannot be assessed accurately. Phagocytes play a crucial role in the host defense against *Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX infections with S. aureus (4, 5). However, S. aureus has evolved Utrecht, the Netherlands; †Centre International de Recherche en Infectiologie, Uni- versite´ Lyon 1 and Ecole Normale Supe´rieure de Lyon, 69007 Lyon, France; multiple strategies to evade the human immune system. A key ‡Inserm, Unite´ 1111, 69007 Lyon, France; xCentre National de la Recherche Scien- mechanism of S. aureus to repel attack by host phagocytes is the tifique, Unite´ Mixte de Recherche 5308, 69007 Lyon, France; {Cynbiose, 69280 Marcy l’Etoile, France; ‖Centre National de Re´fe´rence des Staphylocoques, Hospices production of cytolytic toxins (6). Staphylococcal leukocidins are Civils de Lyon, 69007 Lyon, France; #Ina Sue Perlmutter Laboratory, Division of bicomponent pore-forming toxins that perforate the host cell plasma Pulmonary Medicine, Department of Pediatrics, Boston Children’s Hospital, membrane (7). Based on chromatography elution profiles, the in- Department of Medicine, Harvard Medical School, Boston, MA 02115; and **Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 dividual leukocidin subunits are designated S (slow) or F (fast) (8). Received for publication March 13, 2015. Accepted for publication May 22, 2015. Initial binding of the S-component to the surface of the target cell allows secondary binding of the F-component (9). This sub- This work was supported in part by grants from the European Commission (222718 to C.B., G.L., and F.V.), the Agence Nationale de la Recherche (to G.L., F.V., and T.H.), sequently results in the assembly of lytic pore-forming hetero- the Foundation Finovi (to T.H.), and the National Institute of Allergy and Infectious octamers (10). The genome of human S. aureus isolates can Diseases/National Institutes of Health (HL051366 to C.G.). encode up to five leukocidin toxins: Panton–Valentine leukocidin Address correspondence and reprint requests to Prof. Jos A.G. van Strijp, University LukSF-PV (PVL) (11), g-hemolysin AB and g-hemolysin CB Medical Center Utrecht, Department of Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. E-mail address: [email protected] (HlgCB) (12, 13), LukED (14), and LukAB (also known as LukGH) The online version of this article contains supplemental material. (15, 16). The leukocidin protein components are closely related, and Abbreviations used in this article: CHIPS, chemotaxis inhibiting protein of S. aureus; the amino acid sequence of the S-components of PVL (LukS-PV) ECL, extracellular loop; HEK, human embryonic kidney (cell); HlgCB, g-hemolysin and HlgC shows highest identity (81%) (17). Of the different CB; LukS-PV, S-components of PVL; MRSA, methicillin-resistant S. aureus; PVL, staphylococcal leukocidins, the cytotoxic activity of PVL was the Panton–Valentine leukocidin LukSF-PV. first to be described in detail (11). Although rare in methicillin- Copyright Ó 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00 susceptible S. aureus isolates, the genes encoding PVL are over- www.jimmunol.org/cgi/doi/10.4049/jimmunol.1500604 The Journal of Immunology 1035 represented in epidemic community-associated MRSA strains (18). Cell isolation Although numerous epidemiological studies suggest a relation be- Human neutrophils, obtained from healthy volunteers, macaque (Macaca tween PVL and severe invasive disease (19, 20), the role of PVL fascicularis), and rabbit (New Zealand White) neutrophils were isolated by during infection is still not fully elucidated. The controversy re- Ficoll/Histopaque centrifugation (31). Neutrophils from cows (Holstein garding PVL is mostly caused by species-specific differences in Frisian) were isolated using Percoll (1.09176 g/l) centrifugation. Mouse susceptibility of phagocytes toward PVL (21). The HlgCB-encoding (C57BL/6) leukocytes were obtained from bone marrow, and immune cells were collected as described (28). Unless specified otherwise, all in vitro genes are present in almost all human S. aureus isolates (22, 23). experiments with cells were performed using RPMI 1640 (Invitrogen) Near-universal prevalence and consistent toxin expression by vari- supplemented with 0.05% human serum albumin (Sanquin), with cell ous S. aureus strains distinguish HlgCB from the other leukocidins concentrations adjusted to 5 3 106 cell/ml. (24). However, the contribution
Recommended publications
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Hemolysin from Escherichia Coli Uses Endogenous Amplification Through P2X Receptor Activation to Induce Hemolysis
    ␣-Hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis Marianne Skalsa, Niklas R. Jorgensenb, Jens Leipzigera, and Helle A. Praetoriusa,1 aDepartment of Physiology and Biophysics, Water and Salt Research Center, Aarhus University, Ole Worms Alle 1160, 8000 Aarhus C, Denmark; and bDepartment for Clinical Biochemistry, Roskilde Hospital, Koegevej 3-7, 4000 Roskilde, Denmark Edited by Sucharit Bhakdi, University of Mainz, Mainz, Germany, and accepted by the Editorial Board January 6, 2009 (received for review July 22, 2008) Escherichia coli is the dominant facultative bacterium in the normal and are referred to as P2X1–7. All P2X receptors are permeable to intestinal flora. E. coli is, however, also responsible for the majority small monovalent cations and some have significant calcium per- of serious extraintestinal infections. There are distinct serotypical meability (11). Here we show that human, murine, and equine differences between facultative and invasive E. coli strains. Inva- erythrocytes use a combination of P2X1 and P2X7 receptor acti- sive strains frequently produce virulence factors such as ␣-hemolysin vation for full HlyA-induced hemolysis to occur. This is particularly (HlyA), which causes hemolysis by forming pores in the erythrocyte interesting, as prolonged stimulation of P2X7 receptors are known membrane. The present study reveals that this pore formation to increase the plasma membrane permeability to an extent that triggers purinergic receptor activation to mediate the full hemo- eventually leads to lysis of certain cells (12). In macrophages it has lytic action. Non-selective ATP-receptor (P2) antagonists (PPADS, been shown that pannexin1, a recently discovered pore-forming suramin) and ATP scavengers (apyrase, hexokinase) concentration protein, is required for this increment in permeability (12, 13).
    [Show full text]
  • Disposal of Toxin Heptamers by Extracellular Vesicle Formation and Lysosomal Degradation
    toxins Article Major Determinants of Airway Epithelial Cell Sensitivity to S. aureus Alpha-Toxin: Disposal of Toxin Heptamers by Extracellular Vesicle Formation and Lysosomal Degradation Nils Möller 1,* , Sabine Ziesemer 1, Christian Hentschker 2, Uwe Völker 2 and Jan-Peter Hildebrandt 1 1 Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; [email protected] (S.Z.); [email protected] (J.-P.H.) 2 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix Hausdorff-Strasse 8, D-17475 Greifswald, Germany; [email protected] (C.H.); [email protected] (U.V.) * Correspondence: [email protected] Abstract: Alpha-toxin is a major virulence factor of Staphylococcus aureus. Monomer binding to host cell membranes results in the formation of heptameric transmembrane pores. Among human model airway epithelial cell lines, A549 cells were most sensitive toward the toxin followed by 16HBE14o- and S9 cells. In this study we investigated the processes of internalization of pore-containing plasma membrane areas as well as potential pathways for heptamer degradation (lysosomal, proteasomal) or disposal (formation of exosomes/micro-vesicles). The abundance of toxin heptamers upon applying an alpha-toxin pulse to the cells declined both in extracts of whole cells and of cellular membranes of Citation: Möller, N.; Ziesemer, S.; S9 cells, but not in those of 16HBE14o- or A549 cells. Comparisons of heptamer degradation rates un- Hentschker, C.; Völker, U.; der inhibition of lysosomal or proteasomal degradation revealed that an important route of heptamer Hildebrandt, J.-P.
    [Show full text]
  • Transport Proteins Promoting Escherichia Coli Pathogenesis
    Microbial Pathogenesis 71-72 (2014) 41e55 Contents lists available at ScienceDirect Microbial Pathogenesis journal homepage: www.elsevier.com/locate/micpath Transport proteins promoting Escherichia coli pathogenesis Fengyi Tang 1, Milton H. Saier Jr. * Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA article info abstract Article history: Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide Received 26 November 2013 annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, Received in revised form gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and 19 March 2014 compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related Accepted 20 March 2014 to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell Available online 18 April 2014 surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity Keywords: Escherichia coli secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex re- fi Pathogenesis ceptors and high-af nity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar Transporters encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in Toxins K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, Iron acquisition different from those of extracellular pathogens. The results presented in this report provide information Intra vs.
    [Show full text]
  • N-Glycan Trimming in the ER and Calnexin/Calreticulin Cycle
    Neurotransmitter receptorsGABA and A postsynapticreceptor activation signal transmission Ligand-gated ion channel transport GABAGABA Areceptor receptor alpha-5 alpha-1/beta-1/gamma-2 subunit GABA A receptor alpha-2/beta-2/gamma-2GABA receptor alpha-4 subunit GABAGABA receptor A receptor beta-3 subunitalpha-6/beta-2/gamma-2 GABA-AGABA receptor; A receptor alpha-1/beta-2/gamma-2GABA receptoralpha-3/beta-2/gamma-2 alpha-3 subunit GABA-A GABAreceptor; receptor benzodiazepine alpha-6 subunit site GABA-AGABA-A receptor; receptor; GABA-A anion site channel (alpha1/beta2 interface) GABA-A receptor;GABA alpha-6/beta-3/gamma-2 receptor beta-2 subunit GABAGABA receptorGABA-A receptor alpha-2receptor; alpha-1 subunit agonist subunit GABA site Serotonin 3a (5-HT3a) receptor GABA receptorGABA-C rho-1 subunitreceptor GlycineSerotonin receptor subunit3 (5-HT3) alpha-1 receptor GABA receptor rho-2 subunit GlycineGlycine receptor receptor subunit subunit alpha-2 alpha-3 Ca2+ activated K+ channels Metabolism of ingested SeMet, Sec, MeSec into H2Se SmallIntermediateSmall conductance conductance conductance calcium-activated calcium-activated calcium-activated potassium potassium potassiumchannel channel protein channel protein 2 protein 1 4 Small conductance calcium-activatedCalcium-activated potassium potassium channel alpha/beta channel 1 protein 3 Calcium-activated potassiumHistamine channel subunit alpha-1 N-methyltransferase Neuraminidase Pyrimidine biosynthesis Nicotinamide N-methyltransferase Adenosylhomocysteinase PolymerasePolymeraseHistidine basic
    [Show full text]
  • Membrane Topology of the C. Elegans SEL-12 Presenilin
    Neuron, Vol. 17, 1015±1021, November, 1996, Copyright 1996 by Cell Press Membrane Topology of the C. elegans SEL-12 Presenilin Xiajun Li* and Iva Greenwald*²³ [this issue of Neuron]; Thinakaran et al., 1996). In the *Integrated Program in Cellular, Molecular, Discussion, we examine the amino acid sequence in and Biophysical Studies light of the deduced topology. ² Department of Biochemistry and Molecular Biophysics Results ³ Howard Hughes Medical Institute Columbia University Sequence analysis suggests that SEL-12 and human College of Physicians and Surgeons presenilins have ten hydrophobic regions (Figure 1). In New York, New York 10032 this study, we provide evidence that a total of eight of these hydrophobic regions function as transmembrane domains in vivo. Below, we use the term ªhydrophobic Summary regionº to designate a segment of the protein with the potential to span the membrane, as inferred by hydro- Mutant presenilins cause Alzheimer's disease. Pre- phobicity analysis, and ªtransmembrane domainº to senilins have multiple hydrophobic regions that could designate a hydrophobic region that our data suggest theoretically span a membrane, and a knowledge of actually spans a membrane. the membrane topology is crucial for deducing the mechanism of presenilin function. By analyzing the activity of b-galactosidase hybrid proteins expressed Strategy in C. elegans, we show that the C. elegans SEL-12 We constructed transgenes encoding hybrid SEL- presenilin has eight transmembrane domains and that 12::LacZ proteins, in which LacZ was placed after each there is a cleavage site after the sixth transmembrane of ten hydrophobic regions identified by hydrophobicity domain. We examine the presenilin sequence in view analysis (see Figure 1).
    [Show full text]
  • Report from the 26Th Meeting on Toxinology,“Bioengineering Of
    toxins Meeting Report Report from the 26th Meeting on Toxinology, “Bioengineering of Toxins”, Organized by the French Society of Toxinology (SFET) and Held in Paris, France, 4–5 December 2019 Pascale Marchot 1,* , Sylvie Diochot 2, Michel R. Popoff 3 and Evelyne Benoit 4 1 Laboratoire ‘Architecture et Fonction des Macromolécules Biologiques’, CNRS/Aix-Marseille Université, Faculté des Sciences-Campus Luminy, 13288 Marseille CEDEX 09, France 2 Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, Sophia Antipolis, 06550 Valbonne, France; [email protected] 3 Bacterial Toxins, Institut Pasteur, 75015 Paris, France; michel-robert.popoff@pasteur.fr 4 Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4-9182-5579 Received: 18 December 2019; Accepted: 27 December 2019; Published: 3 January 2020 1. Preface This 26th edition of the annual Meeting on Toxinology (RT26) of the SFET (http://sfet.asso.fr/ international) was held at the Institut Pasteur of Paris on 4–5 December 2019. The central theme selected for this meeting, “Bioengineering of Toxins”, gave rise to two thematic sessions: one on animal and plant toxins (one of our “core” themes), and a second one on bacterial toxins in honour of Dr. Michel R. Popoff (Institut Pasteur, Paris, France), both sessions being aimed at emphasizing the latest findings on their respective topics. Nine speakers from eight countries (Belgium, Denmark, France, Germany, Russia, Singapore, the United Kingdom, and the United States of America) were invited as international experts to present their work, and other researchers and students presented theirs through 23 shorter lectures and 27 posters.
    [Show full text]
  • Tailored Liposomal Nanotraps for the Treatment of Streptococcal Infections
    Besançon et al. J Nanobiotechnol (2021) 19:46 https://doi.org/10.1186/s12951-021-00775-x Journal of Nanobiotechnology RESEARCH Open Access Tailored liposomal nanotraps for the treatment of Streptococcal infections Hervé Besançon1 , Viktoriia Babiychuk1, Yu Larpin1, René Köfel1, Dominik Schittny1, Lara Brockhus1, Lucy J. Hathaway2, Parham Sendi2, Annette Draeger1^ and Eduard Babiychuk1* Abstract Background: Streptococcal infections are associated with life-threatening pneumonia and sepsis. The rise in anti- biotic resistance calls for novel approaches to treat bacterial diseases. Anti-virulence strategies promote a natural way of pathogen clearance by eliminating the advantage provided to bacteria by their virulence factors. In contrast to antibiotics, anti-virulence agents are less likely to exert selective evolutionary pressure, which is a prerequisite for the development of drug resistance. As part of their virulence mechanism, many bacterial pathogens secrete cytol- ytic exotoxins (hemolysins) that destroy the host cell by destabilizing their plasma membrane. Liposomal nanotraps, mimicking plasmalemmal structures of host cells that are specifcally targeted by bacterial toxins are being developed in order to neutralize-by competitive sequestration-numerous exotoxins. Results: In this study, the liposomal nanotrap technology is further developed to simultaneously neutralize the whole palette of cytolysins produced by Streptococcus pneumoniae, Streptococcus pyogenes and Streptococcus dys- galactiae subspecies equisimilis-pathogens that
    [Show full text]
  • Genomic Plasticity of the Causative Agent of Melioidosis, Burkholderia Pseudomallei
    Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei Matthew T. G. Holdena, Richard W. Titballb,c, Sharon J. Peacockd,e, Ana M. Cerden˜ o-Ta´ rragaa, Timothy Atkinsb, Lisa C. Crossmana, Tyrone Pittf, Carol Churchera, Karen Mungalla, Stephen D. Bentleya, Mohammed Sebaihiaa, Nicholas R. Thomsona, Nathalie Basona, Ifor R. Beachamg, Karen Brooksa, Katherine A. Brownh, Nat F. Browng, Greg L. Challisi, Inna Cherevacha, Tracy Chillingwortha, Ann Cronina, Ben Crossetth, Paul Davisa, David DeShazerj, Theresa Feltwella, Audrey Frasera, Zahra Hancea, Heidi Hausera, Simon Holroyda, Kay Jagelsa, Karen E. Keithh, Mark Maddisona, Sharon Moulea, Claire Pricea, Michael A. Quaila, Ester Rabbinowitscha, Kim Rutherforda, Mandy Sandersa, Mark Simmondsa, Sirirurg Songsivilaik, Kim Stevensa, Sarinna Tumapae, Monkgol Vesaratchaveste, Sally Whiteheada, Corin Yeatsa, Bart G. Barrella, Petra C. F. Oystonb, and Julian Parkhilla,l aWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; bDefence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom; cDepartment of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; dNuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom; eFaculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; fLaboratory of Hospital Infection, Division of Nosocomial Infection Prevention and Control, Central Public Health Laboratory, London NW9 5HT, United Kingdom; gSchool of Health Science, Griffith University, Gold Coast, Queensland 9726, Australia; hDepartment of Biological Sciences, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College, London SW7 2AZ, United Kingdom; iDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; jU.S.
    [Show full text]
  • Panton-Valentine Leukocidin: a Review
    Reprinted from www.antimicrobe.org Panton-Valentine Leukocidin: A Review Marina Morgan F.R.C.Path. Venkata Meka, M.D. Panton-Valentine leukocidin (PVL) is a bi-component, pore-forming exotoxin produced by some strains of Staphylococcus aureus. Also termed a synergohymenotropic toxin (i.e. acts on membranes through the synergistic activity of 2 non-associated secretory proteins, component S and component F) (9), PVL toxin components assemble into heptamers on the neutrophil membrane, resulting in lytic pores and membrane damage. Injection of purified PVL induces histamine release from human basophilic granulocytes, enzymes (such as β-glucuronidase and lysozyme), chemotactic factors (such as leukotriene B4 and interleukin (IL-) 8), and oxygen metabolites from human neutrophilic granulocytes (5). Intradermal injection of purified PVL in rabbits causes severe inflammatory lesions with capillary dilation, chemotaxis, polymorphonuclear (PMN) infiltration, PMN karyorrhexis, and skin necrosis (17). PVL production is encoded by two contiguous and cotranscribed genes, lukS-PV and lukF-PV, found in a prophage segment integrated in the S. aureus chromosome (9). Traditionally some 2% of S. aureus produce PVL, however in certain groups in close contact with each other, such as military personnel, prisoners, and families of patients with infected skin lesions, skin to skin transmission is common resulting in a far higher carriage rates. Different PVL-positive S. aureus strains carry differing phage sequences, which can move into other strains methicillin and resistant, empowering them with PVl production genes (15). Many patients with PVL-positive necrotizing pneumonia have a preceding illness resembling influenza, with rigors pyrexia and myalgia. Expression of most S.
    [Show full text]
  • Impact of Bacterial Toxins in the Lungs
    toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333
    [Show full text]
  • Multiple Roles of Staphylococcus Aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance
    Toxins 2010, 2, 2117-2131; doi:10.3390/toxins2082117 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance Elena Ortega, Hikmate Abriouel, Rosario Lucas and Antonio Gálvez * Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain; E-Mails: [email protected] (E.O.); [email protected] (H.A.); [email protected] (R.L.) * Author to whom correspondence should be addressed: E-Mail: [email protected]; Tel.: +34 953 212160; Fax: +34 953 212943. Received: 3 July 2010 / Accepted: 9 August 2010 / Published: 10 August 2010 Abstract: Heat-stable enterotoxins are the most notable virulence factors associated with Staphylococcus aureus, a common pathogen associated with serious community and hospital acquired diseases. Staphylococcal enterotoxins (SEs) cause toxic shock-like syndromes and have been implicated in food poisoning. But SEs also act as superantigens that stimulate T-cell proliferation, and a high correlation between these activities has been detected. Most of the nosocomial S. aureus infections are caused by methicillin-resistant S. aureus (MRSA) strains, and those resistant to quinolones or multiresistant to other antibiotics are emerging, leaving a limited choice for their control. This review focuses on these diverse roles of SE, their possible correlations and the influence in disease progression and therapy. Keywords: enterotoxins; Staphylococcus aureus; superantigens; MRSA; immune response 1. Introduction Staphylococcus aureus is a common pathogen associated with serious community and hospital acquired diseases and has for a long time been considered as a major problem of Public Health [1].
    [Show full text]