Handbook of Fermented Functional Foods

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Fermented Functional Foods Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 Handbook of Fermented Functional Foods Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 FUNCTIONAL FOODS AND NUTRACEUTICALS SERIES Series Editor G. Mazza, Ph.D. Senior Research Scientist and Head Food Research Program Pacific Agri-Food Research Centre Agriculture and Agri-Food Canada Summerland, British Columbia Functional Foods: Biochemical and Processing Aspects Volume 1 Edited by G. Mazza, Ph.D. Herbs, Botanicals, and Teas Edited by G. Mazza, Ph.D. and B.D. Oomah, Ph.D. Functional Foods: Biochemical and Processing Aspects Volume 2 Edited by John Shi, Ph.D., G. Mazza, Ph.D., and Marc Le Maguer, Ph.D. Methods of Analysis for Functional Foods and Nutraceuticals Edited by W. Jeffrey Hurst, Ph.D. Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 Handbook of Fermented Functional Foods EDITED BY Edward R. Farnworth, Ph.D. Food Research and Development Centre Agriculture and Agri-Food Canada Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 CRC PRESS Boca Raton London New York Washington, D.C. This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Library of Congress Cataloging-in-Publication Data Handbook of fermented functional foods / edited by Edward R. Farnworth. p. cm. Includes bibliographical references and index. ISBN 0-8493-1372-4 (alk. paper) 1. Functional foods—Handbooks, manuals, etc. 2. Fermented foods—Health aspects—Handbooks, manuals, etc. I. Farnworth, Edward R. QP144.F85 H357 2003 613.2¢8—dc21 2002191169 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-1372- 4/02/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2003 by CRC Press LLC No claim to original U.S. Government works Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 International Standard Book Number 0-8493-1372-4 Library of Congress Card Number 2002191169 ISBN 0-203-00972-X Master e-book ISBN Series Preface The Functional Foods and Nutraceuticals Book Series, launched in 1998, was devel- oped to provide a timely and comprehensive treatment of the emerging science and technology of functional foods and nutraceuticals that are shown to play a role in preventing or delaying the onset of diseases, especially chronic diseases. The first four titles in the series: Functional Foods: Biochemical and Processing Aspects, Volumes 1 and 2; Herbs, Botanicals, and Teas; and Methods of Analysis for Func- tional Foods and Nutraceuticals have received widespread acceptance by food, nutrition and health professionals. Functional Foods: Biochemical and Processing Aspects, Volume 1, the first in the series, is a bestseller, and is devoted to functional food products from oats, wheat, rice, flaxseed, mustard, fruits, vegetables, fish, and dairy products. In Volume 2, the focus is on the latest developments in the chemistry, biochem- istry, pharmacology, epidemiology, and engineering of tocopherols and tocotrienols from oil and cereal grain, isoflavones from soybeans and soy foods, flavonoids from berries and grapes, lycopene from tomatoes, limonene from citrus, phenolic diter- penes from rosemary and sage, organosulfur constitutes from garlic, phytochemicals from Echinacea, pectin from fruit, and omega-3 fatty acids and docosahexaenoic acid from flaxseed and fish products. Volume 2 also covers solid–liquid extraction technologies for manufacturing nutraceuticals and dietary supplements. Herbs, Botanicals, and Teas provides the latest scientific and technical informa- tion on the chemical, pharmacological, epidemiological, and clinical aspects of garlic, ginseng, Echinacea, ginger, fenugreek, St. John’s wort, Ginkgo biloba, kava kava, goldenseal, saw palmetto, valerian, evening primrose, liquorice, bilberries and blueberries, and green and black teas. The book also contains chapters on interna- tional regulations and quality assurance and control for the herbal and tea industry. Methods of Analysis for Functional Foods and Nutraceuticals presents advanced methods of analysis for carotenoids, phytoestrogens, chlorophylls, anthocyanins, amino acids, fatty acids, flavonoids, water soluble vitamins, and carbohydrates. The current volume, Handbook of Fermented Functional Foods, edited by Edward R. Farnworth, provides a comprehensive, state-of-the-art treatment of the scientific and technological information on the production of fermented foods, the microorganisms involved, the changes in composition that occur during fermentation Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 and, most importantly, the effect of these foods and their active ingredients on human health. Many of the foods covered in the book — yoghurt, cheese, pickles, sauerkraut, and fermented meat — are well known to western consumers, and their production methods and health effects are reasonably well documented. Several chapters in the book deal with foods such as gaio, kefir, natto, miso, kimchi, kocho, ogi, and togwa, which are much better known in Eastern Europe, Asia, and Africa. These foods have long traditions and are only now being tested scientifically. The book provides a good history of fermented foods, which shows that these foods have been an important part of the human diet for many centuries. Modern research, especially on the immune system, is revealing how these foods and their active ingredients impact human health. Also discussed is how fermented foods are likely to become an even more important part of our diet both on Earth and as we explore beyond Earth. Dr. Farnworth has assembled a group of outstanding international contributors in the forefront of fermented food science and technology. It is hoped that their efforts will be valuable to food, nutrition, and health practitioners, and to students and researchers in industry, government, and university laboratories. G. Mazza, Ph.D., FCIFST Series Editor Downloaded by [The University of Adelaide Libraries] at 08:47 06 November 2017 Preface Fermented foods are consumed in every country throughout the world. In some cases, these foods have played important roles in the diet for centuries. Fermented foods have often been produced as a means of preserving perishable primary products such as milk and meat, when other options such as refrigeration or pasteurization were unavailable or too expensive. In many cases, the science to explain what was happening to the food as it fermented was unknown and most likely not considered important in years gone by. However, the fact that similar foods can be found around the world — with only the name changing — shows that fermentation is a process that has universal appeal and application. It has only been recently, with advances in food microbiology, that the organisms responsible have been isolated and identified and their effects on foods during fermentation understood. Food manufacturers are now able to produce large quan- tities of uniform products year round. From a food processing point of view, fer- mentation is in itself an important technology, as it can not only preserve foods but also changes the characteristics of the food to make it more desirable to the consumer. Food products are now consumed that use in their fabrication, or contain when eaten, bacteria, yeasts, and molds. The microorganisms that carry out the fermentation process can affect the nutri- tional quality of food in several ways. During the fermentation process, nutrients that are already constituents of the food may be made more available. In some cases, the microorganisms carrying out the fermentation can synthesize new, nutritionally important constituents. The microorganisms themselves may contain cellular
Recommended publications
  • “La Uva” (Sinaloa) Con Vegetación De Selva
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA Biodiversidad de la microbiota rizosférica de dos especies solanáceas: Solanum lycopersicon, L. y Datura spp. (tomate y toloache) TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA RAQUEL LÓPEZ RIVERA GUASAVE, SINALOA, MÉXICO. DICIEMBRE DE 2011. Agradecimientos a proyectos El trabajo de tesis se desarrolló en el lanoratoriao de Ecología Molecular de la Rizosfera en el Departamento de Biotecnología Agrícola del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa del Instituto Politécnico Nacional (IPN) bajo la dirección del Dr. Ignacio Eduardo Maldonado Mendoza, E-mail: [email protected], domicilio laboral: Boulevard Juan de Dios Bátiz Paredes, No. 250 CP: 81100, Colonia: San Joachin, Ciudad: Guasave, Sinaloa, Fax: 01(687)8729625, Teléfono: 01(687)8729626. El presente trabajo fue apoyado económicamente a través del CONABIO (Con número de registro GE019). El alumno/a Raquel López Rivera fue apoyado con una beca CONACYT con clave 332252. AGRADECIMIENTOS A Dios por estar siempre a mi lado y darme la fuerza necesaria para seguir adelante y llegar a este momento de mi vida. A mis padres Roberto y Tomasa por darme la vida y enseñarme a vivirla, por todo el apoyo que me han brindado y por los consejos que me han guiado por el camino correcto. A mis hermanos Miriam, Miguel y Roberto que siempre han estado conmigo apoyándome de una u otra manera y en especial a mi hermana Carolina†, a pesar del tiempo te sigo extrañando. A mi director de tesis el Dr.
    [Show full text]
  • DNA Fingerprinting Analysis of Petromyces Alliaceus (Aspergillus Section Flavi)
    276 1039 DNA fingerprinting analysis of Petromyces alliaceus (Aspergillus section Flavi) Cesaria E. McAlpin and Donald T. Wicklow Abstract: The objective of this study was to evaluate the ability of the Aspergillus flavus pAF28 DA probe to pro­ duce DA fingerprints for distinguishing among genotypes of Petromyces alliaceus (Aspergillus section Flavi), a fun­ gus considered responsible for the ochratoxin A contamination that is occasionally observed in California fig orchards. P alliaceus (14 isolates), Petromyces albertensis (one isolate), and seven species of Aspergillus section Circumdati (14 isolates) were analyzed by DA fingerprinting using a repetitive sequence DNA probe pAF28 derived from A. flavus. The presence of hybridization bands with the DA probe and with the P alliaceus or P albertensis genomic DA in­ dicates a close relationship between A. flavus and P alliaceus. Twelve distinct DA fingerprint groups or genotypes were identified among the 15 isolates of Petromyces. Conspecificity of P alliaceus and P albertensis is suggested based on DA fingerprints. Species belonging to Aspergillus section Circumdati hybridized only slightly at the 7.0-kb region with the repetitive DA probe, unlike the highly polymorphic hybridization patterns obtained from P alliaceus and A. jZavus, suggesting very little homology of the probe to Aspergillus section Circumdati genomic DNA. The pAF28 DA probe offers a tool for typing and monitoring specific P alliaceus clonal populations and for estimating the genotypic diversity of P alliaceus in orchards,
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]
  • A Thesis Submitted in Partial Fulfillment of the Requirements For
    i Screening of Soil Fungi from Plant Genetic Conservation Project Area, Rajjaprabha Dam, Suratthani Province which Produced Antimicrobial Substances Kawitsara Borwornwiriyapan A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microbiology Prince of Songkla University 2013 Copyright of Prince of Songkla University ii Thesis Title Screening of Soil Fungi from Plant Genetic Conservation Project Area, Rajjaprabha Dam, Suratthani Province which Produced Antimicrobial Substances Author Miss Kawitsara Borwornwiriyapan Major Program Master of Science in Microbiology Major Advisor: Examining Committee: ………………………………………… ..……………………………Chairperson (Assoc. Prof. Dr. Souwalak Phongpaichit) (Asst. Prof. Dr. Youwalak Dissara) Co-advisor: ............................................................... (Assoc. Prof. Dr. Souwalak Phongpaichit) ………………………………………… ………………………………………… (Dr. Jariya Sakayaroj) (Dr. Jariya Sakayaroj) ………………………………………….. (Dr. Pawika Boonyapipat) The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Microbiology. ………………………………….. (Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School iii This is to certify that the work here submitted is the result of the candidate’s own investigations. Due acknowledgement has been made of any assistance received. ...………………………………Signature (Assoc. Prof. Dr. Souwalak Phongpaichit) Major advisor ...………………………………Signature (Miss Kawitsara Borwornwiriyapan)
    [Show full text]
  • Corrigiendo Tesis Doctorado Paloma Casas Junco
    TECNOLÓGICO NACIONAL DE MÉXICO Instituto Tecnológico de Tepic EFECTO DE PLASMA FRÍO EN LA REDUCCIÓN DE OCRATOXINA A EN CAFÉ DE NAYARIT (MÉXICO) TESIS Por: MCA. PALOMA PATRICIA CASAS JUNCO DOCTORADO EN CIENCIAS EN ALIMENTOS Director: Dra. Montserrat Calderón Santoyo Co - director: Dr. Juan Arturo Ragazzo Sánchez Tepic, Nayarit Febrero 2018 RESUMEN Casas-Junco, Paloma Patricia. DCA. Instituto Tecnológico de Tepic. Febrero de 2018. Efecto de plasma frío en la reducción de ocratoxina A en café de Nayarit (México). Directora: Montserrat Calderón Santoyo. La ocratoxina A (OTA) se considera uno de los principales problemas emergentes en la industria del café, dado que el proceso de tostado no asegura su destrucción total. El objetivo de este estudio fue identificar las especies fúngicas productoras de OTA en café tostado de Nayarit, así como evaluar el efecto de plasma frío en la inhibición de esporas de hongos micotoxigénicos, detoxificación de OTA, así como en algunos parámetros de calidad del café. Se aislaron e identificaron hongos micotoxigénicos mediante claves dicotómicas, después se analizó la producción de OTA y aflatoxinas (AFB1, AFB2, AFG2, AFG1) por HPLC con detector de fluorescencia. Las cepas productoras de toxinas se identificaron por PCR utilizando los primers ITS1 e ITS4. Después se aplicó plasma frío en muestras de café tostado inoculadas con hongos micotoxigénicos (A. westerdijikiae, A. steynii, A. niger y A. versicolor) a diferentes tiempos 0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 16 y 18 min, con una potencia de entrada 30 W y un voltaje de salida de 850 voltios y helio publicitario (1.5 L/min).
    [Show full text]
  • Caractérisation Et Identification Des Champignons Filamenteux Par Spectroscopie Vibrationnelle
    Année 2013 N° UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE ECOLE DOCTORALE SCIENCES TECHNOLOGIE SANTE THESE Présentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE Discipline : Biologie-Biophysique Soutenue publiquement le 02/12/2013 Par Aurélie LECELLIER Née le 18 mars 1983 à Issy les Moulineaux Titre : Caractérisation et identification des champignons filamenteux par spectroscopie vibrationnelle JURY Président : Dr. Jérôme MOUNIER (Brest, France) Rapporteurs : Pr. Boualem SENDID (Lille, France) Pr. Olivier SIRE (Vannes, France) Examinateurs : Dr. Wilfried ABLAIN (Rennes, France) Dr. Caroline AMIEL (Caen, France) Pr. Michel MANFAIT (Reims, France) Directeurs de thèse : Pr. Ganesh SOCKALINGUM (Reims, France) Dr. Dominique TOUBAS (Reims, France) « Le rôle de l’infiniment petit est infiniment grand. » Louis Pasteur Remerciements Remerciements A Messieurs le Professeur Michel Manfait et le Professeur Olivier Piot, Je vous remercie sincèrement pour m’avoir accueillie et pour m’avoir permis de réaliser ce travail au sein de votre unité que vous avez dirigée successivement lors de ces trois années de thèse. Je vous suis très reconnaissante pour m’avoir donné l’occasion de présenter mon travail dans des congrès nationaux et internationaux. A Monsieur le Professeur Boualem Sendid, Je vous suis très reconnaissante d’avoir accepté d’être rapporteur de cette thèse, je vous remercie pour votre participation au Jury de soutenance et pour l’intérêt que vous avez porté à mon travail. A Monsieur le Professeur Olivier Sire, Je vous suis très reconnaissante d’avoir accepté d’être rapporteur de cette thèse, je vous remercie pour votre participation au Jury de soutenance et pour l’intérêt que vous avez porté à mon travail.
    [Show full text]
  • Species Diversity and Secondary Metabolites of Sarcophyton-Associated Marine Fungi
    molecules Review Species Diversity and Secondary Metabolites of Sarcophyton-Associated Marine Fungi Yuanwei Liu 1, Kishneth Palaniveloo 1,* , Siti Aisyah Alias 1 and Jaya Seelan Sathiya Seelan 2,* 1 Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; [email protected] (Y.L.); [email protected] (S.A.A.) 2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia * Correspondence: [email protected] (K.P.); [email protected] (J.S.S.S.); Tel.: +60-13-878-9630 (K.P.); +60-13-555-6432 (J.S.S.S.) Abstract: Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research. Citation: Liu, Y.; Palaniveloo, K.; Keywords: octocoral; marine fungi; holobiont; secondary metabolites; diversity Alias, S.A.; Sathiya Seelan, J.S.
    [Show full text]
  • Antifungal Activity of Extracts from Atacama Desert Fungi Against
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 111(3): 209-217, March 2016 209 Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds Graziele Mendes1,2, Vívian N Gonçalves1, Elaine M Souza-Fagundes3, Markus Kohlhoff2, Carlos A Rosa1, Carlos L Zani2, Betania B Cota2, Luiz H Rosa1, Susana Johann1/+ 1Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brasil 2Fundação Oswaldo Cruz, Centro de Pesquisa René Rachou, Laboratório de Química de Produtos Naturais, Belo Horizonte, MG, Brasil 3Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Belo Horizonte, MG, Brasil Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxic- ity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P.
    [Show full text]
  • Antibacterial and Antifungal Compounds from Marine Fungi
    Mar. Drugs 2015, 13, 3479-3513; doi:10.3390/md13063479 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Antibacterial and Antifungal Compounds from Marine Fungi Lijian Xu 1,*, Wei Meng 2, Cong Cao 1, Jian Wang 1, Wenjun Shan 1 and Qinggui Wang 1,* 1 College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China; E-Mails: [email protected] (C.C.); [email protected] (J.W.); [email protected] (W.S.) 2 College of Life Science, Northeast Forestry University, Harbin 150040, China; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (L.X.); [email protected] (Q.W.); Tel.: +86-136-9451-8965 (L.X.); +86-139-3664-3398 (Q.W.). Academic Editor: Johannes F. Imhoff Received: 8 April 2015 / Accepted: 20 May 2015 / Published: 2 June 2015 Abstract: This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. Keywords: marine fungus; antimicrobial; antibacterial; antifungal; antibiotic; Aspergillus; polyketide; metabolites 1. Introduction Antibacterials and antifungals are among the most commonly used drugs. Recently, as the resistance of bacterial and fungal pathogens has become increasingly serious, there is a growing demand for new antibacterial and antifungal compounds.
    [Show full text]
  • Phylogeny, Identification and Nomenclature of the Genus Aspergillus
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 141–173. Phylogeny, identification and nomenclature of the genus Aspergillus R.A. Samson1*, C.M. Visagie1, J. Houbraken1, S.-B. Hong2, V. Hubka3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, A. Susca5, J.B. Tanney6, J. Varga7, S. Kocsube7, G. Szigeti7, T. Yaguchi8, and J.C. Frisvad9 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea; 3Department of Botany, Charles University in Prague, Prague, Czech Republic; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production National Research Council, 70126 Bari, Italy; 6Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan; 9Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark *Correspondence: R.A. Samson, [email protected] Abstract: Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera.
    [Show full text]
  • 19Th Coordinators Meet
    The Biotechnology Information System Network in India PROCEEDINGS OF THE XXTH ANNUAL COORDINATORS’ MEETING FOCAL THEME: ONLINE RESOURCES IN BIOINFORMATICS February 03-04, 2009 Bioinformatics Centre North-Eastern Hill University Shillong 793 022 Department of Biotechnology Ministry of Science and Technology Government of India The Biotechnology Information System Network in India Proceedings of the XXth All India BTISnet Coordinators’ Meeting February 03-04, 2009 Venue Bioinformatics Centre North-Eastern Hill University Shillong 793 022 Department of Biotechnology Ministry of Sience and Technology Government of India Venue: Multi Use Convention Centre, NEHU North Eastern Hill University, Shillong Date: 3rd & 4th February 2009 PROGRAMME TUESDAY 03th FEBRURARY 2009 09:00-9:30 hrs Registration: 9:30-10:32 hrs Inaugural Session: 9:30 Arrival of the Chief Guest 9:30-9:32 National Anthem 9:32-9:35 Presentation of Bouquet 9:35-9:40 Welcome : Prof. Pramod Tandon, Vice Chancellor, NEHU 9:40-9:50 About BTISNet Programme & Brief Report of Activities during 2008-’09 : Dr. T. Madhan Mohan, Advisor, DBT, New Delhi 9:50-10:05 Keynote Address : Prof M. Vijayan, Chairman, Task Force 10:05-10:25 Inaugural Address by the Chief Guest : His Excellency, The Governor of Meghalaya, Shri. R.S. Mooshahary 10:25-10:30 Vote of Thanks : Prof. Veena Tandon, Deputy Coordinator, Bioinformatics Centre, NEHU, Shillong 10:30-10:32 National Anthem 10:32-11:00 hrs Tea Break Session I 11:00-13:30 hrs Online Resources in Bioinformatics Chair : Prof. M. Vijayan, IISc, Bangalore Rappoteur : Dr. Gulshan Wadhwa, PSO, DBT Speakers (10 Minutes each) 1.
    [Show full text]
  • Aspergillus Sclerotiorum Fungus Is Lethal to Both Western Drywood (Incisitermes Minor) and Western Subterranean (Reticulitermes Hesperus) Termites
    ASPERGILLUS SCLEROTIORUM FUNGUS IS LETHAL TO BOTH WESTERN DRYWOOD (INCISITERMES MINOR) AND WESTERN SUBTERRANEAN (RETICULITERMES HESPERUS) TERMITES. GREGORY M. HANSEN, TYLER S. LAIRD, ERICA WOERTZ, DANIEL OJALA, DARALYNN GLANZER, KELLY RING, AND SARAH M. RICHART* DEPARTMENT OF BIOLOGY AND CHEMISTRY, AZUSA PACIFIC UNIVERSITY, AZUSA CA MANUSCRIPT RECEIVED 21 OCTOBER, 2015; ACCEPTED 16 JANUARY, 2016 Copyright 2016, Fine Focus all rights reserved 24 • FINE FOCUS, VOL. 2 (1) ABSTRACT Termite control costs $1.5 billion per year in the United States alone, and methods for termite control usually consist of chemical pesticides. However, these methods have their drawbacks, which include the development of resistance, environmental pollution, and toxicity to other organisms. Biological termite control, which employs the use of living organisms to combat pests, CORRESPONDING offers an alternative to chemical pesticides. This study highlights the discovery of a fungus, termed “APU AUTHOR strain,” that was hypothesized to be pathogenic to termites. Phylogenetic and morphological analysis *Sarah M. Richart showed that the fungus is a strain of Aspergillus [email protected] sclerotiorum, and experiments showed that both western drywood (Incisitermes minor) and western subterranean (Reticulitermes hesperus) termites die in KEYWORDS a dose-dependent manner exposed to fungal spores of A. sclerotiorum APU strain. In addition, exposure • Entomopathogenic to the A. sclerotiorum Huber strain elicited death in • Phylogenetics a similar manner as the APU strain. The mechanism • Biological control by which the fungus caused termite death is still • Pest management unknown and warrants further investigation. While • Aspergillus sclerotiorum these results support that A. sclerotiorum is a termite • Reticulitermes hesperus pathogen, further studies are needed to determine • Incisitermes minor whether the fungal species has potential as a biological • Termites control agent.
    [Show full text]