SINAIS%Power%Meter"

Total Page:16

File Type:pdf, Size:1020Kb

SINAIS%Power%Meter !Low$Cost%Non!Intrusive*Home*Energy* Monitoring" M ASTER&T HESIS" LUCAS!PEREIRA" September 2011 Thesis&supervisor:" Prof. Dr. Nuno Jardim Nunes Madeira-ITI and University of Madeira Madeira Interactive Technologies Institute University of Madeira (Portugal) ! “Pedras(no(caminho?(Guardo(todas,(um(dia(vou(construir(um(castelo...”( 8 Fernando(Pessoa( “Stones(in(my(way?(I(keep(them(all,(one(day(I(will(build(myself(a(castle…”( 8 Fernando(Pessoa( ( ii Abstract( Abstract" This thesis presents a low cost non-intrusive home energy monitor built on top of Non- Intrusive Load Monitoring (NILM) concepts and techniques. NILM solutions are already considered low cost alternatives to the big majority of existing commercial energy monitors but the goal here is to make its cost even lower by using a mini netbook as a whole in one solution. The mini netbook is installed in the homes main circuit breaker and computes power consumption by reading current and voltage from the built-in sound card. At the same time, feedback to the users is provided using the 11’’ LCD screen as well as other built-in I/O modules. Our meter is also capable of detecting changes in power and tries to find out which appliance lead to that change and it is being used as part of an eco-feedback platform that was build to study the long terms of energy eco-feedback in individuals. In this thesis the steps that were taken to come up with such a system are presented, from the basics of AC power measurements to the implementation of an event detector and classifier that was used to disaggregate the power load. In the last chapter results from some validation tests that have been performed are presented in order to validate the experiment. It is believed that such a system will not only be important as an energy monitor, but also as an open system than can be easily changed to accommodate and test new or existing non- intrusive load monitoring techniques. Keywords: Energy monitoring; Non-Intrusive Load Monitoring; AC Power; Machine Learning; Eco-feedback iii Table(of(Contents( Table&of&Contents" 1"Introduction" 1! 1.1! Motivation( 1! 1.2! Vision( 3! 1.3! Document(organization( 4! 2"State"of"the"art" 6! 2.1! Background(research( 6! 2.1.1! Power theory 6! 2.1.2! Smart meters 10! 2.1.3! Non-Intrusive Load Monitoring 14! 2.2! Literature(review( 17! 2.3! Challenges( 20! 3"SINAIS"Power"meter" 22! 3.1! Profile( 22! 3.2! Software(architecture( 24! 3.3! Data(acquisition( 26! 3.4! Power(calculations( 28! 3.5! Median(filter( 31! 3.6! Event(detection( 32! 3.6.1! GLR event detector 33! 3.7! Feature(extraction( 35! 3.8! Event(classification( 37! 4"Validation" 39! 4.1! Experimental(setup( 39! 4.2! Power(calculations( 42! 4.2.1! Results 43! 4.2.2! Discussion 44! 4.3! Event(detection( 45! 4.3.1! Results 45! 4.3.2! Discussion 47! 4.4! Load(disaggregation( 48! 4.4.1! Feature extraction 48! iv Table(of(Contents( 4.4.2! Event classification 49! 4.4.3! Discussion 50! 5"Conclusions"and"future"work" 52! 5.1! Low(cost(home(energy(monitoring( 52! 5.2! Project(expansion( 52! References" 54! Referenced"Web"Resources" 56! v List(of(Figures( List%of%Figures" Figure 2.1: Power, current and voltage graph of a resistive load ............................................. 7! Figure 2.2: Power, current and voltage graph of a purely reactive load .................................. 7! Figure 2.3: Power, current and voltage graph of a partially reactive load .............................. 8! Figure 2.4: AC Power triangle .................................................................................................. 9! Figure 2.5: Current and voltage affected by harmonic content ............................................... 10! Figure 2.6: a) Kill a Watt P4400; b) Plugwise; c) TED; d) Wattson; e) EnerSure [w8] ........ 12! Figure 2.7: Non Intrusive Load Monitoring workflow ............................................................ 15! Figure 3.8: Difference between netbook soundcards: (a) Toshiba NB300-100; (b) Macbook 13’ ............................................................................................................................................. 23! Figure 3.9: Toshiba NB300 netbook - a low cost non-intrusive home energy monitor ........... 24! Figure 3.10: “Pipe-and-Filter” software architecture ............................................................ 25! Figure 3.11: Low cost Non-Intrusive Home Energy Monitor software architecture ............... 25! Figure 3.12: Power meter installation: (a) sensors installed in the main circuit breaker; (b) sensors connected to the netbook built-in sound card ............................................................. 27! Figure 3.13: Current and voltage at 50 Hz with a sampling rate of 8 kHz ............................. 28! Figure 3.14: Real time Voltage RMS, Current RMS and Real Power during 1 minute .......... 31! Figure 3.15: Microwave transients at 50 Hz: (a) turn-on; (b) turn-off .................................. 35! Figure 4.16: Local NILM installation: (a) monitor; (b) appliances being monitored ........... 40! Figure 4.17: Simulation 1 power draw and events ................................................................. 41! Figure 4.18: Simulation 2 power draw and events ................................................................. 41! Figure 4.19: Current validation chart ..................................................................................... 43! Figure 4.20: Voltage validation chart ...................................................................................... 43! Figure 4.21: Real power validation chart ................................................................................ 44! Figure 4.22: Representation of the windows from where the features will be extracted ......... 49! vi List(of(equations( List%of%equations" Equation 2.1: Apparent power ................................................................................................... 8! Equation 2.2: Relationship between real, reactive and apparent powers ................................. 9! Equation 2.3: Real Power .......................................................................................................... 9! Equation 2.4: Reactive Power .................................................................................................... 9! Equation 2.5: Power factor ........................................................................................................ 9! Equation 2.6: Power factor for both linear and non-linear loads ........................................... 10! Equation 3.7: Real Power definition ........................................................................................ 29! Equation 3.8: Real Power definition in discrete time .............................................................. 29! Equation 3.9: Voltage root-mean-Square definition ................................................................ 29! Equation 3.10: Reactive Power definition (time delay method) .............................................. 30! Equation 3.11: Reactive Power definition (time delay method) in discrete time ..................... 30! Equation 3.12: Median filter definition .................................................................................... 31! Equation 3.13: GLR detection statistics ................................................................................... 32! Equation 3.14: Maximum likelihood calculation for the detection window l-k ....................... 34! Equation 3.15: Likelihood minimum change of mean of interest ............................................ 34! Equation 3.16: Normalization definition ................................................................................. 36! Equation 3.17: Average power change definition .................................................................... 36! Equation 3.18: Nth degree polynomial equation ...................................................................... 37! Equation 4.19: Percentage error ............................................................................................. 44! vii List(of(Tables( List%of%Tables" Table 4.1 : Appliances used for validation .............................................................................. 40! Table 4.2 : Simulation 1 appliances and transitions (100 seconds) ........................................ 40! Table 4.3 : Simulation 2 appliances and transitions (200 seconds) ........................................ 41! Table 4.4 : Single appliance simulations event count .............................................................. 42! Table 4.5: Consumption results comparison ............................................................................ 44! Table 4.6: Event detection results for simulation data 1 ......................................................... 46! Table 4.7: Event detection results for simulation data 2 ......................................................... 46! Table 4.8: Event detection results for simulation data 1 (test 2) ............................................. 47! Table 4.9: Event detection results for simulation data 2 (test 2) ............................................. 47! Table 4.10 : Features extracted from one of the microwave events ........................................ 49! Table 4.11 : K-Nearest Neighbor classification results ........................................................... 50! viii 1(Introduction( ( Motivation( ! (1! Introduction" 1.1" Motivation" 1" 1.2" Vision" 3" 1.3" Document"organization"
Recommended publications
  • P4460 KILL a WATT EZ™ Meter What Exactly Is a Watt Meter? Operating Instructions
    P4460 KILL A WATT EZ™ Meter What exactly is a watt meter? Operating Instructions Congratulations! You are now the proud A watt meter is a device that enables Step One: renter of a KILL A WATT EZ™ watt meter. consumers to read directly how much power Plug your watt meter into an electrical outlet. Obtaining your watt meter is the first step appliances are consuming. The P4460 KILL Then plug the appliance you wish to monitor towards becoming more aware of the energy A WATT EZ™ meter is a consumer power into the face of the watt meter. you consumer on a daily basis. consumption meter that allows users to Step Two: measure power consumption of appliances Why should you care about your personal Program the price you pay for electricity into and determine the actual cost of power energy use? the watt meter by following these consumed. This watt meter calculates total instructions: Penn State campuses consume a energy and cost, and also saves data when combined 300 million kilowatt hours the unit is unplugged. Press and hold the RESET button until (kWh) of electricity annually. This is “rEST” appears on the LCD screen. the equivalent of the amount of Release the RESET button. This electricity used by over 23,000 indicates that previous recorded homes per year. measurements have been erased and rest to zero. The majority of Penn State’s electricity is generated from coal. Press the pink SET button and hold it down until the price screen appears. University Park energy consumption You will see a dollar sign and a flashing accounts for approximately 80% of three-digit decimal number.
    [Show full text]
  • Guidelines on Energy Conserving Design of Buildings — 2020 Edition
    GUIDELINES ON ENERGY CONSERVING DESIGN OF BUILDINGS — 2020 EDITION Section I. Purpose 1.1 To encourage and promote the energy conserving design of buildings and their services to reduce the use of energy with due regard to the cost effectiveness, building function, and comfort, health, safety, and productivity of the occupants. 1.2 To prescribe guidelines and minimum requirements for the energy conserving design of new buildings and major renovation of existing buildings that fall and are covered under these guidelines and provide methods for determining compliance with the same to make the buildings always energy-efficient. Section Il. Definition of Terms 2. As used in these Guidelines, the following shall mean: Air— refers to any of the following: Ambient Air — air surrounding a building; the source of outdoor air brought into a building. Exhaust Air — air removed from a space and discharged to outside the building by means of mechanical or natural ventilation. Indoor Air— air in an enclosed occupiable space. Outdoor Air— ambient air that enters a building through a ventilation system, through intentional openings for natural ventilation, or by infiltration. Return Air— air removed from a space to be recirculated, or exhaust air. Supply Air — air delivered by mechanical or natural ventilation to a space and composed of any combination of outdoor air, recirculated air, or transfer air. Ventilation Air — supply air that is outdoor air plus any recirculated air that has been treated for the purpose of maintaining acceptable Indoor Air Quality. Air Conditioning — the process of treating air so as to control simultaneously its temperature, humidity, cleanliness, and distribution to meet the requirements of conditioned space.
    [Show full text]
  • Final Report
    Final Report Team 22 - SHARC Sustainable Housing And Responsible Construction Andrew Blunt, Robert LaPlaca, Oscar Lopez, and Julie VanDeRiet Engineering 339/340 Senior Design Project Calvin College May 10, 2018 © 2018, Calvin College and Andrew Blunt, Robert LaPlaca, Oscar Lopez, and Julie VanDeRiet 1 Executive Summary This document outlines the work that Team 22 of Calvin College’s engineering senior design project achieved over the academic year, as well as the goals they achieved. The accomplished work contains research and feasibility analysis for design decisions regarding the design of the a sustainable home. The client family desires a sustainable home near Calvin College. Team 22’s goal was to provide a solution to their problem by designing a home to comply with Passive House Institute US’s certification. This task requires a variety of engineering disciplines with specific objectives that require a parallel design process. This document outlines the research and work that Team 22 has achieved. Table of Contents 1 Executive Summary 2 Introduction 1 2.1 Project Introduction 1 2.1.1 Location 1 2.1.2 Client 1 2.2 Passive House US Requirements 1 2.3 The Team 3 2.3.1 Andrew Blunt 3 2.3.2 Robert LaPlaca 3 2.3.3 Oscar Lopez 4 2.3.4 Julie VanDeRiet 4 2.4 Senior Design Course 4 3 Results 5 3.1 Thermal Results 5 3.2 Home Design 5 3.3 Energy Performance 6 4 Project Management 7 4.1 Team Organization 7 4.2 Schedule 7 4.2.1 First Semester 7 4.2.2 Second Semester 8 4.2.3 Project Management Visualization 8 5 Design Process 9 5.1 Ethical Design
    [Show full text]
  • Assessing Players, Products, and Perceptions of Home Energy Management ET Project Number: ET15PGE8851
    PG&E’s Emerging Technologies Program ET15PGE8851 PG&E’s Emerging Technologies Program Assessing Players, Products, and Perceptions of Home Energy Management ET Project Number: ET15PGE8851 Project Manager(s): Kari Binley and Oriana Tiell Pacific Gas and Electric Company Prepared By: SEE Change Institute Rebecca Ford Beth Karlin Angela Sanguinetti Anna Nersesyan Marco Pritoni Issued: November 19, 2016 Cite as: Ford, R., Karlin, B., Sanguinetti, A., Nersesyan, A., & Pritoni, M. (2016). Assessing Players, Products, and Perceptions of Home Energy Management. San Francisco, CA: Pacific Gas and Electric. © Copyright, 2016, Pacific Gas and Electric Company. All rights reserved. PG&E’s Emerging Technologies Program ET15PGE8851 Acknowledgements Pacific Gas and Electric Company’s Emerging Technologies Program is responsible for this project. It was developed as part of Pacific Gas and Electric Company’s Emerging Technology program under internal project numbers ET15PGE8851. SEE Change Institute conducted this technology evaluation for Pacific Gas and Electric Company with overall guidance and management from Jeff Beresini, Kari Binely and Oriana Tiell. For more information on this project, contact Pacific Gas and Electric Company at [email protected]. Special Thanks This project was truly a team effort and the authors would like to thank all those who contributed to making it a reality. First, we’d like to acknowledge Pacific Gas and Electric (PG&E) for funding this research. Particular thanks go to Susan Norris for having the vision and foresight to make this project a reality and to Oriana Tiell, Kari Binley, and Jeff Beresini for continued support and feedback throughout the project. Several partners also collaborated with our team on the various research streams and deserve acknowledgement.
    [Show full text]
  • Download a Transcript of the Interview with Doug King
    Episode 63 Smart Energy and Data The show notes: www.houseplanninghelp.com/63 Intro: Data is what we're talking about today. When I go to various different talks they will often reflect on data that has been collected, whether it's from moisture sensors or CO2 sensors so I did wonder whether it's something that I should be doing on my project, making sure that there is something useful coming out of it in terms of data. That probably means planning upfront so I just wanted to find out all about that. Recently I saw a talk on smart energy so I thought we'd tie this all together and see how we go with it. Doug King has a lot of experience in construction, particularly high performance buildings - which is what we like - and he's someone that I've been wanting to talk to for a while. I started by asking him for a little bit of background on his work. Doug: I started out as a physicist. I fell into the profession of building services engineering, out of curiosity, and then I spent the last 20 years thinking about how building services systems work together with building fabric, with the technology to control them and finally how human beings relate to all of that as a system in order to try and understand the key issues about optimisation, how to get these things working together properly rather than the building services systems fighting against the building fabric and the users not understanding what the hell is going on.
    [Show full text]
  • Task XIII Guide Book 6
    Version 6.0 IEA DSM Task XIII Project Guidebook November 2006 Copyright 2006 - IEA DRR LLC - Proprietary Information SECTION 6: DR TECHNOLOGIES 2 I. INTRODUCTION We all use tools to simplify our daily lives. Things such as the hammer, coffee maker, and computer are used to reduce the time it takes to complete a life’s daily chores. The demand response industry has also developed technologies that simplify the implementation and utilization of DR resources in the energy marketplace. In order for a DR resource to be useful in the energy market it must have the ability to react when needed and its response must be measurable. Tools and systems have been developed that help activate a DR asset (e.g. direct load control) and manage a DR asset portfolio (e.g. DR software products). These and other DR related technologies help the DR resource react to load reduction request and opportunities and they help provide the business process mechanisms that connect the resource to the energy marketplace. This chapter will explore how technology is being used in the demand response industry today. The objective of this section is to help the DR market participant identify technologies and systems that are used to make DR more effective in the energy marketplace from the perspective of the participating customer, the energy provider and the system operator. Improvement in communication and metering technologies has helped the demand response industry grow in recent years. In fact, some people have suggested that the demand response industry was made possible by the improvement and wide scale deployment of Internet communications in the late 1990s.
    [Show full text]
  • Kill-A-Watt Monitor Instructions
    Kill-A-Watt Monitor Instructions Definition: a kilowatthour (kwh) is the amount of electricity used when a 1,000 watt load (appliance or piece of equipment) is operated for one hour (1,000 watts for 1 hour = 1 kwh). There are an infinite number of ways that a kwh is consumed; the general formula for calculation is [(load, in watts) * (time, hours) = kwh’s] The average Vermont residential daily consumption is almost 20 kwh/day. This Kill-A-Watt Monitor measures several aspects of how much electricity any 120 volt equipment uses. These instructions help you use that information to: - Determine the cost of running any appliance or piece of equipment - Compare existing equipment with new efficient ENERGY STAR models, to determine whether replacement is suitable for you - Determine if and how much energy any equipment uses when it is not in active use (eg, “sleep” mode) - Determine what portion of overall household electric use any single piece of equipment represents For assistance in evaluating Kill-A-Watt meter data, and making good economic decisions, please contact the Co-op. The Kill-A-Watt device measures several aspects of electric activity; the most important of these for decision-making are (1) the kilowatthours (kwh) accumulated electric usage, and (2) the watts being consumed instantaneously. These functions are achieved by selecting the purple button (on right), and the third (gray) button. See illustration below: Volt Amp Watt Hz KWH Press this button once to see electricity used since monitoring started. Push button again to view time elapsed. VA PF Hour Press this button to see how many watts the appliance is drawing at the moment.
    [Show full text]
  • Advancing Smart Energy Homes and Buildings in the Northeast
    SMART ENERGY HOMES AND BUILDINGS Evolving Homes and Buildings to Keep Up with the Evolving Grid August 27, 2020 Building Decarbonization 3 Key Elements Advanced Electric Deep Energy Grid Technologies Efficiency Integration Space/Water Thermal Flexible use of Heating – Heat Pumps Improvements Low-Carbon Electricity Northeast Strategic Electrification Action Plan – NEEP 2018 1 Allies Network State Partners Connecticut New York State Partners: CT DEEP, CT Energy Efficiency Board, Eversource State Partners: NYSERDA Energy, United Illuminating Company, Southern Connecticut Gas and Connecticut Natural Gas Partners in 2017/2018/2019/2020 Partners in 2017/2018/2019/2020 Rhode Island State Partners: RI Office of Energy Resources, National Grid RI, RI District of Columbia Department and Education and RI Energy Efficiency & Resource State Partners: Department of Energy and Environment and DC Management Council Sustainable Energy Utility Partners in 2017/2018/2019/2020 Partners in 2017/2019/2020 Vermont Massachusetts State Partners: Efficiency Vermont State Partners: Massachusetts Department of Energy Resources Partners in 2017/2018/2019/2020 Partners in 2019 West Virginia New Hampshire State Partners: West Virginia Office of Energy State Partners: NH Office of Strategic Initiatives, NH Public Utilities Commission, Eversource Energy, NH Electric Coop, Unitil and Partners in 2020 Liberty Utilities Partners in 2017/2018/2019/2020 3 Agenda at a Glance 4 SESSION 1 The Current State of Smart Energy Homes and Buildings 5 Integrating Smart Energy Homes and Buildings with a Modernized Grid: Grid-interactive Efficient Buildings Overview Monica Neukomm, US DOE Building Technologies Office August 2020 U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY 6 Smart Building…Smart Energy Management…GEB © Navigant Consulting Inc.
    [Show full text]
  • M.Sc in Green Buildings
    M.SC IN GREEN BUILDINGS SEMESTER - 1 Paper No Subject Contents Of Syllabus SITE SELECTION LOCATION GEOGRAPHY ARCHAEOLOGICAL SITE ARCHAEOLOGICAL ETHICS CONSTRUCTION GROTHENDIECK TOPOLOGY BINDING AND ACTIVE SITE DNA AND NTP BINDING SITE Paper - I SITE SELECTION, PRESERVING SOIL AND LANDSCAPE - I SOIL CONSERVATION SOIL SALINITY CONTROL CONSERVATION MOVEMENT HABITAT CONSERVATION SEDIMENT TRANSPORT LAND DEGRADATION LANDSCAPING AQUASCAPING ARBORICULTURE DOUBLE ENVELOPE HOUSE EARTH SHELTERING EARTH HOUSE UNDERGROUND HOME AND LIVING BURDEI DUGOUT SHELTER EARTH LODGE EARTHSHIP KIVA PIT-HOUSE QUIGGLY HOLE Paper - II EXTERNAL DESIGN FEATURES AND OUTDOOR LIGHTING - I ROCK CUT ARCHITECTURE SOD HOUSE YAODONG BASEMENT GROUND-COUPLED HEAT EXCHANGER ENERGY CONSERVATION GREEN ROOF RADIATION PROTECTION FLUORESCENT LAMP COMPACT FLUORESCENT LAMP LED LAMP HISTORY OF PASSIVE SOLAR BUILDING DESIGN Sanitation HISTORY OF WATER SUPPLY AND Sanitation WASTERWATER SEWAGE TREATMENT ACTIVATED SLUDGE TRICKLING FILTER Paper - III Sanitation & Air Pollution during Construction - I ROTATING BIOLOGICAL CONTRACTOR SEWAGE SLUDGE TREATMENT SEWAGE ANAEROBIC DIGESTION COMPOSTING TOILET SEPTIC TANK PIT TOILET WATER PROPERTIES OF WATER WATER MODEL WATER MANAGEMENT AQUATIC TOXICOLOGY ATP TEST CLEAN WATER ACT DIFICIT IRRIGATION WATER SUPPLY AND SANITATION IN THE EUROPEAN UNION Paper -IV Efficient Water Management - I HISTORY OF WATER SUPPLY AND SANITATION WATER CONSERVATION WATER DISTRIBUTION ON EARTH WATER EFFICIENCY WATER LAW WATER POLITICS WATER QUALITY WATER SUPPLY WATER SUPPLY
    [Show full text]
  • MGE Energy 2018 Environment and Sustainability Report
    ENVIRONMENTAL AND SUSTAINABILITY REPORT 2018 Madison Gas and Electric Company 1 OUR ENVIRONMENTAL POLICY As part of Madison Gas and Electric’s (MGE) commitment Table of Contents to environmental stewardship, we will: Corporate strategy 3 • Consider the environmental impacts of all applicable company activities and actively seek cost-effective ways to Governance 5 reduce adverse environmental impacts and risks. Energy 7 • Seek environmentally friendly options when considering sources of supply, material and contractors where Climate change and air quality 11 cost-effective opportunities exist. Energy efficiency and conservation 13 • Educate our employees about MGE’s environmental Community engagement and partnerships 15 responsibilities and policy and encourage them to actively seek ways to mitigate environmental impacts. Community giving 17 • Set environmental goals and objectives and strive to Natural resources 19 continually improve corporate environmental performance. • Strictly comply with all environmental laws, regulations, Supply chain and waste management 21 permit requirements and other corporate environmental Transportation 23 commitments and exceed simple compliance where sound Workforce 25 science and cost-effective technologies permit. • Continue to be an active member of the community and Safety 27 work with other community agencies to promote Falcon restoration 29 environmental education and energy conservation. As a member of the community, MGE will communicate openly This report includes forward-looking statements and and honestly with the public regarding MGE environmental estimates of future performance that may differ from policy and performance. actual results because of uncertainties and risks encountered in day-to-day business. Thank you for your interest in MGE’s 2018 Environmental and Sustainability Report. Our commitment to environmental stewardship goes beyond regulatory compliance.
    [Show full text]
  • Kill-A-Watt Power Meter
    R Application Note Kill-A-Watt Power Meter Monitoring Plug Loads Overview The model P4400 Kill-A-Watt power meter is a device used for power monitoring of 110 volt plug loads. The Kill-A-Watt power meter allows: ä measurement of real time line voltage (Volts), current (amps), power (Watts), apparent power (VA), frequency (Hz), and power factor (PF). ä calculation of total energy load over the monitoring period. Recording of cumulative energy consumption (kWh-kilowatt hours) and hours of monitoring for a study period. Unlike a power logger, this meter does not record changes in electrical parameters over time. ä instantaneous display of data on the LCD screen. This meter does not require a computer interface. NOTE: Meter must be plugged into a receptacle to operate. Data is NOT stored on the device. Write down results before unplugging device. Figure 1: Kill-A-Watt meter monitoring energy use of an Monitoring the energy use of an appliance appliance 1. Plug the meter into an 110 Volt outlet. The meter must be plugged into a receptacle to operate and display values. 2. Plug appliance into the Kill-A-Watt meter receptacle on front of device. 3. Use buttons to display desired information (Figure 2). ä (A) Press Volt button to display voltage. ä (B) Press Amp button to display amperage. ä (C) Press the Watt/VA button once to display wattage. Press again to display VA (apparent Power). ä (D) Press Hz/PF button once to display Hertz (frequency). Press (A) (B) (C) (D) (E) again to display PF (power factor).
    [Show full text]
  • Dynamic Ancillary Service Provided by Loads with Inherent Energy Storage
    Dynamic Ancillary Service Provided By Loads With Inherent Energy Storage Katie Bloor(1), Andrew Howe(1), Alessandra Suardi(2), Stefano Frattesi(2) RLtec(1) 75-76 Shoe Lane, London EC4A 3BQ, UK [email protected], [email protected]. Indesit Company(2) Viale A. Merloni 47 - 60044 Fabriano (AN), Italy [email protected], [email protected] Keywords: Dynamic Demand; Demand-side management partner and will provide the refrigerators implementing this (DSM); Frequency regulation; Demand response innovative control technique for the field trial. Abstract Electrical load devices with inherent energy storage can be used to provide a loss-less energy storage service to an electricity grid without any noticeable effect to the load owner. Populations of such loads can autonomously provide distributed response regulation, displacing large generation regulation services. This leads to a significant saving in emissions (including CO2) in the electricity supply industry. The authors have run a laboratory trial of refrigerators, where the refrigerator’s electronic control board has been modified to provide the autonomous “Energy Balancing Controller” (EBC) function. The laboratory test rig allows the grid service response level to be determined, mirroring standard practice in the UK for large generator set response (regulation service) testing. In a field-scale deployment of EBC-enabled refrigerators, examples of grid Smart Appliances, the authors have designed an instrumentation system interfacing smart appliances with an in-line home energy monitor device, and connecting to a central data server. The server provides real- time monitoring of the grid response (ancillary) service by collecting certain physical variables measured in each individual Smart Appliance.
    [Show full text]