Chittaranjan Kole Editor Vol. 1 Concepts and Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BID Africa 2017 – Small Grant Template Final Narrative Report
<BID project id> <Start and end date of the reporting period> BID Africa 2017 – Small Grant Template Final narrative report Instructions Fill the template below with relevant information. please indicate the reason of the delay and expected date of completion. Use the information included in your project Full proposal (reproduced in annex III of your BID contract) as a baseline from which to complete this template The information provided below must correspond to the financial information that appears in the financial report Sources of verification are for example direct links to relevant digital documents, news/newsletters, brochures, copies of agreements with data holding institutions, workshop related documents, pictures, etc. Please provide access to all mentioned sources of verification by either providing direct link or sending a copy of the documents. This report must first be sent as a Word document to [email protected] and be pre-approved by GBIFS Once this report is pre-approved in writing by GBIFS, it must be signed by the BID project coordinator and sent by post to: The Global Biodiversity Information Facility Secretariat (GBIFS) Universitetsparken 15 DK-2100 Copenhagen Ø Denmark Template 1. Table of Contents 1. Table of Contents ...................................................................................................... 1 2. Project Information..................................................................................................... 3 3. Overview of results ................................................................................................... -
Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades. -
Human Breast Tumour Cells Viability Effect of African Dioscorea Rotundata Tuber Extracts in Mcf-7 and Mda-Mb231 Cell Lines
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084269; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 HUMAN BREAST TUMOUR CELLS VIABILITY EFFECT OF AFRICAN DIOSCOREA ROTUNDATA TUBER EXTRACTS IN MCF-7 AND MDA-MB231 CELL LINES. Joy Ifunanya Odimegwu*, Ph.D.; Olukemi Abiodun Odukoya*, PhD.; Alejandro Español**, PhD.; Maria Elena Sales**, PhD. *Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos. NIGERIA and **Laboratory of Tumor Immunopharmacology, Center for Pharmacological and Botanical Studies (CEFYBO)-CONICET. School of Medicine. University of Buenos Aires. Argentina. Corresponding author: Dr. Joy Ifunanya Odimegwu, PMB 12003 Idiaraba, Lagos. NIGERIA +234 8170140519. [email protected]; ORCID: 0000-0001-7398-1311 Co-author email addresses: Prof. Olukemi Abiodun Odukoya; [email protected] ORCID: 0000-0002-0904-0610 Dr. Alejandro Español; [email protected]; ORCID: 0000-0001-8222-4259 Prof. Maria Elena Sales; [email protected]; ORCID: 0000-0001-5086-0007 Funding: University of Lagos, NIGERIA. Tertiary Education Trust Fund [TETFUND 2015]. Third World Academy of Sience-United Nations Educational, Scientific and Cultural Organization [TWAS-UNESCO] Fellowship, Centro de Estudios Farmacologico y Botanicos-Consejo Nacional de Investigaciones Científicas y Técnicas [CEFYBO-CONICET], Buenos Aires, Argentina. The funding organisations noted here played no roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. Acknowledgement: We wish to thank TETFUND, TWAS-UNESCO for the research fellowship offered to Dr. -
Developing Methodologies for the Global in Situ Conservation of Crop
Developing methodologies for the global in situ conservation of crop wild relatives By Holly A. Vincent A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham June 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Climate change is predicted to have far-reaching deleterious impacts worldwide; agriculture in particular is expected to be effected by significant loss of suitable land and crop yields in the world’s most populous and poorest regions. Crop wild relatives (CWR) are a rich source of underutilised genetic diversity which could help to mitigate climate change for agriculture through breeding new resilient varieties. However, CWR are under-conserved and threatened in the wild. This thesis researches and develops systematic methodologies to advance knowledge and support action on in situ CWR conservation at the global level. Methods included developing a global inventory of CWR associated with crops important for food security worldwide, species distribution modelling, climate change analysis, in situ gap analysis, reserve planning and prioritisation, and, examining the congruence of CWR distributions with regions of high biodiversity and crop diversity. -
Coastal Wetlunds of the Noytherrn Gua of Califurnia
AQUATIC CONSERVATION:MARINE AND FRESHWATERECOSYSTEMS Aquatic Conseru:Mar. Freshv. Ecosyst. l6: 5 28 (2006) Publishedonline in Wiley InterScience (www.interscience.wiley.com).DOI: 10.1002/aqc.68l Coastal wetlundsof the noytherrnGuA of Califurnia: inventory flnd conservutionstatus EDWARD P. GLENNO'*, PAMELA L. NAGLERU, RICHARD C. BRUSCAb and OSVEL HINOJOSA-HUERTA' " EnvironntentalResearch Laborator!-,2601 East Airport Drive, Tucson,AZ 85706, USA bAritora Sonora Desert Museum,2021 North Kinney RoacJ,Tucson, AZ 85743,USA 'Pronatura lVoroeste,Ave. Jalisco 903, Colonia Sonora, San Luis Rio Colorado, Sonora 83440. Meric'o ABSTRACT 1. Above 28"N, the coastlineof the northern Gulf of California is indented at frequent intervals by negative or inverseestuaries that are saltier at their backs than at their mouths due to the lack of freshwater inflow. These 'esteros'total over l32,ogo ha in area and encompassmangrove marshes below 29"N and saltgrass(Drsrichlis palmeri) marshes north of 29"N. An additional 6000 ha of freshwaterand brackish wetlandsare found in the Colorado River delta where fresh water entersthe intertidal zone. 2. The mangrove marshesin the Gulf of California have been afforded some degreeof protected statusin Mexico, but the northern saltgrassesteros do not have priority conservationstatus and are increasinglybecoming developmenttargets for resorts,vacation homes and aquaculture sites. 3. We conducted an inventory of the marshesusing aerial photography and satelliteimages, and evaluatedthe extent and type of developmenton eachmarsh. We reviewedthe availableliterature on the marshesto document their vegetationtypes and ecologicalfunctions in the adjacentmarine and terrestrial ecosystems. 4. Over 95"h of the mangrove marshes have been developed for shrimp farming. However, the larms are built adjacent to, rather than in, the marshes, and the mangrove stands are still mostly intact. -
Indicators for Assessing Infant and Young Child Feeding Practices Part 1 Definitions
Indicators for assessing infant and young child feeding practices PART 1 DEFINITIONS Indicators for assessing infant and young child feeding practices PART 1 DEFINITIONS Conclusions of a consensus meeting held 6–8 November 2007 in Washington, DC, USA WHO Library Cataloguing-in-Publication Data Indicators for assessing infant and young child feeding practices : conclusions of a consensus meeting held 6–8 November 2007 in Washington D.C., USA. 1.Infant nutrition. 2.Breast feeding. 3.Bottle feeding. 4.Feeding behavior. 5.Indicators. I.World Health Organization. Dept. of Child and Adolescent Health and Development. ISBN 978 92 4 159666 4 (NLM classification: WS 120) © World Health Organization 2008 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps rep- resent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or rec- ommended by the World Health Organization in preference to others of a similar nature that are not mentioned. -
Agronomy of Halophytes As Constructive Use of Saline Systems
Agronomy of Halophytes as Constructive Use of Saline Systems Item Type text; Electronic Dissertation Authors Bresdin, Cylphine Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 03:23:03 Link to Item http://hdl.handle.net/10150/577318 AGRONOMY OF HALOPHYTES AS CONSTRUCTIVE USE OF SALINE SYSTEMS by Cylphine Bresdin A Dissertation Submitted to the Faculty of the department of SOIL, WATER AND ENVIRONMENTAL ScIENCES In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ENVIRONMENTAL SCIENCE In the Graduate College ThE UNIVERSITY OF ARIZONA 2015 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Cylphine Bresdin, titled Agronomy of Halophytes as Constructive Use of Saline Systems and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _____________________________________________________ Date: 7/29/2015 Edward Glenn _____________________________________________________ Date: 7/29/2015 Janick Artiola _____________________________________________________ Date: 7/29/2015 Kevin Fitzsimmons _____________________________________________________ Date: 7/29/2015 Margaret Livingston Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. -
Minimum Dietary Diversity for Women
MINIMUM DIETARY DIVERSITY FOR WOMEN An updated guide for measurement: from collection to action MINIMUM DIETARY DIVERSITY FOR WOMEN An updated guide for measurement: from collection to action Food and Agriculture Organization of the United Nations Rome, 2021 Required citation: FAO. 2021. Minimum dietary diversity for women. Rome. https://doi.org/10.4060/cb3434en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-133993-0 © FAO, 2021 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence. -
Indicators for Assessing Infant and Young Child Feeding Practices Definitions and Measurement Methods
Indicators for assessing infant and young child feeding practices Definitions and measurement methods Indicators for assessing infant and young child feeding practices Definitions and measurement methods Indicators for assessing infant and young child feeding practices: definitions and measurement methods ISBN (WHO) 978-92-4-001838-9 (electronic version) ISBN (WHO) 978-92-4-001839-6 (print version) © World Health Organization and the United Nations Children’s Fund (UNICEF), 2021 This joint report reflects the activities of the World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO or UNICEF endorses any specific organization, products or services. The unauthorized use of the WHO or UNICEF names or logos is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO) or the United Nations Children’s Fund (UNICEF). Neither WHO nor UNICEF are responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. -
Dioscorea Species) in Selected Counties in Kenya
Vol. 14(7), pp. 270-279, July 2020 DOI: 10.5897/AJPS2020.2020 Article Number: 332CF7B64301 ISSN 1996-0824 Copyright © 2020 Author(s) retain the copyright of this article African Journal of Plant Science http://www.academicjournals.org/AJPS Full Length Research Paper Morphological and molecular characterization of cultivated yam (Dioscorea species) in selected counties in Kenya Valentine Atieno*, Grace W. Gatheri, Joseph W. Kamau and Morris Muthini Department of Plant Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya. Received 15 May, 2020; Accepted 19 June, 2020 This study was conducted to characterize Dioscorea spp. in Kenya using morphological and molecular characteristics. Data on 22 morphological traits were subjected to cluster analysis and multivariate analysis using principal component (PCA). The dendrogram of cluster analysis revealed three main groups: Species distribution based on PC-1 and PC-2 showed the distantly related species in each quarter; D. alata L. (1st quarter), D. bulbifera L. (2nd quarter), D. cayenensis Lam. (3rd quarter) and D. minutiflora Engl. (4th quarter). In molecular characterization, one sub-cluster grouped D. minutiflora Engl. and D. burkilliana J. Miege as one genetic group. However not all D. minutiflora Engl. species were in one specific cluster showing that there may be variation within the species. D. alata L. and D. bulbifera were seen to be potentially related because they shared a common origin. D. bulbifera L. and D. cayenensis Lam. genotypes clustered together, indicating that the species might be closely related. Generally, the rbcL marker demonstrated the phylogeny of Kenyan Dioscorea spp L. Comparison of morphological and molecular data analysis gave almost similar results. -
A Molecular Phylogeny and Classification of the Cynodonteae
TAXON 65 (6) • December 2016: 1263–1287 Peterson & al. • Phylogeny and classification of the Cynodonteae A molecular phylogeny and classification of the Cynodonteae (Poaceae: Chloridoideae) with four new genera: Orthacanthus, Triplasiella, Tripogonella, and Zaqiqah; three new subtribes: Dactylocteniinae, Orininae, and Zaqiqahinae; and a subgeneric classification of Distichlis Paul M. Peterson,1 Konstantin Romaschenko,1,2 & Yolanda Herrera Arrieta3 1 Smithsonian Institution, Department of Botany, National Museum of Natural History, Washington, D.C. 20013-7012, U.S.A. 2 M.G. Kholodny Institute of Botany, National Academy of Sciences, Kiev 01601, Ukraine 3 Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico Author for correspondence: Paul M. Peterson, [email protected] ORCID PMP, http://orcid.org/0000-0001-9405-5528; KR, http://orcid.org/0000-0002-7248-4193 DOI https://doi.org/10.12705/656.4 Abstract Morphologically, the tribe Cynodonteae is a diverse group of grasses containing about 839 species in 96 genera and 18 subtribes, found primarily in Africa, Asia, Australia, and the Americas. Because the classification of these genera and spe cies has been poorly understood, we conducted a phylogenetic analysis on 213 species (389 samples) in the Cynodonteae using sequence data from seven plastid regions (rps16-trnK spacer, rps16 intron, rpoC2, rpl32-trnL spacer, ndhF, ndhA intron, ccsA) and the nuclear ribosomal internal transcribed spacer regions (ITS 1 & 2) to infer evolutionary relationships and refine the -
Isolation and Characterization of Microsatellites for the Yam Dioscorea Cayenensis (Dioscoreaceae) and Cross-Amplification in D
Isolation and characterization of microsatellites for the yam Dioscorea cayenensis (Dioscoreaceae) and cross-amplification in D. rotundata L.R.G. Silva1, M.M. Bajay1, M. Monteiro2, T.F. Mezette1, W.F. Nascimento1, M.I. Zucchi2, J.B. Pinheiro1 and E.A. Veasey1 1Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brasil 2Agência Paulista de Tecnologia dos Agronegócios, Polo Apta Centro Sul, Piracicaba, SP, Brasil Corresponding author: E.A. Veasey E-mail: [email protected] Genet. Mol. Res. 13 (2): 2766-2771 (2014) Received December 10, 2012 Accepted May 15, 2013 Published April 14, 2014 DOI http://dx.doi.org/10.4238/2014.April.14.5 ABSTRACT. Dioscorea cayenensis and Dioscorea rotundata are among the most important yam species for the humid and sub-humid tropics. We isolated nine polymorphic microsatellite markers using a microsatellite- enriched genomic library technique. The nine primer pairs were validated in 22 D. cayenensis accessions, and were tested for transferability in 26 D. rotundata accessions. The number of bands ranged from 2 to 4, with a mean of 3.11. D. cayenensis gave primer polymorphism information content values ranging from 0.37 to 0.62, while for D. rotundata the values ranged from 0.15 to 0.66. The D parameter in D. cayenensis ranged from 0.14 to 0.40, while in D. rotundata it ranged from 0.05 to 0.34. These SSR markers will be useful to characterize genetic diversity in D. cayenensis and D. rotundata accessions. Key words: Molecular markers; SSR; Transferability; Tuber crop; Yams Genetics and Molecular Research 13 (2): 2766-2771 (2014) ©FUNPEC-RP www.funpecrp.com.br New microsatellite primers for D.