An Examination of the Co-Evolutionary Relationships Among Mating System, Lifespan and Chromosome Number in the Rosaceae and Asteraceae

Total Page:16

File Type:pdf, Size:1020Kb

An Examination of the Co-Evolutionary Relationships Among Mating System, Lifespan and Chromosome Number in the Rosaceae and Asteraceae An examination of the co-evolutionary relationships among mating system, lifespan and chromosome number in the Rosaceae and Asteraceae by James Ryan Ozon Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science (Biology) Acadia University Fall Convocation 2008 © by James Ryan Ozon, 2008 I, James Ryan Ozon, grant permission to the University Librarian at Acadia University to reproduce, loan, or distrubute copies of my thesis in microform, paper or electronic formats on a non-profit basis. I, however, retain the copyright in my thesis. Signature of Author Date This thesis by James Ran Ozon was defended successfully in an oral examination on April 25, 2008. The examining committee for the thesis was: Dr. John Roscoe, Chair Dr. B. Barringer, External Reader represented by Dr. Kirk Hillier Dr. Sam Vander Kloet, Internal Reader Dr. Sara Good-Avila, Supervisor Dr. Marlene Snyder, Head This thesis is accepted in its present form by the Division of Research and Graduate Studies as satisfying the thesis requirements for the degree Master of Science (Biology). Table of Contents List of Tables v List of Figures vi Abstract vii Acknowledgements viii Materials and Methods 7 Data collection 7 Character State Definitions 8 Mating system 8 Chromosome number 9 Lifespan(Growth Habit) 9 Sequence Alignment 10 Phylogenetic reconstruction 11 BayesDiscrete & BayesMultistate Analyses 12 Chromosome number vs. Mating system 16 Lifespan vs. Mating System 17 Lifespan vs. Polyploidy 19 Discussion 20 Literature Cited 31 Appendix 61 iv List of Tables Table 1. Summary of co-evolutionary analyses performed in the Asteraceae and Rosaceae 59 Table 2. Summary of the number of individuals that exhibit each pair of traits in the Rosaceae and Asteraceae. 59 Table 3. Summary of the top evolutionary models from the Bayesian analysis of the relationship between Mating System and Polyploidy and Life History in the Asteraceae and Rosaceae 60 Table 4. Summary of In likelihoods and BIC values for analyses run in BayesMultistate 60 v List of Figures Figure 1. Phylogenetic tree of the 88 species of the Asteraceae showing Bayesian Posterior Probabilities 40 Figure 2. Phylogeny of 211 Asteraceae species showing Bayesian Posterior Probabilities 43 Figure 3. Phylogeny of 211 Asteraceae taxa used in life history analyses with character states 52 Figure 4. Phylogeny of the Rosaceae showing Bayesian Posterior Probabilities 55 Figure 5. Phylogeny of 61 Rosaceae species used in all analyses with character states 56 Figure 6. Flow diagrams representing the most likely evolutionary models based on Bayesian Discrete analysis 57 Figure 7. Flow diagrams representing the most likely evolutionary models based on Bayesian Discrete analysi 58 VI Abstract The purpose of this study was to determine whether mating system co-evolves with life span, chromosome number or both in the Rosaceae and the Asteraceae. Maximum likelihood and Bayesian methods as implemented in BayesMultistate and BayesDiscrete were used. It was hypothesized that: (I) SI will break down in the presence of polyploidy in the Rosaceae (which has a GSI system), (II) SI will not break down in the presence of polyploidy in the Asteraceae (which has an SSI system), (III) Herbs will be associated with SC in the Rosaceae and (IV) Annuals will be associated with SC in the Asteraceae. The analyses show that co-evolutionary relationships were supported in all analyses. Results show that mating system co-evolves with lifespan and chromosome number in both families. However, the strong relationship between polyploidy and chromosome number in the Rosaceae may be causing spurious conclusions. Vll Acknowledgements I would like to take this opportunity to thank the many people who helped during the course of my Masters. First Sara, thank you for all your help and the more than extra work you put in and thanks for never giving up on me. I would like to thank Sara, Acadia, NSERC, ACGCER and the AAFC for their funding. Thanks to my committee members Steve Mockford and Rodger Evans for their assistance and guidance. Elena Zamlynny, without whom I never would have accomplished any lab work, and Sergey Yegerov and Audrey for all the work they did for me. Thanks to everyone from the lab who helped, Amy, Beth, Jennie, Carrie, Miriam, Sam and German and thanks to my friends who listened, Cristina, Cody and Katie. I would like to thank Theresa Staratt for helping make sure I could actually graduate and Wayne Maddison for his correspondence and assistance. Finally I would like to thank the triangle for their support and team cut and paste for their late night assistance and sprinkler dodging adventuers. Vlll Introduction Self-incompatibility (SI) refers to the inability of a fertile hermaphroditic plant to set seed after self-fertilization. Self-incompatibility is achieved in angiosperms by the presence of genetically based self-recognition systems that allow female and male reproductive tissues to recognize each other as self versus non-self and thereby prevent inbreeding. Two main types of homomorphic SI systems are recognized in angiosperms called sporophytic SI (SSI) and gametophytic SI (GSI). They differ in the physiological and genetic basis of their SI reaction (de Nettancourt, 2001). In SSI the incompatibility reaction is determined by the genotype of the diploid pollen parent (therefore expressing two S-alleles) while in GSI the reaction is dependent on the haplotype of the male gametophyte (pollen tube) and males only express a single S-allele (de Nettancourt, 2001). Thirty nine percent of angiosperm species are estimated to harbor some form of SI (Igic et al. 2008). Since the presence of SI forces species to outcross, the gain and loss of SI would be expected to be associated with known correlates of outcrossing such as life history characteristics and polyploidy. For example, agriculturists have noted that many crop species lose SI when forced to become polyploid, especially in species with GSI (Venable and Miller, 2000; Mable 2004). Two main hypotheses have been proposed to explain the breakdown of SI after polyploidization. 1) It has been hypothesized that the reason polyploids are more likely to be self-compatible in species with either GSI or SSI is due to the advantage of reproductive assurance in recently formed polyploids (as it eliminates the problem of finding a mate of the same ploidy level) and the reduction in inbreeding depression associated with having multiple copies of the same gene (Lande and Schemske, 1985). This hypothesis has recently been given further support in a study by Barringer (2007) who collected data regarding outcrossing rates and polyploidy in 235 1 species and then used phylogenetically independent contrasts and cross-species analyses to show that polyploids have statistically higher rates of self-fertilization than diploids 2) It has also been suggested that the breakdown of GSI after polyploidization is caused by competition between S-alleles in hetero-allelic pollen (Lewis, 1947). Hetero-allelic pollen bypasses the SI response because both alleles compete for dominance and neither is fully functional as suggested by Lewis (1947) and shown experimentally by Golz, et al. (2001). Competition between 5-alleles hetero-allelic pollen is not an issue in species with SSI systems because they function with multiple alleles in diploid systems, and the additional ^-alleles in polyploids do not cause the system to breakdown. Mable (2004) found support for this in a meta-analysis study, which suggested that SI tends to break down in species with GSI but not SSI. There are also several hypotheses to explain the association between SI and both out-crossing rates and growth habit in plants. The most prevalent hypothesis is that annual plants are more likely to be self-compatible because it provides reproductive assurance, which is beneficial to species with short life spans (Stebbins, 1957). Lloyd (1992) and Morgan, et al. (1997) suggested another reason for the observation that perennials are more likely to be self-incompatible. Instead of focusing on the advantages of being a self-compatible annual they suggested that SC would be disadvantageous to perennials. Morgan, et al. (1997) developed a life history model that demonstrated that self-fertilization is disadvantageous to perennials if self- fertilization usurps energy from future (subsequent year) opportunities to produce higher fit cross-fertilized offspring, i.e. the cost of between year seed discounting. In a later paper, Morgan (2001) found that this was not always the case, because inbreeding depression can be lower in perennials than annuals given the same mating system and an absence of substantial mitotic mutation (Morgan, 2001). More recently, Scofield and 2 Schultz (2006) developed a model to include the correlation between somatic mutations and rates of self-fertilization in small (herbs) versus large (trees) statured plants and found convincing evidence that rates of somatic mutation are too high in large statured plants to allow for the high rates of self-fertilization. These theoretical predictions are borne out by several studies that have found support for the relationship between SI and outcrossing rates, growth habit (herb, shrub or tree) or lifespan (annual, biennial, perennial) in natural populations (Bena, et ah, 1998, Bullock, 1985, Hamrick, et ah, 1992 and Barrett, et ah 1996). Evolutionary biologists have long used methods in comparative biology to ask questions about why or whether groups of taxa share common patterns of evolutionary change. Although many important correlations have been detected using the comparative method (which was an essential tool for the development of Darwin's ideas in the Origin of Species), prior to the inclusion of phylogenetic information spurious conclusions were sometimes made because correlations among traits can arise in a group of taxa simply because they share a common evolutionary history (Felsensten, 1985, Harvey and Pagel, 1991). To avoid spurious conclusions, the rapidly expanding field of phylogenetic comparative methods (PCM) uses an independent estimate of the phylogenetic relationship (topology plus branch lengths) among taxa.
Recommended publications
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Ecuador & the Galapagos Islands
    Ecuador & the Galapagos Islands - including Sacha Lodge Extension Naturetrek Tour Report 29 January – 20 February 2018 Medium Ground-finch Blue-footed Booby Wire-tailed Manakin Galapagos Penguin Green Sea Turtle Report kindly compiled by Tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift Images courtesy of David Griffiths, Sue Swift, Debbie Hardie, Jenny Tynan, Rowena Tye, Nick Blake and Sally Wearing Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & the Galapagos Islands - including Sacha Lodge Extension Tour Leader in the Galapagos: Juan Tapia with 13 Naturetrek Clients This report has kindly been compiled by tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift. Day 1 Monday 29th January UK to Quito People arrived in Quito via Amsterdam with KLM or via Madrid with Iberia, while Tony came separately from the USA. Everyone was met at the airport and taken to the Hotel Vieja Cuba; those who were awake enough went out to eat before a good night’s rest. Day 2 Tuesday 30th January Quito. Weather: Hot and mostly sunny. The early risers saw the first few birds of the trip outside the hotel: Rufous- collared Sparrow, Great Thrush and Eared Doves. After breakfast, an excellent guide took us on a bus and walking tour of Quito’s old town. This started with the Basilica del Voto Nacional, where everyone marvelled at the “grotesques” of native Ecuadorian animals such as frigatebirds, iguanas and tortoises.
    [Show full text]
  • The Biology of Canadian Weeds. 146. Lapsana Communis L
    The Biology of Canadian Weeds. 146. Lapsana communis L. Ardath Francis1, Stephen J. Darbyshire1, David R. Clements2, and Antonio DiTommaso3 1Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Wm. Saunders Bldg. #49, Ottawa, Ontario, Canada KIA 0C6 (e-mail: [email protected]); 2Biology Department, Trinity Western University, 7600 Glover Road, Langley, British Columbia, Canada V2Y 1Y1; and 3Department of Crop and Soil Sciences, 903 Bradfield Hall, Cornell University, Ithaca, NY 14853 USA. Received 17 August 2010, accepted 20 December 2010. Francis, A., Darbyshire, S. J., Clements, D. R. and DiTommaso, A. 2011. The Biology of Canadian Weeds. 146. Lapsana communis L. Can. J. Plant Sci. 91: 553Á569. Nipplewort, Lapsana communis, is an annual weed of the Asteraceae native to Europe and western Asia, first detected in northeastern and Pacific northwestern regions of North America in the 19th century. It appears to have been introduced as a contaminant of imported garden material and seeds, but may also have been deliberately introduced as a medicinal herb. After a century of remaining close to its original points of introduction in gardens and ruderal habitats, it spread to neighbouring areas, and now occurs across southern Canada and in many areas of the United States. Possible reasons for this range expansion include forest clearance and changing crop management practices as was observed in Europe, where this plant has become an important weed in grain, forage and vegetable crops. In Ontario, L. communis has recently emerged as a weed in wheat (Triticum aestivum), corn (Zea mays) and soybean (Glycine max) fields.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • Compositae Giseke (1792)
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina VITTO, LUIS A. DEL; PETENATTI, E. M. ASTERÁCEAS DE IMPORTANCIA ECONÓMICA Y AMBIENTAL. PRIMERA PARTE. SINOPSIS MORFOLÓGICA Y TAXONÓMICA, IMPORTANCIA ECOLÓGICA Y PLANTAS DE INTERÉS INDUSTRIAL Multequina, núm. 18, 2009, pp. 87-115 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42812317008 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 ASTERÁCEAS DE IMPORTANCIA ECONÓMICA Y AMBIENTAL. PRIMERA PARTE. SINOPSIS MORFOLÓGICA Y TAXONÓMICA, IMPORTANCIA ECOLÓGICA Y PLANTAS DE INTERÉS INDUSTRIAL ASTERACEAE OF ECONOMIC AND ENVIRONMENTAL IMPORTANCE. FIRST PART. MORPHOLOGICAL AND TAXONOMIC SYNOPSIS, ENVIRONMENTAL IMPORTANCE AND PLANTS OF INDUSTRIAL VALUE LUIS A. DEL VITTO Y E. M. PETENATTI Herbario y Jardín Botánico UNSL, Cátedras Farmacobotánica y Famacognosia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ej. de los Andes 950, D5700HHW San Luis, Argentina. [email protected]. RESUMEN Las Asteráceas incluyen gran cantidad de especies útiles (medicinales, agrícolas, industriales, etc.). Algunas han sido domesticadas y cultivadas desde la Antigüedad y otras conforman vastas extensiones de vegetación natural, determinando la fisonomía de numerosos paisajes. Su uso etnobotánico ha ayudado a sustentar numerosos pueblos. Hoy, unos 40 géneros de Asteráceas son relevantes en alimentación humana y animal, fuentes de aceites fijos, aceites esenciales, forraje, miel y polen, edulcorantes, especias, colorantes, insecticidas, caucho, madera, leña o celulosa.
    [Show full text]
  • Field Release of the Hoverfly Cheilosia Urbana (Diptera: Syrphidae)
    USDA iiillllllllll United States Department of Field release of the hoverfly Agriculture Cheilosia urbana (Diptera: Marketing and Regulatory Syrphidae) for biological Programs control of invasive Pilosella species hawkweeds (Asteraceae) in the contiguous United States. Environmental Assessment, July 2019 Field release of the hoverfly Cheilosia urbana (Diptera: Syrphidae) for biological control of invasive Pilosella species hawkweeds (Asteraceae) in the contiguous United States. Environmental Assessment, July 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Draft Programmatic EIS for Fuels Reduction and Rangeland
    NATIONAL SYSTEM OF PUBLIC LANDS U.S. DEPARTMENT OF THE INTERIOR U.S. Department of the Interior March 2020 BUREAU OF LAND MANAGEMENT BUREAU OF LAND MANAGEMENT Draft Programmatic EIS for Fuels Reduction and Rangeland Restoration in the Great Basin Volume 3: Appendices B through N Estimated Lead Agency Total Costs Associated with Developing and Producing this EIS $2,000,000 The Bureau of Land Management’s multiple-use mission is to sustain the health and productivity of the public lands for the use and enjoyment of present and future generations. The Bureau accomplishes this by managing such activities as outdoor recreation, livestock grazing, mineral development, and energy production, and by conserving natural, historical, cultural, and other resources on public lands. Appendix B. Acronyms, Literature Cited, Glossary B.1 ACRONYMS ACRONYMS AND ABBREVIATIONS Full Phrase ACHP Advisory Council on Historic Preservation AML appropriate management level ARMPA Approved Resource Management Plan Amendment BCR bird conservation region BLM Bureau of Land Management BSU biologically significant unit CEQ Council on Environmental Quality EIS environmental impact statement EPA US Environmental Protection Agency ESA Endangered Species Act ESR emergency stabilization and rehabilitation FIAT Fire and Invasives Assessment Tool FLPMA Federal Land Policy and Management Act FY fiscal year GHMA general habitat management area HMA herd management area IBA important bird area IHMA important habitat management area MBTA Migratory Bird Treaty Act MOU memorandum of understanding MtCO2e metric tons of carbon dioxide equivalent NEPA National Environmental Policy Act NHPA National Historic Preservation Act NIFC National Interagency Fire Center NRCS National Resources Conservation Service NRHP National Register of Historic Places NWCG National Wildfire Coordination Group OHMA other habitat management area OHV off-highway vehicle Programmatic EIS for Fuels Reduction and Rangeland Restoration in the Great Basin B-1 B.
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]
  • Phylogeny of Hinterhubera, Novenia and Related
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation.
    [Show full text]
  • Yam Daisy Microseris Sp
    '^§Si^?>, Tel: (03) 9558 966*. NATURAL RECRUITMENT OF NATIVE FORBS IN THE GRASSY ECOSYSTEMS OF SOUTH-EASTERN AUSTRALIA Thesis for Master of Science By Randall William Robinson May 2003 Principal supervisor: Dr Colin Hocking Sustainability Group Faculty of Science, Engineering and Technology VICTORIA UNIVERSITY STA THESIS 582.12740994 ROB 30001007974142 Robinson, Randall William Natural recruitment of native forbs in the grassy ecosystems of south-eastern Abstract As for many lowland grassy ecosystem forbs in South-eastern Australia, the recruitment dynamics of the grassland forbs Podolepis sp. 1 sensu Jeanes 1999 (Basalt Podolepis) and Bulbine semibarbata perennial form (Leek Lily) are unknown. Podolepis sp. 1 and B. semibarbata were used as models of recruitment for a range of similar forb species. In vitro trials of P. sp. 1, 6. semibarbata and an additional 16 grassy ecosystem forb species assessed germinability, germination lag time, germination speed and duration of emergence in relation to light and dark treatments. In vivo trials assessed recruitment from seed as well as field survival of several age classes of transplants, and how there were affected by soil disturbance and invertebrate herbivory over a 50-week period. In vitro germination for most species was unspecialised with germination rates greater than 50 percent. Light was a significant or neutral factor for the majority of species but negatively affected several. Survival of juvenile and semi-mature plants of P. sp. 1 and B. semibarbata were achieved in the field, along with high levels of recruitment from seed in some instances, overcoming previous lack of success in recruitment and survival of these lowland grassy ecosystem forb species.
    [Show full text]