Polycyclic Aromatic Hydrocarbons (Pahs) in Urban Waters

Total Page:16

File Type:pdf, Size:1020Kb

Polycyclic Aromatic Hydrocarbons (Pahs) in Urban Waters Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Waters Purpose of this document Recent studies by the US Geological Survey (USGS) and several universities indicate that PAHs are an important emerging contaminant in urban waterways, including the rapidly growing metro areas of North Carolina. This document offers an overview of recent studies of potential sources for PAHs in urban waterways and provides information on management strategies for reducing the risks of PAH impacts on aquatic ecosystems. What are PAHs? weight PAHs tend to be more stable, persist in the PAHs, or Polycyclic Aromatic Hydrocarbons, environment longer, are less water soluble, and consist of hundreds of separate chemicals that are more toxic. Exposure to UV light can increase occur together as mixtures. PAHs are naturally toxicity of PAH compounds and increase toxicity occurring and are concentrated by the burn- to some aquatic species. (Garrett 2004) ing of fossil fuels and the incomplete burning Scientific studies have documented detri- of carbon-containing materials (such as wood, mental impacts from PAHs on aquatic organ- tobacco, and coal). PAHs are a wide and varied isms. Examples include: group of compounds whose sources include tire • In Austin, Texas biological studies revealed particles, leaking motor oil, vehicle exhaust, a loss of species and decreased number of crumbling asphalt, atmospheric deposition, organisms in streams with PAHs present coal gasification, and parking lot sealants, as (Van Metre 2005) well as sources inside the home (such as tobacco smoke, wood fire smoke, grilling or char- ring meat). PAHs are also commonly found in particulate matter of air pollution. PAHs tend to adhere to surfaces, attaching readily to sedi- ment particles and leading to elevated con- centrations in sediments. PAHs have complex chemical structures (see figure 1), so they do not break down easily and are persistent in the environment. Why should we be concerned about PAHs? Some PAHs are known to be toxic to aquatic Figure 1. The chemical structure of Benzo[a]- pyrene, a carcinogenic PAH. animals and humans. Generally, higher molecular Urban Waterways • In Puget Sound, Washington’s and immunity. PAHs generally have their tendency to attach to particles Ambient Monitoring Program a low degree of acute toxicity to rather than dissolve in water. USEPA (WA DFW) found PAHs were humans, meaning harmful effects has a maximum contaminant level associated with: through a single or short-term (MCL) for PAH in drinking water of – Liver lesions and tumors in fish, exposure are minimal. Mammals 0.2 ppb of drinking water. Human – Liver problems leading to repro- absorb PAHs through inhalation, health risks from consuming fish ductive impairment, contact with skin, and ingestion (EPA are thought to be low because PAHs – Malformations in fish embryos Ecological Toxicity). Recent research do not readily bioaccumulate within and embryonic cardiac by USGS raises concerns about expo- vertebrates. Bivalve mollusks read- dysfunction, sure of children through inhalation ily accumulate PAHs in their tissues, – Reduction in aquatic plants (eel- and ingestion of house dust con- however. (Garrett 2004). The U.S. grass) that provide fish habitat. taminated by PAHs that have abraded Food and Drug Administration (FDA) • Benzo(a)pyrene was lethal to newt from nearby parking lots sealed with has not established standards govern- larvae at low levels (50 parts per coal tar sealant (Mahler 2010).The ing the PAH content of foodstuffs billion) (Fernandez and Lharidon International Agency for Research on (USDHHS 2009), with the excep- 1994) Cancer (IARC) classifies two PAHs tion of issuing levels of concerns for • A 2006 study showed develop- as probable human carcinogens and PAHs in fish and shellfish following mental delays and deformities three as possible human carcinogens. the Deepwater Horizon oil spill. The in amphibians with exposure to The US EPA classifies seven PAHs as European Union has set a maximum coal tar pavement sealants (which probable human carcinogens, while allowable level of benzo(a)pyrene for contain PAHs), with larger levels the state of California classifies 25 bivalve mollusks on the market (EU of sealant causing greater devel- PAHs as carcinogenic PAHs (cPAHs). Commission 2006). opmental problems and death. The IARC and EPA both classify (Bryer 2006) benzo(a)pyrene and benz(a)anthra- How do PAHs get into streams, • Brown bullhead catfish and cene as probable human carcinogens. lakes, estuaries, and the ocean? English sole have been docu- Benzo(a)pyrene is often used as an PAHs enter water bodies through mented as among the more environmental indicator for PAHs. atmospheric deposition and direct sensitive bottom-dwelling fish to PAHs in streams and lakes are releases of substances through petro- the carcinogenic effects of PAHs thought to rarely pose a human health leum spills and use, municipal waste- (Garrett 2004). risk via drinking water because of water treatment plants, industrial • Crustaceans and fish metabolize PAH compounds more efficiently than do bivalve species such as mussels, clams, and oysters, which readily accumulate PAHs (Garrett 2004). • Interactions between aquatic organisms and PAHs in sediment are complex, depending on many factors including—but not limited to—sensitivity of species, stage of development, bioavailability of PAHs, and exposure to sunlight (Garrett 2004). The most significant effect of PAH toxicity to humans is cancer. Increased incidences of lung, skin, and bladder cancers are associated with occupational exposure to PAHs (USDHHS 2009). Other non-cancer effects are not well understood, though they may include adverse effects on reproduction, development, Figure 2. Bivalves, including oysters, readily accumulate PAHs in their tissues. 2 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Waters discharges, stormwater runoff, landfill leachate, and surface runoff. Many studies have been conducted recently regarding runoff sources of PAHs. Rainfall runs off parking lot and road surfaces, transporting PAHs that originate from tire particles, leaking motor oil, vehicle exhaust, crumbling asphalt, atmospheric deposition, coal gasification, and parking lot seal- ants. PAHs attach readily to sediment particles, leading to high concentra- tions in bottom sediments of water bodies. A literature review on tire wear particles in the environment indicates that the high aromatic (HA) oils generally used in tires contain PAHs. Zinc, PAHs, and a suite of other organic compounds (including phthalates, benzothiazole derivatives, United States Geological Survey phenolic derivatives, and fatty acids) found in tires are noted to likely cause Figure 3. Sealant is applied to a parking lot. toxicity in aquatic organisms. Because of this toxicity, the European Union Austin study, parking lots with coal curing of the test plots at UNH con- has banned sales of tires that contain tar sealcoat yielded an average PAH tributed to the high concentrations HA oils. This is estimated to reduce concentration of 3,500 mg/kg on of PAHs found in runoff (LeHuray future PAH emissions from tires by particles in runoff, 65 times more 2009). The results of analyzing sources 98 percent. (Wik & Goran 2009) It is than from unsealed lots in simulated of PAHs in sediment cores from 40 unclear whether tire manufacturers rain events. The average concentra- lakes across the U.S. has led some will continue to sell tires containing tion of PAHs in particles washed off USGS researchers to conclude that HA oils in the United States. asphalt-based sealants was 620 mg/kg, coal tar sealcoat likely is the primary about 10 times higher than the aver- cause of upward trends in PAHs in Coal tar-based sealants age concentration from the unsealed response to urban sprawl in much of Research from the USGS in the City parking lots. The other sources of the United States. (Van Metre 2010) of Austin, Texas (Van Metre et al PAHs previously mentioned, besides 2005), nine other cities (Van Metre sealants, can account for the PAH Attributing sources of PAHs et al 2009)), and from the University concentrations found washing off the to land uses of New Hampshire (Mahler et al unsealed parking lots (Van Metre Determining the sources of PAHs in 2012) indicates that coal tar-based 2005). A recent UNH study compared streams is a complex process and is sealants (also called sealcoats) on runoff from lots they sealed with both usually done by evaluating the ratios parking lots likely contribute sig- types of sealants to an unsealed lot. of individual compounds found nificant amounts of PAHs to water- They found both types of sealcoat led in stream sediment. USGS is cur- ways via stormwater runoff. These to a rapid increase in PAH concentra- rently conducting research in North sealants (CTS) are made of coal tar, tions in the initial runoff—up to 5,000 Carolina to examine PAH concentra- a product created during the cok- parts per billion (ppb), compared to tions in bridge deck runoff. Research ing of coal. This type of sealant and 10 ppb released from the unsealed on metals and PAHs in Santa Monica, another sealant made from asphalt lot. Concentrations decreased after California, found that both com- are used to prevent damage to asphalt several rainstorms. The PAH concen- mercial and industrial land uses and surfaces. Friction from automobile trations in the sediments immediately roads provided higher concentrations tires causes the sealcoat to flake off. downstream of the coal tar sealed of both metals and PAHs than single- These flakes are then scrubbed from lot increased by nearly two orders of family residential land uses (Lau & the surface during a rain event and magnitude within the first year (14). Strenstrom 2005). A study of the rela- into storm-drain networks, and then The Pavement Coating Technology tive importance of individual source flow into lakes and streams. In the Council maintains that improper areas in contributing to contaminants 3 Urban Waterways in an urban watershed in Marquette, Michigan, found parking lots to be a major contributor (~64 percent) of PAH compounds (Steuer et al 1997).
Recommended publications
  • Wastewater Technology Fact Sheet: Ammonia Stripping
    United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere.
    [Show full text]
  • Ozonedisinfection.Pdf
    ETI - Environmental Technology Initiative Project funded by the U.S. Environmental Protection Agency under Assistance Agreement No. CX824652 What is disinfection? Human exposure to wastewater discharged into the environment has increased in the last 15 to 20 years with the rise in population and the greater demand for water resources for recreation and other purposes. Disinfection of wastewater is done to prevent infectious diseases from being spread and to ensure that water is safe for human contact and the environment. There is no perfect disinfectant. However, there are certain characteristics to look for when choosing the most suitable disinfectant: • Ability to penetrate and destroy infectious agents under normal operating conditions; • Lack of characteristics that could be harmful to people and the environment; • Safe and easy handling, shipping, and storage; • Absence of toxic residuals, such as cancer-causing compounds, after disinfection; and • Affordable capital and operation and maintenance (O&M) costs. What is ozone disinfection? One common method of disinfecting wastewater is ozonation (also known as ozone disinfection). Ozone is an unstable gas that can destroy bacteria and viruses. It is formed when oxygen molecules (O2) collide with oxygen atoms to produce ozone (O3). Ozone is generated by an electrical discharge through dry air or pure oxygen and is generated onsite because it decomposes to elemental oxygen in a short amount of time. After generation, ozone is fed into a down-flow contact chamber containing the wastewater to be disinfected. From the bottom of the contact chamber, ozone is diffused into fine bubbles that mix with the downward flowing wastewater. See Figure 1 on page 2 for a schematic of the ozonation process.
    [Show full text]
  • Pine Tar & Wood Protection Asphalt & Roof Care
    PINE TAR & WOOD PROTECTION ASPHALT & ROOF CARE PINE TAR NAture’s own wood PROTECTION Pine tar has been used in Scandinavia for hundreds of years to protect and preserve wooden buildings, boats, jetties and eve- ryday items. As well as protecting wooden structures against rot, natural tar is also mildly antiseptic. This characteristic means that pine tar is used in a number of different pharma- ceutical and veterinary products for treating skin complaints. It is therefore a common ingredient in skin ointments, soap and shampoo, etc. For a long time pine tar was one of Sweden’s most important export items. A protective oil – direct from the forest Pine tar is a viscous blackish-brown liquid consisting of vola- tile terpene oils, neutral oils, resin acids and fatty acids. It’s the combination of these substances that allows mediaeval wood- en buildings that have been regularly treated with pine tar to still stand today. The proportion of these constituents varies in different tar qualities, depending on the type of wood, its age and the part of the tree used. Historically, resin-rich pine stumps have always been considered to give the best pine tar, as resin contains substances that protect the living tree from rot, insect infestation and so on. Since it has become harder to get hold of stumps, tree trunks and branches are now used to a greater extent. Aromatic and easily soluble Pine tar is transparent in thin layers and has a natural aromatic scent. It’s pretty much fully soluble in alcohol and turpentine, as well as almost completely compatible with fatty oils.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • Tobacco Labelling -.:: GEOCITIES.Ws
    Council Directive 89/622/EC concerning the labelling of tobacco products, as amended TAR AND NICOTINE CONTENTS OF THE CIGARETTES SOLD ON THE EUROPEAN MARKET AUSTRIA Brand Tar Yield Nicotine Yield Mg. Mg. List 1 A3 14.0 0.8 A3 Filter 11.0 0.6 Belvedere 11.0 0.8 Camel Filters 14.0 1.1 Camel Filters 100 13.0 1.1 Camel Lights 8.0 0.7 Casablanca 6.0 0.6 Casablanca Ultra 2.0 0.2 Corso 4.0 0.4 Da Capo 9.0 0.4 Dames 9.0 0.6 Dames Filter Box 9.0 0.6 Ernte 23 13.0 0.8 Falk 5.0 0.4 Flirt 14.0 0.9 Flirt Filter 11.0 0.6 Golden Smart 12.0 0.8 HB 13.0 0.9 HB 100 14.0 1.0 Hobby 11.0 0.8 Hobby Box 11.0 0.8 Hobby Extra 11.0 0.8 Johnny Filter 11.0 0.9 Jonny 14.0 1.0 Kent 10.0 0.8 Kim 8.0 0.6 Kim Superlights 4.0 0.4 Lord Extra 8.0 0.6 Lucky Strike 13.0 1.0 Lucky Strike Lights 9.0 0.7 Marlboro 13.0 0.9 Marlboro 100 14.0 1.0 Marlboro Lights 7.0 0.6 Malboro Medium 9.0 0.7 Maverick 11.0 0.8 Memphis Classic 11.0 0.8 Memphis Blue 12.0 0.8 Memphis International 13.0 1.0 Memphis International 100 14.0 1.0 Memphis Lights 7.0 0.6 Memphis Lights 100 9.0 0.7 Memphis Medium 9.0 0.6 Memphis Menthol 7.0 0.5 Men 11.0 0.9 Men Light 5.0 0.5 Milde Sorte 8.0 0.5 Milde Sorte 1 1.0 0.1 Milde Sorte 100 9.0 0.5 Milde Sorte Super 6.0 0.3 Milde Sorte Ultra 4.0 0.4 Parisienne Mild 8.0 0.7 Parisienne Super 11.0 0.9 Peter Stuyvesant 12.0 0.8 Philip Morris Super Lights 4.0 0.4 Ronson 13.0 1.1 Smart Export 10.0 0.8 Treff 14.0 0.9 Trend 5.0 0.2 Trussardi Light 100 6.0 0.5 United E 12.0 0.9 Winston 13.0 0.9 York 9.0 0.7 List 2 Auslese de luxe 1.0 0.1 Benson & Hedges 12.0 1.0 Camel 15.0 1.0
    [Show full text]
  • Youth Bidi, Kretek, Or Pipe Tobacco Use
    2013 Florida Youth Tobacco Survey: Fact Sheet 10 Youth Bidi, Kretek, or Pipe Tobacco Use Introduction The Florida Youth Tobacco Survey (FYTS) was administered in the spring of 2013 to 6,440 middle school students and 6,175 high school students in 172 public schools throughout the state. The overall survey response rate for middle schools was 83%, and the overall survey response rate for high schools was 75%. The FYTS has been conduct- ed annually since 1998. The data presented in this fact sheet are weighted to represent the entire population of public middle and high school students in Florida. About Bidis, Kreteks, and Pipe Tobacco Bidis are small brown cigarettes from India consisting of tobacco wrapped in a leaf tied together with a thread. Bidis have higher levels of nicotine, carbon monoxide, and tar than traditional cigarettes. Kreteks are cigarettes containing tobacco and clove extract. In 2009, the Food and Drug Administration banned kreteks, along with flavored cigarettes, from being sold in the United States. Pipe tobacco comes either plain or flavored and is smoked through a pipe. On previous FYTS fact sheets, bidis, kreteks, and pipe tobacco have been Figure 1. Ever Tried Bidis, Kreteks, or Pipe Tobacco 8.4 8.5 reported as “specialty tobacco” products. 9 8.0 8 7.2 7.1 Ever Tried Bidis, Kreteks, or Pipe Tobacco 7 5.9 6 In 2013, 2.5% of middle school and 5.9% of high 5 4 3.2 school students had tried smoking a bidi, kretek, or Percent 2.9 3.0 3.0 2.5 2.5 pipe tobacco at least once (Figure 1).
    [Show full text]
  • The Destructive Distillation of Pine Sawdust
    Scholars' Mine Bachelors Theses Student Theses and Dissertations 1903 The destructive distillation of pine sawdust Frederick Hauenstein Herbert Arno Roesler Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Hauenstein, Frederick and Roesler, Herbert Arno, "The destructive distillation of pine sawdust" (1903). Bachelors Theses. 238. https://scholarsmine.mst.edu/bachelors_theses/238 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. FOR THE - ttl ~d IN SUBJECT, ••The Destructive Distillation of P ine Sawdust:• F . HAUENSTEIN AND H . A. ROESLER. CLASS OF 1903. DISTILLATION In pine of the South, the operation of m.ills to immense quanti waste , such and sawdust.. The sawdust especially, is no practical in vast am,ounte; very difficult to the camp .. s :ls to util the be of commercial .. folloWing extraction turpentine .. of the acid th soda and treat- products .. t .. the t.he turpentine to in cells between , or by tissues to alcohol, a soap which a commercial t this would us too the rd:- hydrochloric was through supposition being that it d form & pinene hydro- which produced~ But instead the hydrochl , a dark unl<:nown compound was The fourth experiment, however, brought out a number of possibilities, a few of Which have been worked up.
    [Show full text]
  • An Empirical Study on Laboratory Coke Oven-Based Coal Blending for Coking with Tar Residue, Chemical Engineering Transactions, 71, 385-390 DOI:10.3303/CET1871065 386
    385 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 71, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Xiantang Zhang, Songrong Qian, Jianmin Xu Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-68-6; ISSN 2283-9216 DOI: 10.3303/CET1871065 An Empirical Study on Laboratory Coke Oven-based Coal Blending for Coking with Tar Residue Wenqiu Liu Hebei Energy College of Vocation and Technology, Tangshan 063004, China [email protected] Tar residue is the solid waste produced in coking plants or gas generators. Utilizing tar residue as additive in coal blending for coking is an effective approach for coal coking in our country, not only improving the yield and nature of coking products, but also realizing the recycling of tar residue. In this paper, tar residue is used as additive in coal blending for coking experiments, and combined with experiments on the crucible coke, small coke oven and industrial coke oven, the influences of the addition amount of tar residue on coke yield, coke reactivity and coke strength after reaction are further analyzed. As the experiment results reveal, compared to the experiment results of crucible coke and small coke ovens, the coke yield, coke reactivity and coke strength after reaction of industrial coke ovens are all bigger, leading to potential industrialization of coal blending for coking. Moreover, the influence of the amount of tar residue on the coal tar yield rate and gas yield is the same as that of coke reactivity and coke strength after reaction. 1. Introduction With the rapid development of economy, the fast growth of iron and steel industry has led China's coke industry to accomplish extraordinary achievements (Si et al., 2017).
    [Show full text]
  • Tar and Turpentine
    ECONOMICHISTORY Tar and Turpentine BY BETTY JOYCE NASH Tarheels extract the South’s first industry turdy, towering, and fire-resistant longleaf pine trees covered 90 million coastal acres in colonial times, Sstretching some 150,000 square miles from Norfolk, Va., to Florida, and west along the Gulf Coast to Texas. Four hundred years later, a scant 3 percent of what was known as “the great piney woods” remains. The trees’ abundance grew the Southeast’s first major industry, one that served the world’s biggest fleet, the British Navy, with the naval stores essential to shipbuilding and maintenance. The pines yielded gum resin, rosin, pitch, tar, and turpentine. On oceangoing ships, pitch and tar Wilmington, N.C., was a hub for the naval stores industry. caulked seams, plugged leaks, and preserved ropes and This photograph depicts barrels at the Worth and Worth rosin yard and landing in 1873. rigging so they wouldn’t rot in the salty air. Nations depended on these goods. “Without them, and barrels in 1698. To stimulate naval stores production, in 1704 without access to the forests from which they came, a Britain offered the colonies an incentive, known as a bounty. nation’s military and commercial fleets were useless and its Parliament’s “Act for Encouraging the Importation of Naval ambitions fruitless,” author Lawrence Earley notes in his Stores from America” helped defray the eight-pounds- book Looking for Longleaf: The Rise and Fall of an American per-ton shipping cost at a rate of four pounds a ton on tar Forest. and pitch and three pounds on rosin and turpentine.
    [Show full text]
  • Coal Characteristics
    CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal
    [Show full text]
  • Coal Tar Pitch – Its Past, Present and Future in Commercial Roofing by Joe Mellott
    - 1 - Coal Tar Pitch – Its Past, Present and Future in Commercial Roofing By Joe Mellott Coal tar remains a desired and strong source of technology within the roofing industry, as innovative coal tar products significantly reduce associated health hazards and environmental impact. To help you better understand the role that coal tar continues to play in the commercial roofing market, this article will explore: • The history of coal tar • Its associated hazards • Hot and cold coal tar adhesive technologies • Modified coal tar pitch membrane technologies • Coal tar’s sustainability attributes A Brief History of Coal Tar In order to understand what coal tar pitch is, it’s important to understand its origins and refinement methods. Coal tar can be refined from a number of sources including coal, wood, peat, petroleum, and other organic materials. The tar is removed by burning or heating the base substance and selectively distilling fractions of the burned chemical. Distillation involves heating the substance to a point where different fractions of the substance become volatile. The fractions are then collected by condensing the fraction at a specific temperature. A base substance can be split into any number of fractions through distillation. A good example of industrial distillation is the oil refining process. Through distillation, crude oil can be separated into fractions that include gasoline, jet fuel, motor oil bases, and other specialty chemicals. Fractionation or distillation is a tried-and-true method for breaking a substance into different parts of its composition. One of the first uses of coal tar was in the maritime industry. Trees stumps were burned and the tar fractions were collected through distillation of the tar.
    [Show full text]
  • Spherical Graphite Produced by Waste Semi-Coke with Enhanced Properties As
    Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019 Spherical graphite produced by waste semi-coke with enhanced properties as anode material for Li-ion batteries Ming Shi, Zige Tai, Na Li, Kunyang Zou, Yuanzhen Chen, Junjie Sun, Yongning Liu* State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China *Corresponding author E-mail address: [email protected] Fax: +86 29 8266 3453; Tel: +86 29 8266 4602 Fig. 1 N2 absorption/desorption profiles of (a) pristine semi-coke (SC); (b) synthetic graphite without Si (PG); and (c) synthetic graphite with 10% Si at 2300 °C (SG). Table 1 The percentage of impurity of pristine SC and SG (10% Si at 2300 °C). Content percentage / wt % samples B Si Al Ca Fe K Na Mg SC <0.1 4.25 5.5 3.3 0.8 0.3 0.09 <0.1 SG <0.1 1.01 1.9 0.1 <0.1 0.02 0.03 <0.1 Table 2 The SG capacity values with that of similar materials published in the literature. Materials Specific Capacity Rate capability Cyclic retention Ref. [mA h g-1] [mA h g-1] Spherical graphite produced 347.06 at 0.05C 329.8 at 0.1C; 317.4 at 97.7% at 0.5C after This by waste semi-coke 0.5 C and 262.3 at 1C 700 cycles work Iron‐catalyzed graphitic 306 at 0.1C 150 at rate of 2C Over 90 % after 200 1 materials from biomass cycles Carbonaceous composites 312 at 0.2C 149 at 1 C; 78 at 5C - 2 prepared by the mixture of graphite, cokes, and petroleum pitch.
    [Show full text]