The Influence of the Capture Effect on the Collision Probability in Wireless Home Networks
Total Page:16
File Type:pdf, Size:1020Kb
The influence of the Capture Effect on the collision probability in wireless home networks Master Thesis in Computer and Communication Technology Minghao Li Submitted on 2010-2-12 Supervisor: Prof. Dr. –Ing. Thorsten Herfet Prof. Dr. Romanus Dyczij-Edlinger Advisor: Dipl.-Ing. Jochen Miroll Faculty of Natural Sciences and Technology I Department of Computer Science Telecommunication Lab Prof. Dr.-Ing. Thorsten Herfet 1 2 Masterarbeit lehrstuhl Master Thesis for für Mr. Li, Minghao Nachrichtentechnik FR fnformatik Tille: Prof. Dr. Th. Herfet The influence o( the capture effect on the collision probability in wireless home networks Universität des Saarlandes Campus Saarbrücken C63, 10. OG 66123 Saarbrücken In wireless networks according to the IEEE 802.11 standard, medium access is decentrally coordinated via a carrier-sense multiple access scheme with collision Telefon (0681) 302·6541 avoidance (CSMNCA). The term "collision" describes the occupation of the channel Telefax (0681) 302·6542 by at least two wireless stations at the same time. Early research on the throughput of wireless networks assumed that a collision will results in loss of information with a www.nt.uni-saarland.de 100% probability. Vet more recent research shows thaI a "capture effeer exists, denoting the effeet that information may not be lost although a collision has occurred. This effeel is thus considered beneficial, and previous analysis has been shown 10 under-estimate the performance. In contrast to the effeet being beneficial, the effeet is considered harmlul for the efficiency 01 MAC layer Multicast errer correction schemes based on the NACK jamming principle. The latter aims at enforcing a collision on the channel for an acknowledgement (ACK) with a jamming signal (NACK), therewith suppressing the ACK and triggering aretransmission. This master thesis shall summarize the said meehanisms and effeets and provide results on the capture probability in 802.11 wireless networks, espeeially with regard to the NACK-jamming principle. The description of the various logical and physical layer aspects of 802.11 will be based on previous work and/or the literature. Simulation of the capture effeet will be based on previous work in MATLAB and the open source netwOrk simulator NS2. In this thesis the following tasks are 10 be solved: • Description of the capture-effect in wireless networks, both for non-fading and slow-fading channels including shadowing. • Description of the 802.11 a and 11 n standards with respect to the aspects relevant for the capturing (OFDM, timing accuracy and forward error correetion). • Description 01 the NACK-jamming used in leader-based MAC-Iayer error corfeetion schemes as proposed by the Telecommunications Lab. • Simulation of the capture effeet in MA TlAB and derivation of requirements lor the leader seleetion in an above said scheme. Comparison of the simulation results with results obtained from NS2. Betreuer: /} ."/' . · ___.J~tW / DipJ. -fngyJochen Mirofl Eidesstattliche Erklärung Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Statement in Lieu of an Oath I hereby confirm that I have written this thesis on my own and that I have not used any other media or materials than the ones referred to in this thesis. Saarbrücken,…………………………….. ………………………………………. (Datum / Date) (Unterschrift / Signature) 3 4 CONTENTS ABSTRACT ..........................................................................................I 1. INTRODUCTION ......................................................................... 1 2. MAC LAYER ................................................................................. 3 2.1 CSMA/CA .................................................................................. 3 2.2 RTS/CTS .................................................................................... 5 3. LEADER BASED PROTOCOL .................................................. 7 4. CAPTURE EFFECT ..................................................................... 9 4.1 Delay Capture ......................................................................... 10 4.2 Power Capture ........................................................................ 11 4.3 Hybrid Capture ....................................................................... 11 4.4 MR Capture ............................................................................. 12 4.5 PLCP Preamble Capture & Body Capture ............................. 12 5. PHYSICAL LAYER .................................................................... 15 6. SIMPLE CAPTURE EFFECT EXPERIENCE ....................... 21 6.1 IEEE 802.11 System Overview ................................................ 21 6.2 Simple Capture Effect Simulation ........................................... 27 7. ACK/NACK JAMMING SETTING ......................................... 33 5 7.1 Simulation Environment Settings ............................................ 33 7.2 Acknowledgement Packets Construction ................................ 34 7.3 PHY Layer Modules ................................................................ 36 8. SYNCHRONIZATION MODEL .............................................. 47 9. CAPTURE EFFECT SIMULATION ....................................... 51 9.1 AWGN Channel ....................................................................... 51 9.2 Rician Channel ....................................................................... 54 9.3 The Guarantee of Successful Capture Effect .......................... 56 10. NS-2 SIMULATION ................................................................... 65 10.1 NS-2 Simulation Environment .............................................. 65 10.2 NS-2 Simulation Results ....................................................... 68 10.3 Comparison with MATLAB ................................................... 71 11. CONCLUSION ............................................................................ 73 REFERENCE .................................................................................... 77 APPENDIX ........................................................................................ 81 6 List of Figures Figure 1: CSMA/CA ......................................................................................................... 4 Figure 2: RTS/CTS ........................................................................................................... 5 Figure 3: Leader Based Protocol ...................................................................................... 7 Figure 4: Successful Time Capture ................................................................................. 11 Figure 5: PLCP preamble Capture .................................................................................. 13 Figure 6: Physical Layer ................................................................................................. 16 Figure 7: OFDM modulation example ............................................................................ 18 Figure 8: IEEE 802.11a structure overview .................................................................... 21 Figure 9: Gray mapping of QPSK .................................................................................. 22 Figure 10: OFDM symbols multiple with time window [1] ........................................... 23 Figure 11: PSD comparison: with and without window function ................................... 24 Figure 12: OFDM PSD and orthogonal subcarriers ....................................................... 24 Figure 13: OFDM PSD after pulse shaping filter ........................................................... 25 Figure 14: Performance of QPSK and Convolutional code ............................................ 26 Figure 15: Performance of OFDM, QPSK and Convolutional code .............................. 26 Figure 16: BER of OFDM transmitted data (with the increase of interferer’s power) ... 27 Figure 17: BER of the interferer’s signal (with the increase of interferer’s power) ....... 28 Figure 18: BER of signal from OFDM transmitter without match filtering ................... 28 Figure 19: BER of the system with only AWGN and no interferers ............................... 29 Figure 20: BER of the system with no AWGN and one interferer .................................. 29 Figure 21: Performance of packet collision with different packet content coherences ... 30 Figure 22: PLCP protocol data unit frame format [1] ..................................................... 34 Figure 23: OFDM training structure [1] ......................................................................... 36 Figure 24: BPSK constellation before channel .......... ………………………………….36 Figure 25: BPSK constellation after channel .................................................................. 36 Figure 26: 10 peaks in synchronization model ............................................................... 39 Figure 27: Peaks in synchronization model under multipath .......................................... 39 Figure 28: Peaks in synchronization model in situation number 1 ................................. 40 Figure 29: Peaks in synchronization model in situation number 2 ................................. 40 Figure 30: Peaks in synchronization model in situation number 3 ................................. 40 Figure 31: Threshold selection example A ....................................................................