Sources and Illumination

Properties of light sources  Power Spectrum  Radiant and  Directional distribution – goniometric diagram  Shape Illumination  Irradiance and  Area light sources

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Blackbody

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 1 Tungsten

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Flourescent

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 2 Sunlight

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Radiant and Luminous Intensity

Definition: The radiant (luminous) intensity is the power per unit from a point. dΦ I()ω ≡ dω Φ=∫ Id()ωω S 2

Wlm  ==cd  sr sr 

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 3 The Invention of

Bouguer’s classic experiment  Compare a light source and a candle  Intensity is proportional to ratio of distances squared

Definition of a standard candle  Originally “standard” candle  Currently 550 nm laser w/ 1/683 W/sr  1 of 6 fundamental SI units

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Goniometric Diagrams

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 4 Warn’s Spotlight

Sˆ θ Aˆ I ()ωθ==• coss (Sˆˆ A )s

2π 1 1 2π Φ = I(ω) d cosθ dϕ = 2π coss θ d cosθ = ∫∫ ∫ + 0 0 0 s 1 s +1 I(ω) = Φ coss θ 2π

CS348B Lecture 5 Pat Hanrahan, Spring 2001

PIXAR Standard Light Source

Ronen Barzel UberLight( ) { Clip to near/far planes Clip to shape boundary foreach superelliptical blocker Inconsistent Shadows atten *= … foreach cookie texture atten *= … foreach slide texture color *= … foreach noise texture Projected Shadow Matte atten, color *= … foreach shadow map atten, color *= … Calculate intensity fall-off Calculate beam distribution } Projected Texture CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 5 Irradiance and Illuminance

Definition: The irradiance (illuminance) is the power per unit area incident on a surface. 2Φ ≡=d ωθω dE( x ) L ( x ,iii )cos d L(ω ) dA i = ωθω E()xLxd∫ (,iii )cos θ i H 2

Wlm  =  mm22 

This is sometimes referred to as the radiant and luminous incidence.

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Isotropic Point Sources

Φ I (ω) = π θ r h 4

Φ cosθ Φ cos3 θ dΦ = E dA = I dω = dA = dA 4π r 2 4π h2  Note inverse square law fall off.  Note cosine dependency

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 6 Distant or Directional Source

Es θ s E = ∫ Ldd(ωθ )cos cos θϕ H 2 θ ϕ = δ θ − θ δ ϕ −ϕ L( , ) Es (cos cos s ) ( s )

∫ Ldd(,θϕ )cos θ cos θ ϕ H 2 =−−δθ θδϕϕ θθϕ ∫ Esss(cos cos ) ( )cosdd cos H 2 = θ Esscos

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Irradiance Distribution

Isolux contours CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 7 Irradiance from Area Sources

==ωθω θω Ex()∫∫ Lx (,iii )cos d L cos ii d HH22 θ ∫ cosθωd = π i Η 2

Projected Solid Angle

Radiosity formulation = Differential Form Factor

Note: Things are considerably complicated by shadows

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Luminance of Common Light Sources

Surface of the sun 2,000,000,000. cd/m2 Sunlight clouds 30,000. Clear day 3,000. Overcast day 300. Moonlight 0.03 Moonless 0.00003

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 8 The Sky

From Greenler, Rainbows, halos and glories CS348B Lecture 5 Pat Hanrahan, Spring 2001

Disk Source

Geometric Derivation Algebraic Derivation θ cos d 2π r ELdd= ∫∫ cosθ φ cosθ 10 cosθ cos2 θ d = 2π L θ R 2 1 = πθ2 L sin d r 2 = Lπ rR22+

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 9 Spherical Source

Geometric Derivation Algebraic Derivation

= θ ω r E ∫ Lcos d R = Lπ sin 2 θ θ r 2 = Lπ R2

CS348B Lecture 5 Pat Hanrahan, Spring 2001

The Sun

Solar constant (normal incidence at zenith) Irradiance 1353 W/m2 Illuminance 127,500 /m2 = 127.5 Kilo-Lux Solar angle α = .25 degrees = .004 radians (half angle) ω = π sin2 α = 6 x 10-5 Radiance E 1.353×103W / m2 W L = = = 2.25×107 ω 6×10−5sr m2 ⋅ sr

Pluto (6 tera-meters) 50 Lux - read a newspaper Deep space -> 20 micro-lux (see, but not read!)

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 10 Polygonal Source

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Lambert’s Formula



Ni γ i 3 ∑ A i A i=1 1 − A2 − A3   nn = γ • =•γ Ai i N Ni ∑∑AiiiNN ii==11

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 11 Radiosity and Luminosity

Definition: The radiosity (luminosity) is the per unit area leaving a surface. ω L( o )

θ = ω θ ω o B(x) ∫ L( o )cos o d o H 2

This is officially referred to as the radiant and luminous exitance.

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Uniform Diffuse Source

BL= ∫ cosθω d B L = = L∫ cosθωd π = π L

11 23− blondel=== apostilbππ nit cd/(10) m =

1 2 lamberts= π cd/ cm

1 23− foot−= lambertsπ cd/(10) ft glim =− foot

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 12 Radiometric and Photometric Terms

Physics Photometry

Energy

Flux (Power) Radiant Power Luminous Power

Flux Density Irradiance Illuminance

Radiosity Luminosity

Angular Flux Density Radiance

Intensity Radiant Intensity Luminous Intensity

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Photometric Units

Photometry Units

MKS CGS British Luminous Energy Talbot

Luminous Power Lumen

Illuminance Lux Footcandle Luminosity

Luminance Nit Apostilb, Blondel Lambert Footlambert

Luminous Intensity Candela (Candle, Candlepower, Carcel, Hefner)

“Thus one nit is one lux per is one candela per square meter is one lumen per square meter per steradian. Got it?” Kajiya

CS348B Lecture 5 Pat Hanrahan, Spring 2001

Page 13