Digital Array Radar for Ballistic Missile Defense and Counter-Stealth Systems Analysis and Parameter Tradeoff Study

Total Page:16

File Type:pdf, Size:1020Kb

Digital Array Radar for Ballistic Missile Defense and Counter-Stealth Systems Analysis and Parameter Tradeoff Study Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2006-09 Digital array radar for Ballistic Missile Defense and Counter-stealth systems analysis and parameter tradeoff study Bacchus, Carla Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/6924 NPS-SE-06-001 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA Digital Array Radar for Ballistic Missile Defense and Counter-Stealth Systems Analysis and Parameter Tradeoff Study by Carla Bacchus Ian Barford David Bedford Jack Chung Paul Dailey Robert Hazle Stanley Hill Mark Mihocka 14 September 2006 Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943-5001 COL. David A. Smarsh, USAF Leonard A Ferrari Acting President Associate Provost This report was prepared for the Chairman of the Systems Engineering Department in partial fulfillment of the requirements for the degree of Master of Science in Systems Engineering. Reproduction of all or part of this report is authorized. This report was prepared by the Masters of Science in Systems Engineering (MSSE) Cohort Four from the Space and Naval Warfare Systems Center, San Diego: Authors _______________________ Carla Bacchus Ian Barford David Bedford Jack Chung Paul Dailey Robert Hazle Stanley Hill Mark Mihocka Reviewed by: Released by: ________________________ ______________________________ David H. Olwell, Ph. D. Dan C. Boger, Ph. D. Chairman, Department of Systems Engineering Interim Associate Provost and Dean of Research THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2006 Technical Report 4. TITLE AND SUBTITLE: Digital Array Radar for Ballistic Missile Defense 5. FUNDING NUMBERS and Counter-Stealth Systems Analysis and Parameter Tradeoff Study 6. AUTHOR(S) Carla Bacchus, Ian Barford, David Bedford, Jack Chung Paul Dailey, Robert Hazle, Stanley Hill, Mark Mihocka 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author(s) and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited A 13. ABSTRACT United States Navy (USN) sources indicate a need for long-range shipboard radar for the Ballistic Missile Defense (BMD) program to augment and expand the USN’s current capabilities. The Naval Postgraduate School (NPS) conducted a study on radar architecture research based on a digital Opportunistic Array (OA) integrated into a ship’s hull. Our completed research defined the operational and technical requirements for the system, called the Digital Array Radar for BMD and Counter-stealth (DARBC). Initial analysis included characterization of the threat and definition of the Concept of Operations (CONOPS). Basic operational Key Performance Parameters (KPPs) were defined. Based on a notional ballistic missile Radar Cross Section (RCS), a radar technical parameters study derived the technical requirements for the radar necessary to meet the KPPs. Related research topics included radar parameter sensitivity, cooling, search pattern options, Electronic Attack (EA), ship flexure, topside array layout, supportability, and cost. Finally, reaction time modeling was conducted to quantify the increase in search volume and decision making time using the DARBC. 14. SUBJECT TERMS 15. NUMBER OF Aperstructure, Opportunistic Array, Ballistic Missile Defense (BMD), Concept of Operations PAGES (CONOPS), Radar Cross Section (RCS), Reaction Time, Electronic Attack, Ship Flexure, Radar 304 Search Pattern 16. PRICE CODE 17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT REPORT PAGE ABSTRACT Unclassified Unclassified Unclassified UL i THIS PAGE INTENTIONALLY LEFT BLANK ii ABSTRACT United States Navy (USN) sources indicate a need for long-range shipboard radar for the Ballistic Missile Defense (BMD) program to augment and expand the USN’s current capabilities. The Naval Postgraduate School (NPS) conducted a study on radar architecture research based on a digital Opportunistic Array (OA) integrated into a ship’s hull. Our research defined the operational and technical requirements for the system, called the Digital Array Radar for BMD and Counter-stealth (DARBC). Initial analysis included characterization of the threat and definition of the Concept of Operations (CONOPS). Basic operational Key Performance Parameters (KPPs) were defined. Based on a notional ballistic missile Radar Cross Section (RCS), a radar technical parameters study derived the technical requirements for the radar necessary to meet the KPPs. Related research topics included radar parameter sensitivity, cooling, search pattern options, Electronic Attack (EA), ship flexure, topside array layout, supportability, and cost. Finally, reaction time modeling was conducted to quantify the increase in search volume and decision making time using the DARBC. iii THIS PAGE INTENTIONALLY LEFT BLANK iv TABLE OF CONTENTS EXECUTIVE SUMMARY .....................................................................................................1 I. INTRODUCTION........................................................................................................5 A. MOTIVATION ................................................................................................5 B. PREVIOUS WORK.........................................................................................6 C. SCOPE OF PROJECT AND PAPER ORGANIZATION...........................6 1. Scope and Tasking from NPS .............................................................6 2. Organization.........................................................................................7 II. CONCEPT OF OPERATIONS AND THREAT DESCRIPTION..........................9 A. CONCEPT OF OPERATIONS......................................................................9 1. BMD Mission........................................................................................9 2. Threat Summary................................................................................10 3. Operational View and Scenarios ......................................................12 III. SYSTEMS ENGINEERING ANALYSIS OF REQUIREMENTS DEVELOPMENT FOR OPPORTUNISTIC ARRAY RADAR ...........................15 A. DARBC PERFORMANCE PARAMETERS..............................................15 1. Operational Parameters ....................................................................16 2. Technical Parameters ........................................................................17 3. Array Element Density and Integration ..........................................29 4. Electronic Warfare ............................................................................32 5. Element Wireless Communications..................................................34 6. Cooling Requirements .......................................................................34 7. Search Pattern Recommendations ...................................................40 8. Logistics Considerations....................................................................44 9. Ship Flexure Impacts.........................................................................45 B. PROGRAM CONSIDERATIONS...............................................................54 1. Cost......................................................................................................54 2. Strategies for Future Development and Evaluation (SEP) ............58 3. DOTLMPF..........................................................................................60 IV. MODELING EFFORTS ...........................................................................................63 A. RADAR CROSS SECTION (RCS) MODELING ......................................63 B. RADAR PERFORMANCE MODEL ..........................................................66 C. REACTION TIME ANALYSIS ONE SHIP TWO SENSOR SCENARIO ....................................................................................................67 D. REACTION TIME ANALYSIS TWO SHIP TWO SENSOR SCENARIO ....................................................................................................74 V. CONCLUSIONS AND RECOMMENDATIONS...................................................79 A. CONCLUSIONS ............................................................................................79
Recommended publications
  • Analysis of Radar Cross Section Assessment Methods And
    Analysis of radar cross section assessment methods and parameters affecting it for surface ships Análisis de Métodos de Evaluación de la Sección Transversal de Radar y de los Parámetros que Inciden en Ella para Buques de Superficie Vladimir Díaz Charris 1 José Manuel Gómez Torres 2 Abstract This article presents an analysis of the different modeling methods for predicting the radar cross section of surface ships. In the analysis, we studied the effect of different factors in vessel construction regarding the amount of electromagnetic energy returning to a radar source, such as the handling of shapes, use of different materials, and vessel size. We can see the different evaluation methods of the radar cross section and the software tools available to determine an appropriate methodology for adoption by the Colombian Navy and their subsequent integration with the design process and optimization of warships. Key words: Radar Cross Section, RCS, vessels, RAM, absorbent, prediction, Navy. Resumen En este artículo se presenta un análisis de los diferentes métodos de modelado para la predicción de la sección transversal de radar (RCS) de buques de superficie. Dentro del análisis, se estudia el efecto de los diferentes factores constructivos del buque sobre la cantidad de energía electromagnética que regresa a una fuente de radar, como son el manejo de formas, el uso de diferentes materiales y el tamaño del buque. Se aprecian los diferentes métodos de evaluación de la sección transversal de radar y las herramientas de software disponibles con el fin de determinar una metodología adecuada para su adopción por parte de la Armada de Colombia, y su posterior integración con el proceso de diseño y optimización de buques de guerra.
    [Show full text]
  • Archived Content Information Archivée Dans Le
    Archived Content Information identified as archived on the Web is for reference, research or record-keeping purposes. It has not been altered or updated after the date of archiving. Web pages that are archived on the Web are not subject to the Government of Canada Web Standards. As per the Communications Policy of the Government of Canada, you can request alternate formats on the "Contact Us" page. Information archivée dans le Web Information archivée dans le Web à des fins de consultation, de recherche ou de tenue de documents. Cette dernière n’a aucunement été modifiée ni mise à jour depuis sa date de mise en archive. Les pages archivées dans le Web ne sont pas assujetties aux normes qui s’appliquent aux sites Web du gouvernement du Canada. Conformément à la Politique de communication du gouvernement du Canada, vous pouvez demander de recevoir cette information dans tout autre format de rechange à la page « Contactez-nous ». CANADIAN FORCES COLLEGE / COLLÈGE DES FORCES CANADIENNES CSC 28 / CCEM 28 MASTER OF DEFENCE STUDIES (MDS) THESIS THE CORVETTE - A SHIP FOR THE 21ST CENTURY CANADIAN NAVY LA CORVETTE - UN NAVIRE POUR LA MARINE CANADIENNE DU 21E SIÈCLE By/par LCdr/capc Pierre Bédard This paper was written by a student attending La présente étude a été rédigée par un stagiaire the Canadian Forces College in fulfilment of one du Collège des Forces canadiennes pour of the requirements of the Course of Studies. satisfaire à l'une des exigences du cours. The paper is a scholastic document, and thus L'étude est un document qui se rapporte au contains facts and opinions, which the author cours et contient donc des faits et des opinions alone considered appropriate and correct for que seul l'auteur considère appropriés et the subject.
    [Show full text]
  • SP's Naval Force June-July 2010
    June-July l 2010 Volume 5 No 3 rs 100.00 (india-based buyer only) SP’s AN SP GUIDE PUBLICATION www.spsnavalforces.net ROUNDUP 3 PAGe STOP PRESS A Global Concern NAvAL vARIANT OF LCA ROLLS OUT India, in cooperation with its allies and friends The country’s first naval variant of Light Combat Aircraft, the LCA (Navy) Trainer around the world, will have to work to ensure Naval Project (NP)–1 was rolled out by the Defence Minister A.K. Antony from HAL that lawful private and public activities in the Aircraft Research and Design Centre at a glittering function in Bengaluru on July 6, maritime domain are protected against attack 2010. The Chief of Naval Staff Admiral Nirmal Verma, Secretary Defence Production by hostile exploitations R.K. Singh, Scientific Adviser to the Defence Minister, Dr. V.K. Saraswat, HAL Chair - man Ashok Nayak, Director Aeronautical Development Agency P.S. Subramanyam Cdr Sandeep Dewan were present on the occasion. The Defence Minister described the development as a ‘defining and memorable event’ for the nation. PAGe 4 Around the Sea A report on Commander Dilip Donde’s TeTe-e-TeTe successful completion of the first solo circumnavigation by an Indian Rear Admiral (Retd) Sushil Ramsay ‘Cooperation and interaction in the PAGe 6 Stealthy Ships maritime domain will continue to be an important aspect of IN’s vision’ PhotograPh: abhishek / sP guide Pubns Chief of Naval Staff Admi - ral Nirmal Verma , in an interaction with SP’s Naval The scope of accessing technologies from Forces , throws light on the the western world, so far denied to India, is security measures to deal witnessing an upward swing with the growing incidents Rear Admiral (Retd) Sushil Ramsay of piracy.
    [Show full text]
  • Threading the Needle Proposals for U.S
    “Few actions could have a more important impact on U.S.-China relations than returning to the spirit of the U.S.-China Joint Communique of August 17, 1982, signed by our countries’ leaders. This EastWest Institute policy study is a bold and pathbreaking effort to demystify the issue of arms sales to Taiwan, including the important conclusion that neither nation is adhering to its commitment, though both can offer reasons for their actions and views. That is the first step that should lead to honest dialogue and practical steps the United States and China could take to improve this essential relationship.” – George Shultz, former U.S. Secretary of State “This EastWest Institute report represents a significant and bold reframing of an important and long- standing issue. The authors advance the unconventional idea that it is possible to adhere to existing U.S. law and policy, respect China’s legitimate concerns, and stand up appropriately for Taiwan—all at the same time. I believe EWI has, in fact, ‘threaded the needle’ on an exceedingly challenging policy problem and identified a highly promising solution-set in the sensible center: a modest voluntary capping of annual U.S. arms deliveries to Taiwan relative to historical levels concurrent to a modest, but not inconsequential Chinese reduction of its force posture vis-à-vis Taiwan. This study merits serious high-level attention.” – General (ret.) James L. Jones, former U.S. National Security Advisor “I commend co-authors Piin-Fen Kok and David Firestein for taking on, with such skill and methodological rigor, a difficult issue at the core of U.S-China relations: U.S.
    [Show full text]
  • Able Archers: Taiwan Defense Strategy in an Age of Precision Strike
    (Image Source: Wired.co.uk) Able Archers Taiwan Defense Strategy in an Age of Precision Strike IAN EASTON September 2014 |Able Archers: Taiwan Defense Strategy and Precision Strike | Draft for Comment Able Archers: Taiwan Defense Strategy in an Age of Precision Strike September 2014 About the Project 2049 Institute The Project 2049 Institute seeks to guide decision makers toward a more secure Asia by the century’s Cover Image Source: Wired.co.uk mid-point. Located in Arlington, Virginia, the organization fills a gap in the public policy realm Above Image: Chung Shyang UAV at Taiwan’s 2007 National Day Parade through forward-looking, region-specific research on alternative security and policy solutions. Its Above Image Source: Wikimedia interdisciplin ary approach draws on rigorous analysis of socioeconomic, governance, military, environmental, technological and political trends, and input from key players in the region, with an eye toward educating the public and informing policy debate. ii |Able Archers: Taiwan Defense Strategy and Precision Strike | Draft for Comment About the Author Ian Easton is a research fellow at the Project 2049 Institute, where he studies defense and security issues in Asia. During the summer of 2013 , he was a visiting fellow at the Japan Institute for International Affairs (JIIA) in Tokyo. Previously, he worked as a China analyst at the Center for Naval Analyses (CNA). He lived in Taipei from 2005 to 2010. During his time in Taiwan he worked as a translator for Island Technologies Inc. and the Foundation for Asia-Pacific Peace Studies. He also conducted research with the Asia Bureau Chief of Defense News.
    [Show full text]
  • Anti Armour Joint Survivability Dismounted
    COVER-MAY 13:AMR 6/11/13 1:37 PM Page 1 VOLUME 21/ISSUE 3 MAY 2013 US$15 A S I A P A C I F I C ’ S L A R G E S T C I R C U L A T E D D E F E N C E M A G A Z I N E ANTI ARMOUR SUBMARINE WARFARE JOINT SURVIVABILITY SPECIAL MISSION DISMOUNTED ISTAR AIRCRAFT NAVAL DIRECTORY SINGAPORE MILITARY www.asianmilitaryreview.com GMB_2013_ISR_AsianMilitaryRev_April_002_Print.pdf 1 4/18/13 2:53 PM Content & Edit May13:AMR 6/11/13 6:03 PM Page 3 MAY 2013 ContentsContentsVOLUME 21 / ISSUE 3 06 Front Cover Photo: The fuel cell powered HDW Class 212A submarines have been in service with the German Navy since 2005. A The Wide Blue Yonder second batch of two boats in currently under construction Martin Streetly at ThyssenKrupp Marine As a region dominated by the vastnesses of the Pacific and Indian Oceans, Systems in Kiel, Germany © the Asia-Pacific nations have always had a strong interest in the ability to police ThyssenKrupp Marine Systems and monitor their national and economic regional interests 14 Singapore’s 48 Defence Stance Gordon Arthur Singapore may be the smallest country in SE Asia but it has 54 region’s most able military. Perched on tip of Malay Peninsula Survivability: Submarine warfare where Malacca and Singapore Stopping Enemy and upgrades Straits converge, Singapore Fires On Sea achieves world’s 4th highest Ted Hooton A century ago naval power was defence expenditure per capita AndLand counted in battleships, but the Gordon Arthur modern arbiter of naval power Survivability on the battlefield is consists of invisible battleships 40 important… obviously! Threats submarines which have played a 23 come from multiple directions major role in shaping modern Asia and in many shapes, so the per- and are likely to continue to tinent question is how to protect do so.
    [Show full text]
  • GAO-16-6R, Space Situational Awareness
    441 G St. N.W. Washington, DC 20548 October 8, 2015 The Honorable John McCain Chairman The Honorable Jack Reed Ranking Member Committee on Armed Services United States Senate Space Situational Awareness: Status of Efforts and Planned Budgets Space systems provide capabilities essential for a broad array of functions and objectives, including U.S. national security, commerce and economic growth, transportation safety, and homeland security. These systems are increasingly vulnerable to a variety of threats, both intentional and unintentional—ranging from adversary attacks such as antisatellite weapons, signal jamming, and cyber attacks, to environmental threats such as electromagnetic radiation from the Sun and collisions with other objects. The government relies primarily on the Department of Defense (DOD) and the Intelligence Community to provide Space Situational Awareness (SSA)—the current and predictive knowledge and characterization of space objects and the operational environment upon which space operations depend—to provide critical data for planning, operating, and protecting space assets and to inform government and military operations. According to DOD, as space has become more congested and contested, the SSA mission focus has expanded from awareness of the location and movement of space objects to also include assessments of their capabilities and intent to provide battlespace awareness for protecting U.S. and allies’ people and assets. For example, in addition to allowing satellite operators to predict and avoid radio frequency interference and potential collisions with other space objects, SSA information could be used to determine the cause of space system failures—such as environmental effects, unintentional interference, or adversary attacks—better enabling decision makers to determine appropriate responses.
    [Show full text]
  • Inside Military Machines Inside Military Machines
    Inside Military Machines INSIDE BattleShips By Chris Oxlade THIS PAGE INTENTIONALLY LEFT BLANK INSIDE BATTLESHIPS Thanks to the creative team: Senior Editor: Alice Peebles Fact Checking: Tom Jackson Illustrations: Mat Edwards and Victor Mclindon Picture Research: Nic Dean Design: www.collaborate.agency Original edition copyright 2017 by Hungry Tomato Ltd. Copyright © 2018 by Lerner Publishing Group, Inc. Hungry Tomato® is a trademark of Lerner Publishing Group All rights reserved. International copyright secured. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of Lerner BATTLESHIPS Publishing Group, Inc., except for the inclusion of brief quotations in an acknowledged review. Hungry Tomato® A division of Lerner Publishing Group, Inc. 241 First Avenue North Minneapolis, MN 55401 USA For reading levels and more information, look up this title at www.lernerbooks.com. Main body text set in Avenir Next Condensed Medium 11/15. Typeface provided by Linotype AG. Library of Congress Cataloging-in-Publication Data Names: Oxlade, Chris, author. Title: Inside battleships / Chris Oxlade. Description: Minneapolis : Hungry Tomato, [2017] | Series: Inside military machines | Includes index. | Audience: Grades 4–6. | Audience: Ages 8–12. Identifi ers: LCCN 2017014445 (print) | LCCN 2017012916 (ebook) | ISBN 9781512450026 (eb pdf) | ISBN 9781512432251 (lb : alk. paper) Subjects: LCSH: Battleships—Juvenile literature. | Warships—Juvenile literature. Classifi cation: LCC V815 (print) | LCC V815 .O93 2017 (ebook) | DDC 623.825—dc23 LC record available at https://lccn.loc.gov/2017012916 Manufactured in the United States of America 1-41780-23541-4/3/2017 INSIDE BATTLESHIPS An Iowa-class World War II battleship fires her guns in action.
    [Show full text]
  • Stealth TECHNOLOGY
    Welcome Stealth TECHNOLOGY BY, Shailesh Mane Alok Pandey Saatvik Singh Jitesh Pujari What’s Stealth Technology? According to the “OXFORD” Dictionary states that “Stealth”- Secret procedure or manner. And the Wikipedia describes “Stealth Technology” as “Stealth technology covers a range of techniques used with aircrafts, ships and missiles, in order to make them less visible (ideally invisible) to radar and other detection methods. Stealth technology allows a Machine to be partially invisible to any means of detection. All it does is reduce the detection range. This is similar to the camouflage tactics used by soldiers in jungle warfare. Stealth Technology aims in minimizing transmitted and reflected energies- heat, light, sound, electric potentials etc- to deny an opponent to locate, track, identify and attack its target. History Of Stealth Technology The concept of Stealth is not at all new. In Second World War allied aircrafts used tin and aluminum in huge amount to confuse German RADARS. Two prototypes were built to study and test low observablity-better known as Stealth technology in 1970's. First ever working Stealth Aircraft was developed by Lockheed Martin in 1983 called the F-117A nicknamed as the “Nighthawk”. First Stealth Ship was developed by Defense Advanced Research Project Agency, US Navy and Lockheed combined in 1985 called the “Sea Shadow(IX-529)” but was never commissioned. What's Signature • Signature - Any unique indicator of the presence of certain materiel or troops; especially the characteristic electronic emissions given off by a certain type of vehicle, radar, radio, or unit Types of Signature Signature can be Caused due to reflection of incident radiation or due to Emission of radiation of the vehicle due to various reasons.
    [Show full text]
  • Security & Defence European
    a 7.90 D European & Security ES & Defence 2/2018 International Security and Defence Journal COUNTRY FOCUS: MALAYSIA ISSN 1617-7983 • www.euro-sd.com • March 2018 Unmanned Maritime Systems Game Changer for EU Defence? Spain: Increasing Funds for Defence 25 member states established the ”Permanent Seven new programmes are to be scheduled Structured Cooperation“ (PESCO). for the next 15 years. Politics · Armed Forces · Procurement · Technology The backbone of every strong troop. Mercedes-Benz Defence Vehicles. When your mission is clear. When there’s no road for miles around. And when you need to give all you’ve got, your equipment needs to be the best. At times like these, we’re right by your side. Mercedes-Benz Defence Vehicles: armoured, highly capable off-road and logistics vehicles with payloads ranging from 0.5 to 110 t. Mobilising safety and efficiency: www.mercedes-benz.com/defence-vehicles Editorial The Balkans Are Losing Their Illusions At the beginning of the year, Bulgaria strategy”. If this were true, the authors took over the presidency of the European would have performed a particularly great Council. The six months in which a Mem- service by giving the term a new content. ber State exercises this honorary position, So far, it has been assumed that a strategy before passing on the baton to the next indicates how a goal should be achieved. capital city, are too short for course- However, this document offers only vague setting. Certainly, at least for a moment, hints. Instead, it lists once again what the President of the Council can put issues requirements applicants must fulfil in or- that are important to him on the agenda.
    [Show full text]
  • System Study and Design of Broad-Band U-Slot Microstrip Patch Antennas for Aperstructures and Opportunistic Arrays
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2005-12 System study and design of broad-band U-Slot microstrip patch antennas for aperstructures and opportunistic arrays Tong, Chin Hong Matthew Monterey California. Naval Postgraduate School http://hdl.handle.net/10945/1802 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SYSTEM STUDY AND DESIGN OF BROAD-BAND U-SLOT MICROSTRIP PATCH ANTENNAS FOR APERSTRUCTURES AND OPPORTUNISTIC ARRAYS by Tong, Chin Hong Matthew December 2005 Thesis Advisor: David C. Jenn Co-Advisor: Donald L. Walters Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2005 Master’s Thesis 4. TITLE AND SUBTITLE: System Study and Design of Broad-band U-Slot 5. FUNDING NUMBERS Microstrip Patch Antennas for Aperstructures and Opportunistic Arrays 6. AUTHOR(S) Tong, Chin Hong Matthew 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • Countermeasures.Pdf
    Countermeasures Study group organized by the Union of Concerned Scientists and the Security Studies Program at the Massachusetts Institute of Technology Countermeasures A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System Andrew M. Sessler (Chair of the Study Group), John M. Cornwall, Bob Dietz, Steve Fetter, Sherman Frankel, Richard L. Garwin, Kurt Gottfried, Lisbeth Gronlund, George N. Lewis, Theodore A. Postol, David C. Wright April 2000 Union of Concerned Scientists MIT Security Studies Program © 2000 Union of Concerned Scientists Acknowledgments All rights reserved The authors would like to thank Tom Collina, Stuart Kiang, Matthew Meselson, and Jeremy Broughton for their comments and assistance. The authors owe a special note of The Union of Concerned Scientists is a partnership of citizens and gratitude to Eryn MacDonald scientists working to build a cleaner environment and a safer world. For and Anita Spiess for their more information about UCS’s work on arms control and international contributions and dedication, security, visit the UCS website at www.ucsusa.org. without which this report The Security Studies Program (SSP) is a graduate-level research and would not have been possible. educational program based at the Massachusetts Institute of Technology’s Center for International Studies. The program’s primary task is educating the next generation of scholars and practitioners in This report and its dissemina- international security policymaking. SSP supports the research work of graduate students, faculty, and fellows, and sponsors seminars, confer- tion were funded in part by ences, and publications to bring its teaching and research results to the grants to the Union of Con- attention of wider audiences.
    [Show full text]