Introduction to Vertebrates They Are Very Much Alike Internally, Indicating That in the Distant Past They Had a Common Ancestor

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Vertebrates They Are Very Much Alike Internally, Indicating That in the Distant Past They Had a Common Ancestor Adaptations of Vertebrates • Vertebrates are chordates with a backbone. • Even though many vertebrates appear different, Introduction to Vertebrates they are very much alike internally, indicating that in the distant past they had a common ancestor. • Present-day differences in vertebrates reflect their different evolutionary paths. © Lisa Michalek Adaptations of Vertebrates Adaptations of Vertebrates • The backbone provides support for and protects a dorsal nerve cord. • Vertebrates are chordates with a backbone. • It also provides • The individual segments that make up the backbone are called vertebrae. a site for muscle attachment. • In most vertebrates, the backbone • These functions completely replaces allowed vertebrates the notochord found to grow larger than in invertebrate chordates. their invertebrate ancestors. • In addition to a backbone, vertebrates have a bony skull that encases and protects their brain. Adaptations of Vertebrates Adaptations of Vertebrates • The tissues of vertebrates compose organs. • Vertebrates share a number of other characteristics, including segmentation, bilateral symmetry, and two pairs of jointed appendages, such as limbs or • The organs compose organ systems. fins. • Vertebrate organ systems tend to be more complex than the organ systems • They exhibit cephalization and have complex brains and sense organs. found in invertebrates. • All vertebrates have a true coelom and a closed circulatory system with a chambered heart. The First Vertebrates The First Vertebrates Unlike most of the fishes that we are now familiar with, the earliest fishes, The first chordates evolved about 550 million years ago. • • called agnathans, had neither jaws nor paired fins. • At that time, many different groups of organisms appeared in the shallow Agnathans did have seas that covered a large portion of Earth s continents. • ’ a backbone, which • According to the fossil record, the first vertebrates were fishes. provided a central axis for muscle attachment. • As their muscles pulled against the backbone, the agnathans propelled themselves along the ocean bottom. The First Vertebrates Evolution of Fishes • Within another 50 million years, jawless fishes had diversified into a great • About 430 million years variety of species. ago, the acanthodians (spiny fishes) appeared. • The major group was the ostracoderms which had • Acanthodians had strong jaws with jagged, bony edges that served as teeth, primitive fins and massive enabling them to hold onto prey. plates of bony tissue on their body. • The development of jaws in fishes was a key evolutionary innovation. • Jawless fishes dominated the oceans for about 100 million years, until they • Jaws are thought to have evolved from gill arch supports made of cartilage were replaced by new kinds of fishes that were hunters. (a lightweight, strong, flexible tissue). Evolution of Fishes Evolution of Fishes About 20 million years after the acanthodians appeared, the placoderms The spiny fishes had internal skeletons of cartilage, although some fossils • • evolved. indicate that their skeletons also contained some bone. • Placoderms were jawed fishes with massive heads armored with bony plates. • Their scales also contained small plates of bone. • By the end of the Devonian period, almost all of the early fishes, including the placoderms, had disappeared. • After dominating the seas for almost 50 million years, they were replaced by swifter swimmers, the sharks and bony fishes. Sharks and Bony Fishes Sharks and Bony Fishes •By the end of the Devonian period, almost all of the • Sharks have a skeleton composed of cartilage. early fishes had disappeared. • Calcium carbonate is deposited in the outer layer of the cartilage. •At about the same time • A thin layer of bone covers this reinforced cartilage. (400 million years ago), • The result is a very light but strong skeleton. sharks and bony fishes appeared. •Sharks and bony fishes, which are superior swimmers, thrived in the Devonian seas. •Most have streamlined bodies that are well adapted for rapid movement through the water. Sharks and Bony Fishes Modern Fishes • Bony fishes have a skeleton made of bone, which is heavier and less flexible • Today there are more fishes than any other group of vertebrates. than cartilage. • Today’s fishes belong to one of three major groups: the agnathans, the • Bony fishes have a swim bladder, which compensates for this increased cartilaginous fishes and the bony fishes. weight. • The agnathans • This gas-filled sac (hagfishes and buoys them in the the lampreys) water, just as an resemble the air-filled balloon early jawless fishes. buoys a swimmer. Modern Fishes Evolution of Amphibians • The first cartilaginous fishes (sharks) and the bony fishes evolved at about the • The first group of vertebrates to live on land was the same time, 400 million years ago. amphibians, which appeared about 370 million years ago. • These two groups of fishes likely evolved from the same early, jawless fishes that gave rise to the acanthodians and the placoderms. • Amphibians probably shared • The shark’s a common ancestor with relatives, the modern lungfishes and skates and rays other lobe-finned fishes. evolved later. • The pattern of bones in an amphibian’s limbs bears a strong resemblance to that of a lobe-finned fish. • While several species of lobe-finned fishes exist today, those species thought to be ancestral to amphibians are extinct. The ‘Age of Amphibians’ Evolution of Amphibians • Although amphibians first appeared in the Devonian period, they increased greatly in numbers during the Carboniferous period. • During this time (The age of Amphibians) the number of amphibian families increased from 14 to about 34. • By the late Carboniferous period, much of what was to become North America was covered by low-lying tropical swamplands. • Amphibians thrived in this moist environment, sharing it with early reptiles. The ‘Age of Amphibians’ Adaptations for Life on Land • In the Permian period that followed, amphibians reached their greatest • Life on land is quite different from life in the water. Therefore, a number of diversity, increasing to 40 families. major adaptations allowed some species to successfully invade the land. • In the early Permian period, a remarkable change occurred among – Legs. Legs support the body’s weight as well as allow movement from place to place. amphibians, many of them began to leave the marshes for dry uplands. – Lungs. The delicate structure of a fish’s gills depends on water for support. On land, lungs carry out gas exchange. • By the middle Permian, – Heart. Walking on land requires a greater expenditure of energy than swimming. Land 60 percent of all animals tend to have higher metabolic rates than aquatic animals. This requires greater amphibian species amounts of oxygen. The structure of the vertebrate heart allows oxygen to be were living in dry delivered to the body efficiently. environments. Modern Amphibians Modern Amphibians • All of today’s amphibians are descendants of the amphibians that survived into the Jurassic period. • The middle Permian period marked the peak of amphibian success. • They are found in aquatic and moist habitats throughout the temperate and • By the end of this period a tropical regions of the world. new kind of vertebrate, a reptile called a therapsid, • Frogs and toads make up had become common and the largest and most familiar began to replace the amphibians. group of modern amphibians. • By the end of the Triassic period that followed, there were only 15 families • Salamanders and newts are of amphibians. far less numerous. • Caecilians account for less than 1 percent of today’s amphibian species. Evolution of Amphibians Early Reptiles • Fluid loss is a problem for all terrestrial animals that live on land. • The adaptations that permitted amphibians to live on land further developed in reptiles. • Two very important adaptations for terrestrial life evolved in reptiles. • Reptiles were the first animals to have skin and eggs that are both almost watertight. Early Reptiles Evolution of Terrestrial Vertebrates • When reptiles first evolved, about 320 million years ago, Earth was entering a long, dry period. • Early reptiles were better suited to these conditions than amphibians were, and the reptiles quickly diversified. • Within 50 million years, reptiles had replaced amphibians as the dominant terrestrial vertebrates. Evolution of Dinosaurs Evolution of Dinosaurs • One factor that affected dinosaur evolution was the movement of • Beginning about 235 million years ago, dinosaurs dominated life on land for the continents, which altered Earth’s climate. roughly 150 million years. • When the dinosaurs first appeared, all of Earth’s landmasses were • They evolved from the thecodonts, an extinct joined in a single supercontinent called Pangaea. group of crocodile-like reptiles. • There were few mountain ranges over this enormous stretch of • During their long history, dinosaurs changed a great deal because the world land, and the interior was dry. they inhabited changed. • Coastal climates were much the same all over the world, quite • Dinosaurs represent a long parade of change and adaptation. warm, with a dry season followed by a very wet rainy season. • As Pangaea broke apart, the climates of the various landmasses varied. • Some species of dinosaurs could not adapt and became extinct, while new kinds flourished. Breakup of Pangaea Triassic Dinosaurs • The oldest known dinosaur fossils are in rocks from the early Triassic
Recommended publications
  • Flatworms Phylum Platyhelminthes
    Flatworms Phylum Platyhelminthes The flatworms include more than 13,000 species of free-living and parasitic species.There are 3 classes of flat- worms, the planarians, flukes and tapeworms. General Physical Traits (Anatomy): Flatworms are bilaterally symmetrical. This means that they can only be cut them length-wise to produce two mirror-image halves. They have a distinct right and left half. This is differ- ent from radially symmetrical animals, like the anemones, which can be cut anywhere top to bottom to get two similar halves. Flatworms have 3 tissue layers, compared to the 2 layers in sponges and cnidarians (jellyfishes, anemones and corals). They also have only one opening for food to enter and waste to leave, like the sponges and cnidarians. This is called a “sac” body plan. Planarian (class Tubellaria) Habitat: They live mostly in saltwater (marine) habitats, but are also found in freshwater. Habits: They are free-living flatworms (not parasites). Physical Traits (Anatomy): Planarians are small - less than a centimeter long. They have a head, brain and sense organs. This is called “cephalization.” The sense organs – called eyespots – look like eyes and are sensitive to light changes, but are not like human eyes. They are made up of simple nerve cells that respond to stimuli, like light. When many nerve cells are gathered in one place, they are called a “ganglion,” so the two eyespots are actually ganglia. They also have points on either side of the head that look a bit like ears, called “sensory lobes” or auricles. They do not hear, but can sense food.
    [Show full text]
  • Phylum Chordata
    Phylum Chordata 48,000 species very diverse phylum but still more unity in major characteristics than in most other phyla most advanced phylum of animal kingdom one to which we belong along with fish, amphibians reptiles, birds and other mammals some of the largest or most massive animals true coelom 4 major identifying characteristics: 1. Notochord flexible rodlike structure enclosed by a fibrous sheath extends the length of the body in larva and/or adult provides basic support and serves as main axis for muscle attachments to permit “fishlike” undulatory movements first part of skeleton to form in embryo in primitive chordates the notochord persists through life Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 1 in most chordates the notochord is replaced by a vertebral column of bone remnants of the notochord remain as “intervertebral discs” 2. Dorsal tubular nerve cord in most invert groups; nerve cord is ventral & paired in chordates the nerve cord is a single dorsal hollow nerve cord front end usually enlarged to form brain 3. Pharyngeal (gill) slits slit-like opening sleading from throat to outside first evolved as a filter feeding apparatus still used by some to filter water for food in others as gills in some groups they are only found in embryo and lost as adults 4. endostyle or thyroid gland specific kind of tissue found only in chordates was originally part of the feeding apparatus endostyle secretes mucus and traps food inside the pharyngeal cavity eg. lamprey larva in most chordates the same tissue has become an endocrine Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 2 gland in the neck region that helps control metabolism 5.
    [Show full text]
  • The Mesozoic Era Alvarez, W.(1997)
    Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Echinoderms for Dummies Colwyn Sleep Echinoderm Classification and Examples
    ECHINODERMS FOR DUMMIES COLWYN SLEEP ECHINODERM CLASSIFICATION AND EXAMPLES What exactly is an Echinoderm? Echinoderms (or “Echinodermata”) are a group of animals which exist only in a marine (ocean) environment. Their name comes from the Greek word for "spiny skin". They inhabit a diverse range of marine habitats and are found on the sea floor from the intertidal zone to great ocean depths. In the following slides we will explore echinoderms and look into their body systems and structures more closely. A FEW EXAMPLES OF ECHINODERMS Sea star Kingdom: Animalia Phylum: Echinodermata Class: Asteroidea Feather Star Kingdom: Animalia Phylum: Echinodermata Subphylum: Crinozoa Class: Crinoidea Probably one of the best known echinoderms This lesser-known star, the feather star gains is the easily recognized sea star. The its name from its featherlike arms, which it echinoderm phylum contains many more uses to swim through the water. Like all species, in fact there are around 7000 known echinoderms, they are “Deuterostomes.” echinoderms. Later, we will investigate the This means that during their embryonic sea star and it’s classification as an development the first embryonic opening echinoderm in greater detail. becomes the anus and the second becomes the mouth. Because of this, biologists believe that echinoderms are more evolutionarily advanced than some of the other animals. A FEW MORE… Sea cucumber Kingdom: Animalia Phylum: Echinodermata Class: Holothuroidea Sea Urchin Kingdom: Animalia Phylum: Echinodermata Class: Echinoidea Related to Jabba the Hutt in appearance Like other echinoderms, the sea urchin has only, the sea cucumber is actually another radial symmetry. Its pointed spines offer example of an echinoderm.
    [Show full text]
  • Introduction to Phylum Chordata
    Unifying Themes 1. Chordate evolution is a history of innovations that is built upon major invertebrate traits •bilateral symmetry •cephalization •segmentation •coelom or "gut" tube 2. Chordate evolution is marked by physical and behavioral specializations • For example the forelimb of mammals has a wide range of structural variation, specialized by natural selection 3. Evolutionary innovations and specializations led to adaptive radiations - the development of a variety of forms from a single ancestral group Characteristics of the Chordates 1. Notochord 2. dorsal hollow nerve cord 3. pharyngeal gill slits 4. postanal tail 5. endostyle Characteristics of the Chordates Notochord •stiff, flexible rod, provides internal support • Remains throughout the life of most invertebrate chordates • only in the embryos of vertebrate chordates Characteristics of the Chordates cont. Dorsal Hollow Nerve Cord (Spinal Cord) •fluid-filled tube of nerve tissue, runs the length of the animal, just dorsal to the notochord • Present in chordates throughout embryonic and adult life Characteristics of the Chordates cont. Pharyngeal gill slits • Pairs of opening through the pharynx • Invertebrate chordates use them to filter food •In fishes the gill sits develop into true gills • In reptiles, birds, and mammals the gill slits are vestiges (occurring only in the embryo) Characteristics of the Chordates cont. Endostyle • mucous secreting structure found in the pharynx floor (traps small food particles) Characteristics of the Chordates cont. Postanal Tail • works with muscles (myomeres) & notochord to provide motility & stability • Aids in propulsion in nonvertebrates & fish but vestigial in later lineages SubPhylum Urochordata Ex: tunicates or sea squirts • Sessile as adults, but motile during the larval stages • Possess all 5 chordate characteristics as larvae • Settle head first on hard substrates and undergo a dramatic metamorphosis • tail, notochord, muscle segments, and nerve cord disappear SubPhylum Urochordata cont.
    [Show full text]
  • ORIGIN and EVOLUTION of BIRDS Dr. Ramesh Pathak B.Sc. (Hons.) –II
    ORIGIN AND EVOLUTION OF BIRDS Dr. Ramesh Pathak B.Sc. (hons.) –II Prof. Parker has shown a number of peculiarities between birds and repiles,so,he said “birds are transformed and glorified reptiles”. Huxley has established a very close relationship by saying birds are “feathered reptiles”. THEORIES OF ORIGIN OF BIRDS A. Cursorial theory : This theory was championed by Baron Nopsa who maintained that the birds evolved from cursorial bipedal dinosaurs. In attempt to move faster during running to pull themselves a bit faster they moved and beat their arms. In such condition, due to continuous use of arms as propellers brought constant increase in the length and breadth of scales present on them. As the scales lengthened ,the pressure against the air caused their edges frayed leading to scales changing into feathers. But this theory was rejected because scales and feathers are fundamentally different structures arising from different layers of skin. B.Tetrapteryx theory :It was proposed by Beebe and Gregorg. According to this theory the ancestors of birds were arboreal reptiles who used to jump from branch to branch and in doing so the scales were transformed into feathers by fraying of the edges. After developing feathers on all the four limbs (Tetrapteryx stage), they used only the anterior wings and the unused posterior wings were lost. This theory was also discarded because there is no evidence that birds had ever four wings. C. Gliding thery : It is based on the idea of Beebe and Georg.It was proposed by Heilmann but does not recognize the tetrapteryx stage.
    [Show full text]
  • Brain-Size Evolution and Sociality in Carnivora
    Brain-size evolution and sociality in Carnivora John A. Finarellia,b,1 and John J. Flynnc aDepartment of Geological Sciences, University of Michigan, 2534 C.C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; bMuseum of Paleontology, University of Michigan, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109; and cDivision of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved April 22, 2009 (received for review February 16, 2009) Increased encephalization, or larger brain volume relative to body develop a comprehensive view of the evolutionary history of mass, is a repeated theme in vertebrate evolution. Here we present encephalization across 289 terrestrial species (including 125 an extensive sampling of relative brain sizes in fossil and extant extinct species) of Carnivora, providing an extensive sampling of taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, fossil and living taxa for both major subclades: Caniformia and and their relatives). By using Akaike Information Criterion model Feliformia. selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific Results evolutionary transformations in encephalization allometries. Akaike Information Criterion (AIC) model selection recovered These evolutionary transformations include multiple independent 4 optimal models (OM) within 2 log-likelihood units of the encephalization increases and decreases in addition to a remark- highest score (Table 1). There is broad agreement among the ably static basal Carnivora allometry that characterizes much of the OM with differences primarily in estimates of allometric slopes.
    [Show full text]
  • Study Questions 2 (Through Arthropod 1)
    Study Questions 2 (through Arthropod 1) 1. Name the three embryonic germ layers found in all triploblastic animals. 2. What is a coelom? Which Phyla that we have discussed thus far have a true coelom? 3. Define cephalization. What is the name of the most primitive Phylum we have discussed that displays cephalization? 4. How is the digestive system of a Turbellarian similar to the digestive system of a Hydrozoan? Describe one way that they are different. 5. What is the function of flame cells? 6. How is the nervous system of a flatworm (Phylum Platyhelminthes) different from that of a Cnidarian? 7. Which two classes of flatworms are entirely parasitic? Describe some adaptations for parasitism that are found in these classes. 8. What are some of the major differences between Nemertine worms (Phylum Nemertea) and flatworms (Phylum Platyhelminthes)? In what major way are these two phyla similar? 9. What is a pseudocoelom? What are some of the functions of the pseudocoelom in Phylum Nematoda? 10. Nematodes have move in a characteristic whip like fashion. What aspect of their anatomy is responsible for this type of movement? 11. Describe the general structure of the Nematode nervous system. How is it different from the nervous system of Platyhelminthes? 12. What is unique about Nematode muscle cells? 13. What is unique about the way Nematode sperm move? 14. Many Nematodes are parasitic. Describe some adaptations that Nematodes have for parasitism. 15. What characteristics of the Nematode Caenorhabditis elegans make such an important model organism for the study of developmental genetics? 16. List two functions of the Rotifer corona.
    [Show full text]
  • November 18, 2013 Characteristics of Chordates
    November 18, 2013 Characteristics of Chordates: - Cephalization: development of a definite “head end” - Segmented: serial metamerism - Eucoelic: true coelom Cephalochordata example: Amphioxus = Branchiocephala Subphylum Urochordata tunicate “Sea squirts” “Salps” - Cellulose = beta1-4 linkage can’t break down with spit - Glucose = alpha1-4 linkage - Tunicates can make cellulose Tunicata - marine - sessile = non-motile - lifestyle o external fertilization zygote blastula gastrula larvae (free swimming) goes to bottom becomes sessile Subphylum Vertebrata - vertebral column (back boned animals) Superclass Pisces - all fishes - all diecious (almost all) - most have external fertilization - oviparous - anadromous fish o salmon o spawning fresh water, developing salt water - catadromous fish o eels o spawning salt water, develop in fresh water - homing instinct salmon are great example o use fish ladder to get past dam o nitrogen gas expansion is problem Class Chondrichthyes – sharks, skates, rays - 800 to 1000 species known - mostly marine November 20, 2013 South America and Evolution of stingrays in fresh water - marine rays and sharks got stuck in freshwater o two freshwater lineages for sharks / rays . China and South America Daniel R. Brooks - worked on tapeworm host / parasite relationships - worked with stingrays - Amazon River used to drain to the pacific - Cestode in Pomatotrygon stingray in Amazon (fresh water) o Tape worm in ray name: Pomatotrygonocestus Richard Pyle at Bishop Museum - coelacanth hasn’t changed in millions
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]
  • The Origin and Diversification of Birds
    Current Biology Review The Origin and Diversification of Birds Stephen L. Brusatte1,*, Jingmai K. O’Connor2,*, and Erich D. Jarvis3,4,* 1School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK 2Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China 3Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA 4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA *Correspondence: [email protected] (S.L.B.), [email protected] (J.K.O.), [email protected] (E.D.J.) http://dx.doi.org/10.1016/j.cub.2015.08.003 Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two de- cades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dino- saurs during the Jurassic (around 165–150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today. Introduction dinosaurs Dromaeosaurus albertensis or Troodon formosus.This Birds are one of the most conspicuous groups of animals in the clade includes all living birds and extinct taxa, such as Archaeop- modern world.
    [Show full text]