Corrosion of Aluminum Aerospace Alloys J.T. Staley Element Materials Technology, 3200 South 166Th Street, New Berlin, Wl 53151 [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Corrosion of Aluminum Aerospace Alloys J.T. Staley Element Materials Technology, 3200 South 166Th Street, New Berlin, Wl 53151 James.Staley@Element.Com г, trials Science Forum S n?S5-5476, Vol 877, pp 485-491 •1:n4028/wmv.scientißc.net/MSF.877.485 doi7n 17 Trans Tech Publications, Switzerland Corrosion of Aluminum Aerospace Alloys J.T. Staley Element Materials Technology, 3200 South 166th Street, New Berlin, Wl 53151 [email protected] Keywords: aluminum, corrosion, aerospace, aloha, testing, mitigation. Abstract. The Junkers F13 airplane, which began production in 1919, was the first plane to be built using aluminum aerospace alloys. Nearly 100 years later, approximately 1,800 new planes are being ou:U each ycar with aluminum aerospace alloys. For the five trillion or so dollars worth of existing aging airplanes, cost of aerospace corrosion in United States alone is an estimated 23 billion dollars per war. hi addition, hidden corrosion costs have contributed to a bigger impact in the commercial aircraft industry. In 1988, in the corrosion sensitive environment of the Hawaiian islands, an Aloha Airlines 737 aircraft suffered an in-flight failure due to crevice corrosion in the lap joint of the fuselage. After this event, the aviation technical community launched a new era of advanced technology, improved procedures and higher standards for maintaining the world's aging and cuimding aircraft. This paper discusses types of corrosion that affect aluminum aerospace alloys including crevice corrosion, pitting, exfoliation, intergranular, stress corrosion cracking (SCC) and ..•orrosion fatigue. Standardized testing to determine if the alloy is susceptible to these types of corrosion is explained and examples of how to mitigate certain types of corrosion is discussed. Introduction Alfred Wilm studied metallurgy near Berlin and to support the German war effort, was commissioned to develop an aluminum alloy that could be used for the manufacture of ammunition. For two years he investigated the possible strengthening of Al-Cu alloys by heat treatment. Then, one day in 1906, he was experimenting with an Al-Cu-Mn-Mg alloy, which he quenched as usual and was surprised that the hardness increased for four days then remained constant giving way to a new alloy patent and by 1908 commercial production began at Durener Mct.ilwerke. Contractions of the words "Durener" and "aluminum" led to the name "Duralumin" 'Iii' t!u' new alloy, which is still recognized today. In fact, airships like the Hindenburg and the woild's first all-metal transport aircraft (the Junkers F13) was made from Duralumin. The plane was a technological success; it was able to travel long distances and carry heavy loads. However, duralumin had severe corrosion problems especially in salt spray. [1,2] In 1916, Alcoa produced a modification of duralumin, designated "17S", which is still in production l'xld\ as alloy 2017. Further Alcoa work resulted in alloys 14S (2014) and 24S (2024). Alloy 24S exhibited significantly higher strength (vs 2017) and better elongation (vs 2014-T6). It was used in tue T3 (naturally aged + cold-worked) temper and became the primary alloy for the Douglas DC3 airplane, which was introduced in the 1930's. Although these newly developed aluminum alloys had significantly better corrosion resistance than duralumin, they were still very susceptible to one or mure types of corrosion. In fact, a corrosion resistant aluminum aerospace alloy for all wrought forms •tnd directions has yet to be developed. Factors Influencing Corrosion Substances that cause corrosion of aluminum aerospace alloys are called corrosive agents. The most common corrosive agents are acids, alkalies, and salts. The atmosphere and water, the two most «>mmon media for these agents, may also act as corrosive agents. In general, moderately strong acids ^ill severely corrode most of the aluminum alloys used in airframes. Although alkalies, as a group, @#$%D1806040022YJ00*&^% 670 Aluminium Alloys 2016 - ICAA15 are generally not as corrosive as acids, aluminum is exceedingly prone to corrosive attack by many alkaline solutions unless the solutions contain a corrosion inhibitor. Particularly corrosive to aluminum are washing soda, potash (wood ashes), and lime (cement dust). Ammonia is an exception because aluminum alloys are highly resistant to it. Most salt solutions are good electrolytes and can promote corrosive attack of aluminum alloys. Exposure of airframe materials to salts or their solutions is extremely undesirable. Some factors that influence metal corrosion and the rate of corrosion are; type of metal, temper, grain direction, anode and cathode surface areas, temperature, humidity, presence of electrolytes, availability of oxygen, stress on the corroding metal and time of exposure to a corrosive environment. Aluminum Aerospace Alloys. In the aircraft industry, high-strength 2XXX and 7XXX series aluminum alloys (see Table 1 below) are commonly used for primary airframe structures (fuselage skins, stringers and frames, wing and empennage skins, spars and ribs), mechanical systems (landing gear legs, cylinders, forks and struts) and fluid systems (pressure vessels and connectors). Corrosion damage of the material is very essential to the structural integrity of the aircraft. Since the material of a component is subjected to corrosion, it is expected that its critical mechanical properties will vary with increasing service time, which must be taken into account for the structural integrity calculation of the component. The most widely used aluminum alloy in aerospace is the damage-tolerant Al 2024-T3 alloy. The location of the anodic path varies with the different alloy systems. In 2XXX series alloys, it is a narrow band on either side of the boundary that is depleted in copper; in copper-free 7XXX series alloys, it is generally considered to be the anodic zinc and magnesium bearing constituents on the grain boundary. 2XXX series aluminum alloys are especially sensitive to aqueous medium containing chloride ions (seawater) because such medium favor oxidation and pitting corrosion of these alloys. Because of the electrochemical nature of most corrosion processes, the solution potential relationships among the microstructural constituents of a particular alloy significantly affect its corrosion behavior. Solution potential is not affected significantly by second phase particles of microscopic size, but because these particles frequently have solution potentials differing from that of the solid solution matrix, localized galvanic cells may be formed between them and the matrix. Table 1. Composition of alloys 2024 3.8 - 4.9 1.2-1.8 0.25 0.30 - 6,90 0.50 , 0.50 2124 3,8-4.9 1,2-1.8 0.25 0.30-0,90 0,30 0,20 2026 3.6 - 4.3 1.0-1,6 0.10 0.30 - 0.80 0.0S-0.2S 0,07 0.05 2524 4.0 - 4,5 1,2-1.6 0.15 0,45 - 0,70 0.12 0.06 7075 1.2 - 2.0 2.1-2.9 5.1-6.1 0,30 0.18 - 0.28 0.50 0.40 7050 2.0 - 2.6 1.8 - 2.6 5,7 - 6.7 0.10 0.08 - 0.15 0.04 0.15 0.12 7150 1.9 - 2,5 2.0 - 2.7 5.9 - 6.9 0.10 0.08 - 0.15 0.04 0.15 0,12 7475 1.2-1.9 1,9 - 2.6 5.2 - 6,2 0.06 0,18*-0.25 0.12 0.10 2099 2,4 - 3.0 1.6 - 2.0 0.1-0.S 0.4-1.0 0.1-0.5 0,05 - 0.12 0.07 0.05 2199 2,3 - 2,8 1.4-1,8 0.05 - 0.40 0.2- 0.9 ОЛ-О.5 0.05-0.12 0.07 0.05 2050 3.2 - 3.9 0.70-1.3 0.20 - 0.60 0.20 - 0.50 0.06 - 0.14 0.20 - 0.70 0.10 0.08 2195 3.7 - 4.3 0.80-1.2 0.25 - 0.80 0,25 ' 0,08 - 0.16 0,25 - 0,60 0.15 0.12 Corrosion Types General. General corrosion consumes aluminum uniformly and affects a large area versus other more local types of aluminum aerospace alloy corrosion. It occurs at a relatively slow rate but left unattended over a long period, can remove enough metal to cause structural concerns. Aluminum exposed to marine, tropical and industrial atmospheres has the greatest rate of general corrosion. Pitting. Pitting corrosion is a localized form of attack where pits develop in aluminum causing localized perforation of the alloy. Pitting corrosion is confined to a point or small area that takes the @#$%D1806040022YJ00*&^% 669 Materials Science Forum Vol. 877 form of cavities. One area of the surface becomes anodic with respect to the rest of the surface. The its formed by this type of attack are generally very small and difficult to detect during routine inspection. ('ré*ice- Crevice corrosion occurs when localized changes in the corrosive environment exist and lead to accelerated localized attack. These changes are generated by the existence" of narrow crevices that contain a stagnant environment, which results in a difference in concentration of the cathode reactant between the crevice region and the external surface of the material. Crevices can be formed at joints between two materials, e.g. riveted or glued sections of an aircraft fuselage. G;il\:inic. Galvanic corrosion occurs when dissimilar metals are in direct electrical contact in a corrosive environment. This results in enhanced and aggressive corrosion of the less noble metal and protection of the more noble metal of the bimetallic couple. This type of corrosion can be recognized b\ severe corrosion near the junction of the two dissimilar metals, while the remaining surfaces are relatively corrosion-product free. The driving force for galvanic corrosion is a potential difference between the different materials. Stress Corrosion Cracking (SCC). Stress Corrosion Cracking is attributed primarily to the copper content.
Recommended publications
  • Hiduminium Technical Data
    HIDUMINIUM TECHNICAL DATA HIGH DUTY ALLOYS LTD SLOUGH F oreword Extensive research carried out in recent years, com­ bined with an increasing demand for " H ID UM IN IUM " high tensile aluminium alloys, has necessitated the revision and increase of the series of data sheets pre­ viously issued by the Company. As before, our aim is to place before designers and constructors the fullest possible particulars regarding the physical and mechanical properties of " H ID U M IN IU M ," which will enable them to select the materials most suitable for their requirements and to adapt their designs in accordance with the outstanding character­ istics of this range of alloys. " HIDUMINIUM" is produced under conditions of strict scientific control and progressive inspection and a staff of expert Metallurgists, Research W orkers and Technicians is always ready to give advice on all problems connected with the use of these alloys. Fresh data, as it is revealed by further research, will be issued on additional sheets. This will ensure that all information contained in this volume is up-to-date and may thus be referred to at all times with complete confidence. HIGH DUTY ALLOYS LIMITED 3 CONTENTS Page Index to Specifications 6-9 Hiduminium 15 10-11 Hiduminium 23 12-13 Hiduminium 33 14-15 Hiduminium 35 16-17 H iduminium 40 & 42 18-19 Hiduminium 45 20-21 Hiduminium R.R. 50 22-23 Hiduminium R.R. 53 24-26 Hiduminium R.R. 53.C 27-29 Hiduminium R.R. 56 30-32 H iduminium R.R. 59 33-35 Hiduminium 72 36-37 Hiduminium R.R.
    [Show full text]
  • Inhaltsverzeichnis Seite Schrifttum 5 Abkürzungen 6 Einleitung I Waren
    Inhaltsverzeichnis Seite Schrifttum 5 Abkürzungen 6 Einleitung i Waren. — Warenkunde. — Einteilung der Waren. — Hilfs- wissenschaften der Warenkunde 7— 8 I. Metalle und Metallwaren 8 A. Edelmetalle. 1. Gold. — 2. Silber. — 3. Platin. — 4. Queck- silber 10—18 B. Unedle Schwermetalle. 1. Eisen und Eisenwaren (Roh- eisen, schmiedbares Eisen, Erzeugnisse aus Eisen und Stahl). — 2. Kupfer. — 3. Blei. — 4. Zink. — 5. Zinn. — 6. Nickel. — 7. Arsen. — 8. Antimon. — 9. Wismut 18—35 C. Leichtmetalle. 1. Aluminium. — 2. Magnesium 35—37 D. Legierungen. 1. Bronze. — 2. Tombak. — 3. Messing. — 4. Neusilber. — 5. Konstantan .— 6. Britanniametall. — 7. Schriftmetall. — 8. Lagermetalle. — 9. Duralumin. — lO.Hydronalium. — 11. Silumin. —12. Elektron. — 13. Heus- ler'sche Legierungen 37—40 II. Edelsteine und Schmucksteine 40 A. Edelsteine. 1. Diamant. — 2. Rubin und Saphir. — 3. Spinell. — 4. Chrysoberyll. — 5. Smaragd. — 6. Topas. — 7. Zirkon. — 8. Granat. — 9. Türkis. — 10. Edelopal 41—46 B. Schmucksteine. 1. Quarz. — 2. Chalcedon. — S.Mond- stein. — 4. Lasurstein. — 5. Malachit. — 6. Blutstein. — 7. Bernstein 46—48 III. Bildhauersteine 48 1. Marmor. — 2. Alabaster. — 3. Serpentin. — 4. Meer- schaum. — 5. Talk 48—51 IV. Baustoffe 51 A. Bausteine. 1. Kalkstein. — 2. Sandsteine. — 3. Granit. — 4. Porphyr. — 5. Basalt. — 6. Magnesit. — 7. Kunststeine .... 51—53 B. Bindemittel. 1. Branntkalk. — 2. Zement. — 3. Gips 54—56 V. Schleif- und Glättemittel, Mühlsteine 57 1. Schleifsteine. — 2. Schmirgel. — 3. Gemeiner Korund. — 4. Siliziumkarbid. — 5. Bimsstein. — 6. Tripel. — 7. Polier- rot. — 8. Zinnasche. — 9. Wiener Kalk. — 10. Schlämm- kreide.—11. Mühlsteine 67—58 VI. Tonwaren 59 Ton. — 1. Porzellan. — 2. Steinzeug. — 3. Steingut. — 4. Töpferware. — 5. Ziegel. — 6. Feuerfeste Steine 59—67 VII.
    [Show full text]
  • Aluminium Appications CML514 2016.Pdf
    Elements of Gr. 13 Unique Property Applications Boron Lewis acid Nuclear reactors‐ control 10B‐ High Nuclear cross rods section for thermal Lewis acid, BNCT neutrons Light metal Bulk usage: Airplanes, Aluminium Surface passivity ships, cars, trains Good strength to weight AlCl3: Friedel Crafts rxn ratio and conductivity MAO: In olefin m.p. 660.3 °C polymerization Gallium Liquid metal Gallium Arsenide solar m.p.29.77 °C cells Gallium nitride LED Low melting soft solid ITO Indium (m.p.156 °C) production of transparent conductive coatings Thallium Poison, non metallic The poisoner's poison“ (tasteless , odorless) Chemistry of Aluminium More than its compounds, the bulk usage of aluminium, especially its alloys dominate the industry •Lightest metal; also relatively inexpensive metal . •Tin was 19,830 USD/Metric Ton, zinc was 2,180 USD/MT and aluminium was 1,910 USD/MT •Third most abundant element on the earths crust: combined in 270 minerals •Low density and ability to resist corrosion by passivation. Pure aluminium has about one‐third the density and stiffness of steel. The yield strength of pure aluminium is 7–11 MPa, while aluminium alloys have yield strengths ranging from 200 MPa to 600 MPa. Yield strength of mild steel is 250 Mpa while that of high strength alloy steel is 690 Mpa A yield strength or yield point of a material is defined as the stress at which a material begins to deform plastically. Prior to the yield point the material will deform elastically and will return to its original shape when the applied stress is removed. ( Mpa = megapascal = 145psi) Three main reasons why aluminium alloys are used instead of pure aluminium •Increased strength to weight ratio over pure aluminium.
    [Show full text]
  • Table of Contents
    Table of Contents Committees Preface Symposium A: Invited Lectures New Perspectives for Wrought Magnesium Alloys J. Bohlen, D. Letzig and K.U. Kainer 1 Automotive Mg Research and Development in North America J.A. Carpenter, J. Jackman, N.Y. Li, R.J. Osborne, B.R. Powell and P.S. Sklad 11 State of the Art in the Refining and Recycling of Magnesium L.F. Zhang and T. Dupont 25 Research and Development of Processing Technologies for Wrought Magnesium Alloys F.S. Pan, M.B. Yang, Y.L. Ma and G.S. Cole 37 Overview of CAST and Australian Magnesium Research D.H. StJohn 49 Development of Magnesium Alloys with High Performance S. Kamado and Y. Kojima 55 Symposium B: Cast Magnesium Alloys and Foundry Technologies Effects of Microstructure and Partial Melting on Tensile Properties of AZ91 Magnesium Cast Alloy T.P. Zhu, Z.W. Chen and W. Gao 65 Effect of Heat Treatment on the Microstructure and Creep Behavior of Mg-Sn-Ca Alloys T.A. Leil, Y.D. Huang, H. Dieringa, N. Hort, K.U. Kainer, J. Buršík, Y. Jirásková and K.P. Rao 69 Creep Behaviour and Microstructure of Magnesium Die Cast Alloys AZ91 and AE42 K. Wei, L.Y. Wei and R. Warren 73 Growth Rate of Small Fatigue Cracks of Cast Magnesium Alloy at Different Conditions X.S. Wang and J.H. Fan 77 A Cyclic Stress-Strain Constitutive Model for Polycrystalline Magnesium Alloy and its Application X.G. Zeng, Q.Y. Wang, J.H. Fan, Z.H. Gao and X.H. Peng 81 Dynamic Stress-Strain Behavior of AZ91 Alloy at High-Strain Rate G.Y.
    [Show full text]
  • Applied Chemistry-Ii L T P 3 - 2
    2.4 APPLIED CHEMISTRY-II L T P 3 - 2 RATIONALE The role of chemistry in every branch of engineering and technology is expanding greatly. Now a days, various chemical products are playing important role in the field of engineering with increasing number of such products each successive years. The strength of materials, the chemical composition of substances, their behaviour when subjected to different treatment and environment, and the laws of heat and dynamic energy have entered in almost every activity of modern life. Chemistry is considered as one of the core subjects for diploma students in engineering and technology for developing in them scientific temper and appreciation of chemical properties of materials, which they have to handle in their professional career. Effort should be made to teach this subject through demonstrations/ minor projects and with the active involvement of students. Note:- Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles. DETAILED CONTENTS 1. Metallurgy (08 hrs) A brief introduction of the terms: Metallurgy (types), mineral, ore, gangue or matrix, flux, slag, concentration (methods of concentrating the ores), ore, roasting, calcinations, smelting and refining of metal. Metallurgy of (i) Aluminium (ii) Iron Definition of an alloy, purposes of alloying, composition, properties and uses of alloys- brass, bronze, monel metal, magnalium, duralumin, alnico, stainless steel and invar. 2. Fuels (10 hrs) 2.1 Definition of a „Fuel‟, characteristics of a good fuel and classification of fuels with suitable examples 2.2 Definition of Calorific value of a fuel and determination of calorific value of a solid fuel with the help of Bomb calorimeter.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • Aste Bolaffi Auto Classiche
    ASTE BOLAFFI AUTO CLASSICHE Milano, 24 maggio 2019 STAFF OPERATIVO | OPERATIONAL TEAM Amministrazione e finanza Accounting and finance Simone Manenti [email protected] Maria Luisa Caliendo [email protected] Serena Giancale [email protected] Comunicazione Communication Silvia Lusetti [email protected] Ufficio stampa Press-office Margherita Criscuolo [email protected] Gestione organizzativa Organization Management Chiara Pogliano [email protected] Laura Cerruti [email protected] Christina Penza [email protected] Irene Toscana [email protected] Logistica Logistics Michele Sciascia [email protected] Ezio Chiantello [email protected] Elisabetta Deaglio [email protected] Simone Gennero [email protected] Fulvio Giannese [email protected] Roberto Massa Micon [email protected] Servizio clienti Customer service Filippo Guidotti [email protected] Erika Bonetto [email protected] Giuseppe Ibba [email protected] Amministratore sistema informatico lotto | lot 18 System administrator Maurizio Tuninetti [email protected] consulente | consultant lotti | lots 52-53 AUTO CLASSICHE Classic motor vehicles ASTA | AUCTION Venerdì 24 maggio 2019 Friday 24 May 2019 Lainate, Milano ore 15.00 | 3.00 pm lotti 1-56 | lots 1-56 ESPOSIZIONE | VIEWING da martedì 21 a venerdì 24 maggio 2019 from Tuesday 21 to Friday 24 May 2019 ore 11.00-19.00 | 11.00 am-7.00 pm La Pista via Manuel Fangio, Lainate, Milano INFORMAZIONI | ENQUIRIES tel +39 011-0199101
    [Show full text]
  • Aluminium Laminate
    Aluminum Al Product format: Laminate Technical characteristics: Aluminum sheet and strip rolled www.bronmetal.com Aluminum Al Product format: Laminate Technical characteristics : Aluminum sheet and strip rolled EQUIVALENCES 1050 PURE ALUMINIUM (99,5%) EQUIVALENTS NATIONAL STANDARDS AND TRADE NAMES ISO SPAIN GERMANY CANADA E.E.U.U. FRANCE UNITED KINGDOM ITALY OTHERS Al-99,5 L-3051 Al-99,5 Al-99,5 A5 1B 9001/2 17010 Puraltok 99,5 3,0255 1S Durcilium T 4007 WG-1S Hiduminium A1 1150/55 Impalco 0,5 Aluran 99,5 EQUIVALENCES 1200 PURE ALUMINIUM (99 %) EQUIVALENTS NATIONAL STANDARDS AND TRADE NAMES ISO SPAIN GERMANY CANADA E.E.U.U. FRANCE UNITED KINGDOM ITALY OTHERS Al 99,0 L-3001 Al 99,0 2S 1100 A-4 1C 3567 4010 Puraltok 99 3,0205 2S 1100 5090 WG-2S Birmetal 2 9001/1 17005 90 Hiduminium-1C 1008 1010 NA-2S 1191 2584 A0 Aluran 99 www.bronmetal.com Aluminum Al Product format: Laminate Technical characteristics : Aluminum sheet and strip rolled EQUIVALENCES 2007 ALUMINIUM-COPPER EQUIVALENTS NATIONAL STANDARDS AND TRADE NAMES SPAIN GERMANY FRANCE SUIZA L-3121 DIN 1725 A U4Pb Al-CuMgPb Cobreltok 07 DIN 1746 Al-CuMgCd DIN 1747 Decotal 200 Tordal 1970 Aludur D 505 Spanal 320 MFK Aludur 570 A Automat EQUIVALENCES 2011 ALUMINIUM-COPPER EQUIVALENCIAS COMERCIALES SPAIN CANADA E.E.U.U. FRANCE SUIZA ITALY UNITED KINGDOM L-3192 CB 60 2011 A-U5PbBi Decotal 500 Recidal 11 28 S 28-S CSA HA,5 ASTM B 211 Fortal 2011 28 S QQ-R-225/3 QQ-R-365 WW-P-471 Ty III QQ-R-566 www.bronmetal.com Aluminum Al Product format: Laminate Technical characteristics : Aluminum sheet and strip rolled EQUIVALENCES 2030 ALUMINIUM-COPPER EQUIVALENTS NATIONAL STANDARDS AND TRADE NAMES SPAIN GERMANY FRANCE SUIZA L-3121 Al CuMgPb A U4Pb Al-CuMgPb 3,1645 NF A 57.350 Al-CuMgCd DIN 1725 Fortal D Decotal 200 DIN 1746 Fortal 2030 Aludur D 505 DIN 1747 Carbium al Pbl MFK Tordal 1970 Duralumin DE Spanal 320 Aludur 570 A Automat EQUIVALENCES 2014 ALUMINIUM-COPPER EQUIVALENTS NATIONAL STANDARDS AND TRADE NAMES ISO SPAIN GERMANY CANADA E.E.U.U.
    [Show full text]
  • DEVELOPMENT and CHARACTERIZATION of Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella Communis) PARTICULATE COMPOSITES
    DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY MICHEAL NEBOLISA NWABUFOH THE DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA JUNE, 2015. DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY Michael Nebolisa NWABUFOH, B. Eng (Met), E.S.U.T M.Sc/Eng/01731/2010-2011 A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA. IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF A MASTER DEGREE IN METALLURGICAL AND MATERIALS ENGINEERING. DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING, FACULTY OF ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA. NIGERIA. JUNE, 2015 ii Declaration I hereby declare that, this research work titled "Development and Characterization of Al-3.7%Cu-1.4%Mg Alloy/Periwinkle Shell (Turritella communis) Ash Particulate Composites" was carried out by me, and the results of this research were obtained by tests carried out in the laboratory and all quotations are indicated by references. Name of Student Signature Date iii Certification This research work titled "Development and Characterization of Al-3.7%Cu- 1.4%Mg/Periwinkle (Turritella communis) Shell Ash Particulate Composites" by Nwabufoh M. Nebolisa with Registration Number M.Sc/Eng/01731/2010-2011 meets the regulations guiding the Award of Master degree in Metallurgical and Materials Engineering at Ahmadu Bello University, Zaria. ____________________ ________________ Prof. S.B. Hassan Date Chairman, Supervisor committee ____________________ _______________ Prof. G.B. Nyior Date Member, Supervisor committee ____________________ _______________ Prof. S.A. Yaro Date Head of Department _____________________ ________________ Prof.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • A Novel Brazing Technique for Aluminum
    WELDING RESEARCH SUPPLEMENT TO THE WELDING JOURNAL, JUNE 1994 Sponsored by the American Welding Society and Ihe Welding Research Council A Novel Brazing Technique for Aluminum A simplified and cost-effective method using an alloy powder mixture instead of a clad surface has been developed for brazing aluminum, copper and brass BY R. S. TIMSIT AND B. J. JANEWAY ABSTRACT. This paper describes a novel Introduction eutectic composition such as AA4045, brazing technique for aluminum, in AA4047 or AA4343 (Ref. 4). These alloys which at least one of the contacting alu­ The joining of metal parts by brazing contain 9 to 1 3 wt-% of Si and are char­ minum surfaces is coated with a powder- often involves the use of a filler metal acterized by a melting temperature (in a mixture consisting of silicon and a potas­ characterized by a liquidus temperature narrow range near 577°C) (Ref. 5) con­ sium fluoroaluminate flux. Brazing is above 450°C (842°F) but appreciably siderably lower than that of the core alloy carried out by heating the joint to ap­ below the solidus temperatures of the (~660°C). Joining is carried out at ap­ C proximately 600 C in nitrogen gas at core materials. On melting, the filler proximately 600°C (1112°F) in the pres­ near-atmospheric pressure over a time metal spreads between the closely fitted ence of a noncorrosive flux such as a flu­ interval of a few minutes. During heating, surfaces, forms a fillet around the joint oroaluminate salt (Refs. 1, 6) to remove the flux melts at 562°C and dissolves the and yields a metallurgical bond on cool­ native surface oxide films from the con­ surface oxide layers on the aluminum, ing.
    [Show full text]
  • Alloys for Aeronautic Applications: State of the Art and Perspectives
    metals Review Alloys for Aeronautic Applications: State of the Art and Perspectives Antonio Gloria 1, Roberto Montanari 2,*, Maria Richetta 2 and Alessandra Varone 2 1 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; [email protected] 2 Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +39-06-7259-7182 Received: 16 May 2019; Accepted: 4 June 2019; Published: 6 June 2019 Abstract: In recent years, a great effort has been devoted to developing a new generation of materials for aeronautic applications. The driving force behind this effort is the reduction of costs, by extending the service life of aircraft parts (structural and engine components) and increasing fuel efficiency, load capacity and flight range. The present paper examines the most important classes of metallic materials including Al alloys, Ti alloys, Mg alloys, steels, Ni superalloys and metal matrix composites (MMC), with the scope to provide an overview of recent advancements and to highlight current problems and perspectives related to metals for aeronautics. Keywords: alloys; aeronautic applications; mechanical properties; corrosion resistance 1. Introduction The strong competition in the industrial aeronautic sector pushes towards the production of aircrafts with reduced operating costs, namely, extended service life, better fuel efficiency, increased payload and flight range. From this perspective, the development of new materials and/or materials with improved characteristics is one of the key factors; the principal targets are weight reduction and service life extension of aircraft components and structures [1].
    [Show full text]