Compiled by Jane E. Jenness INTRODUCTION This Map Report Is
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A History of Beaver County, Utah Centennial County History Series
A HISTORY OF 'Beaver County Martha Sonntag Bradley UTAH CENTENNIAL COUNTY HISTORY SERIES A HISTORY OF 'Beaver County Martha Sonntag Bradley The settlement of Beaver County began in February 1856 when fifteen families from Parowan moved by wagon thirty miles north to Beaver Valley. The county was created by the Utah legislature on 31 January 1856, a week before the Parowan group set out to make their new home. However, centuries before, prehistoric peoples lived in the area, obtaining obsidian for arrow and spear points from the Mineral Mountains. Later, the area became home to Paiute Indians. Franciscan Friars Dominguez and Escalante passed through the area in October 1776. The Mormon settlement of Beaver devel oped at the foot of the Tushar Mountains. In 1859 the community of Minersville was es tablished, and residents farmed, raised live stock, and mined the lead deposits there. In the last quarter of the nineteenth century the Mineral Mountains and other locations in the county saw extensive mining develop ment, particularly in the towns of Frisco and Newhouse. Mining activities were given a boost with the completion of the Utah South ern Railroad to Milford in 1880. The birth place of both famous western outlaw Butch Cassidy and inventor of television Philo T. Farnsworth, Beaver County is rich in history, historic buildings, and mineral treasures. ISBN: 0-913738-17-4 A HISTORY OF 'Beaver County A HISTORY OF Beaver County Martha Sonntag Bradley 1999 Utah State Historical Society Beaver County Commission Copyright © 1999 by Beaver County Commission All rights reserved ISBN 0-913738-17-4 Library of Congress Catalog Card Number 98-61325 Map by Automated Geographic Reference Center—State of Utah Printed in the United States of America Utah State Historical Society 300 Rio Grande Salt Lake City, Utah 84101-1182 Contents ACKNOWLEDGMENTS vii GENERAL INTRODUCTION ix CHAPTER 1 Beaver County: The Places That Shape Us . -
BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 42, Part 11, 1997
BRIGHAM YOUNG UNIVERSITY GEOJ (3GY GEOLOGICAL SOCIETY OF AMERICA 1997 ANNUAL MEETING SALT LAKE CITY, UTAH PART2 TWO EDITED BY PAUL KARL LINK AND BART J. KOWALLIS VOLUME 42 1997 MESOZOIC TO RECENT GEOLOGY OF UTAH Edited by Paul Karl Link and Bart J. Kowallis BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 42, Part 11, 1997 CONTENTS Triassic and Jurassic Macroinvertebrate Faunas of Utah: Field Relationships and Paleobiologic Significance ........................................ Carol M. Tang and David J. Bottjer Part 2: Trace fossils, hardgrounds and ostreoliths in the Carmel Formation (Middle Jurassic) of southwestern Utah ...........................................Mark A. Wilson Part 3: Low-diversity faunas of the Middle Jurassic Carmel Formation and their paleobiological implications ................................Carol M. Tang and David J. Bottjer Part 4: Paleoecology of Lower Triassic marine carbonates in the southwestern USA ....................... ......................................................David J. Bottjer and Jennifer K. Schubert Structure and Kinematics of a Complex Impact Crater, Upheaval Dome, Southeast Utah .........................Bryan J. Kriens, Eugene M. Shoemaker, and Ken E. Herkenhoff Stratigraphy, and structure of the Sevier thrust belt, and proximal foreland-basin system in central Utah: A transect from the Sevier Desert to the Wasatch Plateau ...................T. E Lawton, D. A. Sprinkel, F! G. DeCelles, G. Mitra, A. J. Sussman,, and M. l? Weiss Lower to Middle Cretaceous Dinosaur Faunas of the Central Colorado Plateau: A Key to Understanding 35 Million Years of Tectonics, Sedimentology, Evolution, and Biogeography ..................... James I. Kirkland, Brooks Britt, Donald L. Burge, Ken Carpenter, Richard Cifelli, Frank DeCourten, Jeffrey Eaton, Steve Hasiotis, and Tim Lawton Sequence Architecture, and Stacking Patterns in the Cretaceous Foreland Basin, Utah: Tectonism versus Eustasy ........................................ -
Milford Solar Phase II Cultural Resources Survey, Beaver County, Utah (Site Location Information Is Protected and Has Been Removed)
APPENDIX F Cultural Resources Survey Report Milford Solar Phase II Cultural Resources Survey, Beaver County, Utah (Site location information is protected and has been removed) APRIL 2020 PREPARED FOR Beaver County Planning and Zoning Commission PREPARED BY SWCA Environmental Consultants MILFORD SOLAR PHASE II CULTURAL RESOURCES SURVEY, BEAVER COUNTY, UTAH Prepared for Beaver County Planning and Zoning Commission 105 East Center Street Beaver, Utah 84713 Prepared by Tiffany Tuttle Collins, M.A. and Reilly Jensen, M.A. Principal Investigator Kelly Beck, Ph.D. SWCA Environmental Consultants 257 East 200 South, Suite 200 Salt Lake City, Utah 84111 (801) 322-4307 www.swca.com SWCA Project No. 42529.02 SWCA Cultural Resources Report No.19-757 Utah State Antiquities Project No. U20ST0252 Public Lands Policy Coordination Office Permit No. 18 April 2020 Milford Solar Phase II Cultural Resources Survey, Beaver County, Utah ABSTRACT Report Title. Milford Solar Phase II Cultural Resources Survey, Beaver County, Utah Report Date. Draft, April 2020 Lead Agency Name. Beaver County Permit and Project Numbers. Utah State Antiquities Project No. U20ST0252; Public Lands Policy Coordination Office Permit No. 18; SWCA Environmental Consultants (SWCA) Project No. 42529.02; SWCA Cultural Resources Report No. 19-757 Land Ownership Status. Private, Bureau of Land Management Project Description. In February 2020, Longroad Energy requested that SWCA conduct a Class III cultural resources survey (survey) for the Milford Solar Phase II Project (Project). The Project is for a proposed utility scale solar energy facility located on private lands north and east of Milford in Beaver County. The Project involves the construction of a 250-megawatt photovoltaic solar energy generation facility and associated ancillary facilities, including a substation, battery energy storage system, electrical collection lines, a gen lead transmission line, a switching station, an operations and maintenance building, and new-build access roads. -
Carpenter, R.M., Pandolfi, J.M., P.M. Sheehan. 1986. the Late Ordovian and Silurian of the Eastern Great
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 69 August 1, 1986 The Late Ordovician and Silurian of the Eastern Great Basin, Part 6: The Upper Ordovician Carbonate Ramp Roger M. Carpenter John M. Pandolfi Peter M. Sheehan MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 69 August 1, 1986 The Late Ordovician and Silurian of the Eastern Great Basin, Part 6: The Upper Ordovician Carbonate Ramp Roger M. Carpenter, Department of Geology, Conoco Inc., 202 Rue Iberville, Lafayette, LA 70508; John M. Pandolfi, Department of Geology, University of California, Davis, California, 95616; Peter M. Sheehan, Department of Geology, Milwaukee Public Museum, 800W. Wells St., Milwaukee, Wisconsin 53233 ISBN 0-89326-122-X © 1986 Milwaukee Public Museum Abstract Two east-west transects examined in western Utah and eastern Nevada preserve Upper Ordovician-Lower Silurian lithofacies along a carbonate ramp transitional between a shelf and basin. Previous investigators have reconstructed this margin as a classic carbonate shelf with an abrupt, linear margin between shelf and slope. However, lithofacies change gradually between shelf and slope and are better explained by a carbonate ramp model. Intertidal and shallow subtidal dolomites are present to the east, with progressively deeper water limestones with increasing fine grained terrigenous content toward the west. Shelf edge reefs or shallow water carbonate margin buildups are absent. Latest Ordovician glacio-eustatic decline in sea level produced a period ofsubaerial exposure in the shallow eastern region. However, deposition continued deeper on the ramp, where shallow-water, cross laminated, massive dolomites were deposited during the glacio-eustatic regression. The carbonate ramp pattern was disrupted in the Middle or early part of the Late Llandovery, when an abrupt margin was established by listric growth faulting. -
D. Final Report Vol. Ii Regional Heat Flow and Geochemical
DAVID- D. FINAL REPORT VOL. II REGIONAL HEAT FLOW AND GEOCHEMICAL STUDIES IN SOUTHWEST UTAH Contract: 14-08-0001-G-341 Agency: U.S. Geological Survey Period of Work: June 21, 1976 through August 31, 1978 Grantee: Department of Geology and Geophysics University of Utah Princiapl Investigator: David S. Chapman Co-Investigators: David D. Blackwell William T. Parry Willi am R. Sill Stanley H. Ward James A. Whelan FINAL REPORT VOL II REGIONAL HEAT FLOH AND GEOCHEMICAL STUDIES Irl SOUTHHEST UTft.H Contract: 14-08-0001-G-341 Agency: U.S. Geological Survey Period of work: June 21 7 1976 through August 31, 1978 Grantee: Department of Geology and Geophysics The University of Utah Principal Investigator: David S. Chapman Co Investigators: David 0. Blackwell ~~ i 11 i am T• Parry Hilliam R. Sill Stanley H. Ward James A. ~Jhelan CONTENTS Page ABSTRACT. • • 1 INTRODUCTION. • . 2 HEAT FLOW DATA: SUMMARY 2 HEAT FLOH PROVINCES Arm SUBPROVH·!CES. 3 BASIN AND RANGE - COLORADO PLATEAU TRANSITION • • • • • • • • • • 14 rHNERAL f.'iOUNTAINS - COVE FORT REGION. • • • • • • • • • • • • • • 16 REFERENCES •••••••••••••••••••••••••• • • 19 ACKNOWLEDGMENTS • • • • • • • • • • • • • • • • • • • • • • • • • 20 APPENDIX •••• •. • 21 I HEAT FLOW DATA: DETAILS. • • • • • • • • • • • • • • • • 21 II ABSTRACTS FROM MEETINGS • . • . • • • • . 1.19 ABSTRACT Sixty t~'lo new heat flow determinations for Utah are reported. Although the spatial distribution of sites is still uneven~ with greatest concentration of sites in southwest Utah where the geothermal energy potential appears to be greatest~ the new sites represent a considerable improvement in representing the regional heat flow patterns. Two broad areas having anomalous high heat flow have been indentified: the northern most of these regions encompasses part of the Deep Creek Mountains~ Spar tltountain and Keg Mountain of west central Utah; the southern most region includes Escalante Desert and Mineral Mountains - Cove Fort areas. -
W9200094.Pdf
STATE OF UTAH DEPARTt1EtJT OF tJATURAL RESOURCES Technical Publ ication No. 42 HYDROLOG IC RECOtJNA , SSANCE OF THE tWRTHERN GREAT SALT LAKE DESERT AND SUMMARY HYDROLOGIC RECONNAISSANCE OF NORTHWESTERN UTAH by Jerry C. Stephens, Hydrologist U. S. Geological Survey Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources Division of ~ater Rights 1974 CONTENTS Page Abstract ...........................................•....................... Introduction ••••.•••.••••.••••••••••••••••••••••••••••••••••••••••••••••••• 2 Previous studies and acknowledgments ••••••.•••••••••••••••••••••••••••••••• 3 Hydrologic reconnaissance of the northern Great Salt Lake Desert............................................................ 7 Location and general features •••••••••••.•.••••••••••••••••••.•.•.. 7 Hydrology •••••••••• ................................................ 7 Surface water •• ................................................ 7 Ground water ••••••••••••••••••••••••••••••••••••••••••••••••••• 11 Shallow brine aquifer ••• ................................... 12 Alluvial-fan aquifer ••• .................................... 16 Valley-fill aquifer 20 ot he r aqui fer 5 ••••••••••••••••••••••••••••••••••• 22 Discussion of recharge and discharge estimates ••••••••••••• 23 ~"a te r qua litY••••••• ........................................... 23 Potential for additional water-resources development •• 26 Summary of hydrology of northwestern Utah •••••••••••••••••••••••••••••••••• 26 Surface water .................•..•................................ -
Mineral Occurrences in the Emergency Withdrawal Area and Adjacent Lands in the Great Salt Lake Desert
UTAH GEOLOGICAL AND MINERAL SURVEY REPORT OF INVESTIGATION NO. 200 MINERAL OCCURRENCES IN THE EMERGENCY WITHDRAWAL AREA AND ADJACENT LANDS IN THE GREAT SALT LAKE DESERT by J. Wallace Gwynn Keith Clem Mike Shubat Bryce Tripp Paul Sturm September 1985 I. Introduction - This mineral report was prepared to fulfill the requirements of PL 94-579 Sec. 204 (c)(2) for the emergency withdrawal of a portion of the Great Salt Lake Desert. This report covers the actual proposed withdrawal area and the surrounding region (fig. 1 and 2) from township 2S to BN and from range 8W to IBW. A legal description of the actual area subject to inundation is contained in a seperate land report. Geologic data was compiled from published and unpublished Utah Geological and Mineral Survey material and other outside sources. Hellmut H. Doelling's 1980 publication, "Geology and mineral resources of Box Elder County, Utah" and Lehi Hintze's 1973 book "Geologic history of Utah" are probably the best general references for this area. No field work was deemed necessary in light of the availability of adequate geological information. II. General Geology Mountain ranges adjacent to areas affected by the West Desert pumping project are dominantly comprised of Paleozoic to lower Mesozoic carbonate rocks (Fig. 3). Rocks of Cambrian through Devonian age represent shallow marine miogeoclinal deposits and are composed of limestone and dolomite with minor sandstone and shale. The thickness of the miogeoclinal rocks ranges from 15,000 to 16,000 feet (Hintze, 1973). Mississippian to lowermost Mesozoic rocks were largely deposited in the Oquirrh Basin and are comprised of interbedded limestone, sandstone, and shale. -
University of Nevada, Reno
University of Nevada, Reno Fine-Grained Volcanic Toolstone Sources and Early Use in the Bonneville Basin of Western Utah and Eastern Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Anthropology by David Page Dr. Gary Haynes, Thesis Advisor May 2008 © David Page, 2008 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by DAVID J. PAGE Entitled Fine-Grained Volcanic Toolstone Sources and Early Use in the Bonneville Basin of Western Utah and Eastern Nevada be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS _____________________________________________________________ Gary Haynes, Ph.D., Advisor _____________________________________________________________ David E. Rhode, Ph.D., Committee Member _____________________________________________________________ Kenneth D. Adams, Ph.D., Graduate School Representative _____________________________________________________________ Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2008 i Abstract Identifying lithic sources is central to understanding toolstone use by prehistoric hunter-gatherer groups. The distribution of archaeological materials in relation to geologic sources creates a spatial pattern of use that varies through time. These patterns of distribution in conjunction with analysis of technological organization can be used to infer behavior, especially levels of mobility. This thesis presents geochemical data from a wide-scale sourcing -
Investigating the Margins of Pleistocene Lake Deposits with High- Resolution Seismic Reflection in Pilot Allev Y, Utah
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2008-11-11 Investigating the margins of Pleistocene lake deposits with high- resolution seismic reflection in Pilot alleV y, Utah John V. South Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation South, John V., "Investigating the margins of Pleistocene lake deposits with high-resolution seismic reflection in Pilot alleV y, Utah" (2008). Theses and Dissertations. 1641. https://scholarsarchive.byu.edu/etd/1641 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. INVESTIGATING THE MARGINS OF PLEISTOCENE LAKE DEPOSITS WITH HIGH-RESOLUTION SEISMIC REFLECTION IN PILOT VALLEY, UTAH by John V. South A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Geological Sciences Brigham Young University December 2008 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by John V. South This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date John H. McBride, Chair Date Stephen T. Nelson Member Date Alan L. Mayo Member BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of John V. South in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library. -
Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1972 Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah George Gregory Francis Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Francis, George Gregory, "Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah" (1972). All Graduate Theses and Dissertations. 1684. https://digitalcommons.usu.edu/etd/1684 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. STRATIGRAPHY AND ENVIRONMENTAL ANALYSIS OF THE SWAN PEAK FORMATION AND EUREKA QUARTZITE, NORTHERN UTAH by George Gregory Francis A thesis submitted in partial fulfillment· of the' requirements for the degree of MASTER OF SCIENCE in Geology ADDr~d: (5o~ittee Membe;') Deal/of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 1972 ii ACKNOWLEDGMENT The author wishes to express his appreciation to Dr. Robert Q. Oaks for his technical assistance and inspiration throughout the study. Special thanks are due to Dr. J. Stewart Williams for identification of many Ordovician fossils, and to Dr. Donald R. Olsen and Dr. Williams for care ful reading of the manuscript and suggestions for its improvement. AppreCiation is extended to Walter Holmes, Calvin James, Robert Oaks, and Warren Schulingkamp for their assistance and companionship in the field. To Dr. Leo Laporte of Brown University and Dr. -
Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1972 Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah George Gregory Francis Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Francis, George Gregory, "Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah" (1972). All Graduate Theses and Dissertations. 1684. https://digitalcommons.usu.edu/etd/1684 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. STRATIGRAPHY AND ENVIRONMENTAL ANALYSIS OF THE SWAN PEAK FORMATION AND EUREKA QUARTZITE, NORTHERN UTAH by George Gregory Francis A thesis submitted in partial fulfillment· of the' requirements for the degree of MASTER OF SCIENCE in Geology ADDr~d: (5o~ittee Membe;') Deal/of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 1972 ii ACKNOWLEDGMENT The author wishes to express his appreciation to Dr. Robert Q. Oaks for his technical assistance and inspiration throughout the study. Special thanks are due to Dr. J. Stewart Williams for identification of many Ordovician fossils, and to Dr. Donald R. Olsen and Dr. Williams for care ful reading of the manuscript and suggestions for its improvement. AppreCiation is extended to Walter Holmes, Calvin James, Robert Oaks, and Warren Schulingkamp for their assistance and companionship in the field. To Dr. -
Early Holocene Pinyon (Pinus Monophylla) in the Northeastern Great Basin
QUATERNARY RESEARCH 33, 94-101 (I!%@ Early Holocene Pinyon (Pinus monophylla) in the Northeastern Great Basin DAVID B. MADSEN Antiquities Section, Utah Division of State History, 300 Rio Grande, Salt Lake City, Utah &#I01 AND DAVIDRHODE Quaternary Studies Center, Desert Research Institute, P.O. Box 60220, Reno, Nevada 89506 Received February 9, 1989 Fine-grained excavation and analysis of a stratigraphic column from Danger Cave, northeastern Great Basin, suggests prehistoric hunter-gatherers were collecting and using singleleaf pinyon (Pinus monophylla) near the site for at least the last 7500 yr. Human use of the cave began after the retreat of Lake Bonneville from the Gilbert level, shortly before 10,000 yr B.P. In stratum 9, culturally deposited pine nut hulls appear in the sequence by about 7900 yr B.P. and are contin- uously present thereafter. A hull fragment in stratum 10 is directly dated to 7410 f 120 yr B.P. These dates are at least 2000 yr earlier than expected by extrapolation to macrofossil records from the east-central and central Great Basin, and necessitate some revision of current biogeographical models of late Quatemary pinyon migration. e 1990University of Washington. INTRODUCTION 39”30’ by about 6250 yr B.P., but was ap- parently absent from the area prior to that The apparent early-mid-Holocene migra- time. Macrofossil records dating to 10,000- tion of singleleaf pinyon (Pinus 1120120- 5000 yr B.P. from farther north of the cen- phyllu), from the southern Great Basin to tral Great Basin are few, but a pollen se- its modem northern limits near the Hum- quence from the Ruby Marshes (Thomp- boldt River, has been the subject of numer- son, 1984), near the modem northern limits ous investigations in the last 2 decades of the pine, suggests that it arrived some- (Thompson, 1984; Madsen, 1986; Meh- time between 6700 and 4700 yr B.P.