Psychrobacter Submarinus Sp. Nov. and Psychrobacter Marincola Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pseudomonas Spp. and Other Psychrotrophic
Pesq. Vet. Bras. 39(10):807-815, October 2019 DOI: 10.1590/1678-5150-PVB-6037 Original Article Livestock Diseases ISSN 0100-736X (Print) ISSN 1678-5150 (Online) PVB-6037 LD Pseudomonas spp. and other psychrotrophic microorganisms in inspected and non-inspected Brazilian Minas Frescal cheese: proteolytic, lipolytic and AprX production potential1 Pedro I. Teider Junior2, José C. Ribeiro Júnior3* , Eric H. Ossugui2, Ronaldo Tamanini2, Juliane Ribeiro2, Gislaine A. Santos2 2 and Vanerli Beloti2 , Amauri A. Alfieri ABSTRACT.- Teider Junior P.I., Ribeiro Júnior J.C., Ossugui E.H., Tamanini R., Ribeiro J., Santos G.A., Pseudomonas spp. and other psychrotrophic microorganisms Pseudomonas spp. and other psychrotrophic in inspected and non-inspected Brazilian Minas Frescal cheese: proteolytic, lipolytic andAlfieri AprX A.A. production& Beloti V. 2019. potential . Pesquisa Veterinária Brasileira 39(10):807-815. Instituto microorganisms in inspected and non- Nacional de Ciência e Tecnologia para a Cadeia Produtiva do Leite, Universidade Estadual de inspected Brazilian Minas Frescal cheese: Londrina, Rodovia Celso Garcia Cid PR-445 Km 380, Cx. Postal 10.011, Campus Universitário, proteolytic, lipolytic and AprX production Londrina, PR 86057-970, Brazil. E-mail: [email protected] The most consumed cheese in Brazil, Minas Frescal cheese (MFC) is highly susceptible to potential microbial contamination and clandestine production and commercialization can pose a risk to consumer health. The storage of this fresh product under refrigeration, although more appropriate, may favor the growth of spoilage psychrotrophic bacteria. The objective of this [Pseudomonas spp. e outros micro-organismos study was to quantify and compare Pseudomonas spp. and other psychrotrophic bacteria in inspected and non-inspected MFC samples, evaluate their lipolytic and proteolytic activities and e não inspecionados: potencial proteolítico, lipolítico e their metalloprotease production potentials. -
Growth and Adaptation of Microorganisms on the Cheese Surface Christophe Monnet, Sophie Landaud-Liautaud, Pascal Bonnarme, Dominique Swennen
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Growth and adaptation of microorganisms on the cheese surface Christophe Monnet, Sophie Landaud-Liautaud, Pascal Bonnarme, Dominique Swennen To cite this version: Christophe Monnet, Sophie Landaud-Liautaud, Pascal Bonnarme, Dominique Swennen. Growth and adaptation of microorganisms on the cheese surface. FEMS Microbiology Letters, Wiley-Blackwell, 2015, 362 (1), pp.1-9. 10.1093/femsle/fnu025. hal-01535275 HAL Id: hal-01535275 https://hal.archives-ouvertes.fr/hal-01535275 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Growth and adaptation of microorganisms on the cheese surface 2 3 4 Christophe Monnet1,2, Sophie Landaud2,1, Pascal Bonnarme1,2 & Dominique Swennen3,4 5 6 1 INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78370 Thiverval- 7 Grignon, France 8 2 AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78370 9 Thiverval-Grignon, France 10 3 INRA, UMR1319 Micalis, 78370 Thiverval-Grignon, France 11 4 AgroParisTech, UMR1319 Micalis, 78370 Thiverval-Grignon, France 12 13 * Corresponding author. -
Compositional and Functional Comparisons of the Microbiota in the Colostrum and Mature Milk of Dairy Goats
Compositional and functional comparisons of the microbiota in the colostrum and mature milk of dairy goats Zhannur Niyazbekova Northwest Agriculture and Forestry University Xiao-Ting Yao Northwest Agriculture and Forestry University Ming-Jie Liu Northwest Agriculture and Forestry University Nomin Bold Northwest Agriculture and Forestry University Juan-Zhen Tong Northwest Agriculture and Forestry University Jian-Jun Chang Qinghai University Ying Wen Qinghai University Li Li Qinghai University Yong Wang Qinghai University De-Kun Chen Northwest Agriculture and Forestry University Wen-Tao Ma ( [email protected] ) Northwest Agriculture and Forestry University https://orcid.org/0000-0002-4747-1489 Research article Keywords: Goat milk, Colostrum, Mature milk, Milk microbiota, Microbial diversity Posted Date: May 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-26653/v1 Page 1/20 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/20 Abstract Background Goat milk is essential for the initial development of kids by providing a great source of commensal bacteria. Here we analyzed the microbiota of goat colostrum which was collected daily for ve days post delivery and mature milk collected at the 7th, 10th, 20nd, 30th, 40th, 50th and 60th days, respectively, from three farms of Shaanxi province. Results The result showed that microbial alpha diversity was higher in the mature milk compared with that in the colostrum. According to taxonomy results, Proteobacteria, Firmicutes, -
Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals?
Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals? Amy Apprill1*, Jooke Robbins2, A. Murat Eren3, Adam A. Pack4,5, Julie Reveillaud3, David Mattila6, Michael Moore1, Misty Niemeyer7, Kathleen M. T. Moore7, Tracy J. Mincer1* 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America, 2 Center for Coastal Studies, Provincetown, Massachusetts, United States of America, 3 Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America, 4 University of Hawaii at Hilo, Hilo, Hawaii, United States of America, 5 The Dolphin Institute, Honolulu, Hawaii, United States of America, 6 Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Hawaii, United States of America, 7 International Fund for Animal Welfare, Yarmouth Port, Massachusetts, United States of America Abstract Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. -
Psychrobacter Arenosus Bacteremia After Blood Transfusion, France
DISPATCHES rapidly increased to 40°C) and had chills and headache. Psychrobacter The transfusion was stopped and the patient transferred to the Department of Internal Medicine. At examination, there arenosus was no hypotension, jaundice, or red urine. Standard laboratory testing showed no ABO Bacteremia incompatibility, hemoglobinemia, hemoglobinuria, and coagulation disorders. According to recommendations after Blood of the Agence Nationale de Sécurité du Médicament Transfusion, (Saint-Denis, France), 3 sets of aerobic and anaerobic blood cultures (Bactec; Becton Dickinson, Pont de Clay, France France) for the recipient (1 immediately and 2 others 4 hours later) and the remaining part of the third erythrocyte Yvan Caspar, Christine Recule, Patricia Pouzol, unit were sent to the bacteriology laboratory for culture. Bruno Lafeuillade, Marie-Reine Mallaret, Gram staining of a blood smear prepared from the third Max Maurin, and Jacques Croize erythrocyte unit showed a large number (≈106 CFU/mL) of gram-variable coccobacilli. We report a case of transfusion-associated bactere- Samples were placed on Columbia blood agar mia caused by Psychrobacter arenosus. This psychrotoler- ant bacterium was previously isolated in 2004 from coastal (bioMérieux, Marcy L’Etoile, France) and incubated at sea ice and sediments in the Sea of Japan, but not from 37°C in anaerobic or 5% CO2–enriched atmospheres. humans. P. arenosus should be considered a psychrotoler- Sample inoculated into blood culture bottles were ant bacterial species that can cause transfusion-transmitted incubated at 37°C under aerobic and anaerobic conditions bacterial infections. (Figure). The aerobic blood culture bottle of the first sample obtained from the recipient and aerobic cultures of the third erythrocyte unit enabled isolation of the same acteria are the leading cause of transfusion-transmitted gram-variable coccobacilli after incubation for 48 hours infections (1). -
Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method. -
Active Microorganisms Thrive Among Extremely Diverse Communities in Cloud Water Pierre Amato, Muriel Joly, Ludovic Besaury, Anne Oudart, Najwa Taïb, Anne I
Active microorganisms thrive among extremely diverse communities in cloud water Pierre Amato, Muriel Joly, Ludovic Besaury, Anne Oudart, Najwa Taïb, Anne I. Moné, Laurent Deguillaume, Anne-Marie Delort, Didier Debroas To cite this version: Pierre Amato, Muriel Joly, Ludovic Besaury, Anne Oudart, Najwa Taïb, et al.. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS ONE, Public Library of Science, 2017, 12 (8), 10.1371/journal.pone.0182869. hal-01598571 HAL Id: hal-01598571 https://hal.archives-ouvertes.fr/hal-01598571 Submitted on 6 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Active microorganisms thrive among extremely diverse communities in cloud water Pierre Amato1*, Muriel Joly1, Ludovic Besaury1, Anne Oudart1,2, Najwa Taib2, Anne I. MoneÂ2, Laurent Deguillaume3, Anne-Marie Delort1, Didier Debroas2 1 Universite Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France, 2 Universite Clermont Auvergne, CNRS, Laboratoire Microorganismes: GeÂnome et Environnement, Clermont-Ferrand, France, 3 Universite Clermont Auvergne, CNRS, Observatoire de Physique du Globe, Clermont-Ferrand, France a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Clouds are key components in Earth's functioning. -
Marine Drugs
Mar. Drugs 2015, 13, 4539-4555; doi:10.3390/md13074539 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4 Angela Casillo 1, Ermenegilda Parrilli 1, Sannino Filomena 1,2, Buko Lindner 3, Rosa Lanzetta 1, Michelangelo Parrilli 4, Maria Luisa Tutino 1 and Maria Michela Corsaro 1,* 1 Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy; E-Mails: [email protected] (A.C.); [email protected] (E.P.); [email protected] (S.F.); [email protected] (R.L.); [email protected] (M.L.T.) 2 Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, Napoli 80131, Italy 3 Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, BorstelD-23845, Germany; E-Mail: [email protected] 4 Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-674149; Fax: +39-081-674393. Academic Editor: Antonio Trincone Received: 22 June 2015 / Accepted: 14 July 2015 /Published: 22 July 2015 Abstract: Psychrophilic microorganisms have successfully colonized all permanently cold environments from the deep sea to mountain and polar regions. The ability of an organism to survive and grow in cryoenviroments depends on a number of adaptive strategies aimed at maintaining vital cellular functions at subzero temperatures, which include the structural modifications of the membrane. -
Evolutionary Strategies of Highly Functional Catalases for Adaptation to High H2O2 Environments Isao Yumoto, Yoshiko Hanaoka and Isao Hara
Chapter Evolutionary Strategies of Highly Functional Catalases for Adaptation to High H2O2 Environments Isao Yumoto, Yoshiko Hanaoka and Isao Hara Abstract Enzymatic evolutionary strategies for adaptation to a high H2O2 environment have been evaluated using catalases with high catalytic efficiency isolated from two H2O2-tolerant bacteria, Exiguobacterium oxidotolerans and Psychrobacter piscatori. The entrance size of the narrow main channel in catalase has been estimated by deter- mining the formation rate of the intermediate state of peracetic acid (b), which is a larger substrate than H2O2 versus that of catalase activity with H2O2 (a) (calculated as b/a). The ratio of b/a in E. oxidotolerans catalase (EKTA) is much higher than that of P. piscatori catalase (PKTA). To elucidate the structural differences between the catalases, the amino acids present in the main channel have been compared between the two catalases and other catalases in the database. The combination of amino acid residues, which contribute high catalytic efficiency in the narrow main chan- nel of EKTA were different from those in PKTA. In this review, we discuss strategic differences in the elimination of high concentration of H2O2 owing to differences in the phylogenetic positions of catalases. In addition, we describe the relationships between the environmental distributions of genera involved in H2O2-resistant bacte- ria and their catalase functions based on the main channel structure of catalase. Keywords: H2O2-tolerant bacteria, Exiguobacterium, Psychrobacter, Vibrio, catalase, narrow main channel, bottleneck size 1. Introduction Oxygen is important for metabolism, acting as a terminal electron acceptor in aerobic bacteria, and these bacteria produce intracellular reactive oxygen species 2•− (ROS), such as hydrogen peroxide (H2O2), superoxide (O ), and hydroxyl radical • (OH ) as by-products of oxygen metabolism [1–4]. -
The Microbiome of North Sea Copepods
Helgol Mar Res (2013) 67:757–773 DOI 10.1007/s10152-013-0361-4 ORIGINAL ARTICLE The microbiome of North Sea copepods G. Gerdts • P. Brandt • K. Kreisel • M. Boersma • K. L. Schoo • A. Wichels Received: 5 March 2013 / Accepted: 29 May 2013 / Published online: 29 June 2013 Ó Springer-Verlag Berlin Heidelberg and AWI 2013 Abstract Copepods can be associated with different kinds Keywords Bacterial community Á Copepod Á and different numbers of bacteria. This was already shown in Helgoland roads Á North Sea the past with culture-dependent microbial methods or microscopy and more recently by using molecular tools. In our present study, we investigated the bacterial community Introduction of four frequently occurring copepod species, Acartia sp., Temora longicornis, Centropages sp. and Calanus helgo- Marine copepods may constitute up to 80 % of the meso- landicus from Helgoland Roads (North Sea) over a period of zooplankton biomass (Verity and Smetacek 1996). They are 2 years using DGGE (denaturing gradient gel electrophore- key components of the food web as grazers of primary pro- sis) and subsequent sequencing of 16S-rDNA fragments. To duction and as food for higher trophic levels, such as fish complement the PCR-DGGE analyses, clone libraries of (Cushing 1989; Møller and Nielsen 2001). Copepods con- copepod samples from June 2007 to 208 were generated. tribute to the microbial loop (Azam et al. 1983) due to Based on the DGGE banding patterns of the two years sur- ‘‘sloppy feeding’’ (Møller and Nielsen 2001) and the release vey, we found no significant differences between the com- of nutrients and DOM from faecal pellets (Hasegawa et al. -
Structure of the O‑Specific Polysaccharide from The
Note pubs.acs.org/jnp Structure of the O‑Specific Polysaccharide from the Lipopolysaccharide of Psychrobacter cryohalolentis K5T Containing a 2,3,4-Triacetamido-2,3,4-trideoxy‑L‑arabinose Moiety † ‡ † § # Anna N. Kondakova,*, Kseniya A. Novototskaya-Vlasova, Nikolay P. Arbatsky, Marina S. Drutskaya, , ⊥ † ‡ § # Victoria A. Shcherbakova, Alexander S. Shashkov, David A. Gilichinsky, Sergei A. Nedospasov, , † and Yuriy A. Knirel † Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia ‡ Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia § Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia # Faculty of Biology, Moscow State University, 119991 Moscow, Russia ⊥ Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Russia ABSTRACT: A novel constituent of bacterial polysaccharides, 2,3,4-triacetamido-2,3,4-trideoxy-L-arabinose, was found in the O-specific polysaccharide from the lipopolysaccharide of Psychrobacter cryohalolentis K5T and identified by 1D and 2D 1H and 13C NMR studies of the polysaccharide and a disaccharide obtained by solvolysis of the polysaccharide with triflic acid. The following structure of the branched polysaccharide was established by sugar analysis, triflic acid solvolysis, Smith degradation, and 2D NMR spectroscopy. Psychrobacter is a genus within the family Moraxellaceae of arabinose, which has not been hitherto reported in natural gamma-proteobacteria, which comprises psychrophilic to carbohydrates. mesophilic, halotolerant, aerobic, nonmotile, Gram-negative The lipopolysaccharide was obtained from dried bacterial coccobacilli.1 These bacteria live in extremely cold habitats, cells by the phenol−water procedure8 and degraded under mild such as Antarctic ice, soil, and sediments, as well as in deep sea acidic conditions. -
Rebecca Olivia Maclennan Cowie a Thesis Submitted to Victoria
BACTERIAL COMMUNITY STRUCTURE, FUNCTION AND DIVERSITY IN ANTARCTIC SEA ICE Rebecca Olivia MacLennan Cowie A thesis submitted to Victoria University of Wellington in fulfillment of the requirement for the degree of Doctor of Philosophy in Ecology & Biodiversity Victoria University of Wellington Te Whare Wananga o te Upoko o te Ika a Maui 2011 “I make no apologies for putting microorganisms on a pedestal above all other living things. For if the last blue whale choked to death on the last panda, it would be disastrous but not the end of the world. But if we accidentally poisoned the last two species of ammonia-oxidisers, that would be another matter. It could be happening now and we wouldn’t even know...” Tom Curtis (July 2006) ACKNOWLEDGEMENTS I would first like to thank my supervisors, Ken Ryan and Els Maas, for without them this thesis would not have been possible. Ken, thank you for everything! Thanks for giving me the opportunity to carry out research as part of the K043 team in Antarctica. I am grateful for the wealth of time you had for me whenever I came knocking on your door. I appreciate for your support, time and effort throughout the last three years and especially during the write-up. Els, thank you for giving so much of your time and energy towards my research. Your knowledge and advice has been invaluable. To my friends, fellow students and office mates who helped me along the way both scientifically and recreationally I thank Bionda Morelissen, Alejandra Perea Blazquez, Charles Lee, David Weller, Abi Powell, Mareike Sudek, Ingrid Knapp and Jade Berman.