Not Surviving During Air Transport: Evaluation of Microbial Spoilage

Total Page:16

File Type:pdf, Size:1020Kb

Not Surviving During Air Transport: Evaluation of Microbial Spoilage Italian Journal of Food Safety 2016; volume 5:5620 American lobsters economic resource of the coastal communities of North America, with more than 130,000 tons Correspondence: Cristian Bernardi, Department (Homarus americanus) of alive animals commercialised worldwide in of Health, Animal Science and Food Safety, not surviving during air 2006 and producing nearly 545 million of euros University of Milan, via G. Celoria 10, 20133 transport: evaluation of profits. Due to the decrease of the European Milan, Italy. lobster Homarus gammarus catching figures, Tel: +39.02.50317855 - Fax: +39.02.50317870. E-mail: [email protected] of microbial spoilage American lobsters are imported by several European countries, especially Mediterranean Erica Tirloni, Simone Stella, Acknowledgements: the authors would like to ones: in Italy about 4387 tons are annually thank METRO Italia SpA for providing the Mario Gennari, Fabio Colombo, introduced for an economic value of 44 million American lobsters. Professor Patrizia Cattaneo Cristian Bernardi of euros (Barrento et al., 2009; FAO, 2006). should also be acknowledged for her careful revi- Department of Health, Animal Science American lobsters are mainly commercialised sion of the manuscript. alive and cooked before consumption. After the and Food Safety, University of Milan, Key words: Dead American lobsters; Shipping; capture and during the air transport, they are Milan, Italy Food spoilage; Microbial population. submitted to several stresses like air exposure, changes of the natural environments in terms Contributions: ET and SS were involved in micro- of physical and chemical parameters such as biological analyses and writing of the paper. FC Abstract water salinity and temperature, hypoxia, fast- was involved in biomolecular analyses. MG was ing, interactions with other conspecifics and involved in phenotypical tests. CB was involved in human handling. These stressors can affect biomolecular analyses, reference search and planning of the trial. Eighteen American lobsters (Homarus their health, reducing their quality, and in americanus), dead during air transport, were some cases could be lethal. Opposite opinions analysed in order to evaluate the microbial Funding: the study was funded by the University are still existing about the edibility of lobsters of Milan, Piano di Sostegno alla Ricerca 2014, population of meat, gills and gut: no specific dead during air shipping: some sellers reject to Linea B. studies have ever been conducted so far on the sale the dead subjects, some others use these microbiological quality of American lobsters’ ones for cooked products, others sell these ani- Conflict of interest: the authors declare no poten- meats in terms of spoilage microbiota. The mals depreciated. At the moment there are no tial conflict of interest. meat samples showed very limited total viable available studies about the hygienic quality of Received for publication: 3 November 2015. counts, in almost all the cases below the level the living and dead animals, in terms of pres- of 6 Log CFU/g, while higher loads were found, Revision received: 25 January 2016. ence of potential pathogenic bacteria and of Accepted for publication: 26 January 2016. as expected, in gut and gills, the most probable microbial populations. However, we could sup- source of contamination. These data could jus- pose that the loads and the typology of micro- This work is licensed under a Creative Commons tify the possibility to commercialise these not- biota of lobsters reflect a combination of fac- Attribution-NonCommercial 4.0 International surviving subjects, without quality concerns tors including the environment where they are License (CC BY-NC 4.0). for the consumers. Most of the isolates result- captured, their feeding and living practices, ©Copyright E. Tirloni et al., 2016 ed to be clustered with type strains of the season of capture as well as the quality and Pseudoalteromonas spp. (43.1%) and Licensee PAGEPress, Italy temperature of the waters where they lived, as Italian Journal of Food Safety 2016; 5:5620 Photobacterium spp. (24.1%), and in particular already demonstrated for other crustaceans doi:10.4081/ijfs.2016.5620 to species related to the natural marine envi- and for finfish (Liston, 1980; Shewan, 1977). ronment. The distribution of the genera After death, once the immune response fails to showed a marked inhomogeneity among the function and the muscular structure declines tion of the meat of American lobsters not sur- samples. The majority of the isolates identified due to microbial activity, the alteration begins viving the air shipping from the harvest (USA) resulted to possess proteolytic (69.3%) and quickly: generally this situation does not to a seafood distribution platform of an inter- lipolytic ability (75.5%), suggesting their expose consumer to microbiological risks as potential spoilage ability. The maintanance of these animals are mainly consumed after national wholesaler, located in Northern Italy, good hygienical practices, especially during cooking. However, the increasing demand for and the identification of the most representa- the production of ready-to-eat lobsters-based ready-to-eat raw or cooked crustaceans and of tive bacterial populations in order to establish products, and a proper storage could limit the fresh lobster tails could enhance the risk posed the major genera/species involved with micro- possible replication of these microorganisms. by these products, if subjected to improper bial spoilage of these products. We also evalu- storage or poor hygienic practices during pro- ated the microbial loads of gut and gills as pos- duction and commercialisation. sible sources of contamination. Swartzentruber et al. (1980) found high total Introduction bacterial count values [more than 5 Log colony forming unit (CFU)/g] in 51.9% of frozen lob- The 90% of fish international market is ster tails samples, even if very low levels of col- Materials and Methods based on processed products, but live crus- iforms and E. coli were detected. Although, as taceans, especially clawed and spiny lobsters, already mentioned, no studies till now were Microbiological analyses crabs, marine and freshwater prawns and conducted on lobster meat bacterial popula- For this study, eighteen lobsters arrived freshwater crayfish, are really appreciated for tion, generally the microbiota of crustaceans dead after air transport lasted about 24 h from their high nutritional and commercial impor- captured in temperate waters includes harvest (USA) to the seafood distribution plat- tance (Fotedar and Evans, 2011). The Pseudomonas spp., Shewanella putrefaciens form, were collected. The subjects were trans- American lobster, Homarus americanus, is one and members of the group Acinetobacter- ported at refrigeration temperatures in card- of the most important commercial species Psychrobacter (Gram and Huss, 1996). board boxes containing ice gel packs where marketed internationally and one of the major Aim of our study was the microbial evalua- they were maintained separately thanks to [Italian Journal of Food Safety 2016; 5:5620] [page 75] Article cardboard dividers. The dead subjects were Lipolytic activity was assessed on Sierra’s transported under refrigerated conditions to agar containing Tween 80 (Sierra, 1957). The Results and Discussion the laboratory where they were analysed plates were incubated at 20°C for a week; pos- immediately. Aseptically, gills, meat and intes- itive strains showed a visible precipitation A total of 18 lobsters dead during shipping tine were withdrawn and submitted to microbi- around the colonies. were analysed: meat, gills (as the main access ological analyses: 5-10 g of each sample were All the isolates were screened for their abil- point for bacteria) and gut bacterial contami- diluted 1:10 in saline diluent (NaCl 10 g/L, ity to produce H2S. The medium used was Iron nations were screened. The Food and Drug MgSO4·7H2O 1.53 g/L, MgCl2·6H2O 1.28 g/L, KCl agar 1 (Gram et al., 1987); each plate was pre- Administration (FDA, 2013), which has issued 0.19 g/L, tryptone 1 g/L) and serial 10-fold dilu- pared with 40 mL of agar stab inoculated. H2S guidelines in order to define the microbiologi- tions were prepared. Total viable count (TVC) production was indicated by the formation of a cal quality of some food categories, indicates was enumerated onto modified Tryptose agar black precipitate of FeS. To enable the growth in 6 Log CFU/g the microbiological limit for as described by Bernardi et al. (2015), incubat- of halophilic microorganisms, the original crustaceans raw meat. There are no specific ed at 20°C for 72 h. The number of composition of some media (Iron Agar 1) were studies about the microbiological quality of Enterobacteriaceae was determined according added of the following final salt concentra- American lobsters’ meat; studies are available with ISO 21528-2:2004 method (ISO, 2004). tions: NaCl 10 g/L, MgSO4·7H2O 1.53 g/L, on frozen crabs meat (ICMSF, 1998), indicat- Colonies of fluorescent pseudomonads were MgCl2·6H2O 1.28 g/L, KCl 0.19 g/L. ing that counts below 5 Log CFU/g can be con- observed on plates of King’s B agar (King et al., The ability to growth at 5, 30, 37 and 42°C sidered satisfactory, while those comprised 1954) in ultraviolet light, after growth for 1-3 was tested isolating each of the strain onto between 5 and 6 Log CFU/g should be consid- days at 20°C. Bioluminescent bacteria were plates of modified Tryptose agar. Moreover the ered fairly satisfactory. Moreover, for fish prod- enumerated onto glycerol based marine agar ability to grow onto modified tryptose agar ucts, the threshold value used to identify the (GMA) (Makemson et al., 1992); plates were including different salt concentration (0 and end of the shelf-life is often 6 Log CFU/g 0.5%) was evaluated preparing the plates with incubated at 20°C for 72 h and observed daily (Olafsdottir et al., 2005), even if the total bac- the different percentages of salt included.
Recommended publications
  • Genetic Diversity of Culturable Vibrio in an Australian Blue Mussel Mytilus Galloprovincialis Hatchery
    Vol. 116: 37–46, 2015 DISEASES OF AQUATIC ORGANISMS Published September 17 doi: 10.3354/dao02905 Dis Aquat Org Genetic diversity of culturable Vibrio in an Australian blue mussel Mytilus galloprovincialis hatchery Tzu Nin Kwan*, Christopher J. S. Bolch National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Locked Bag 1370, Newnham, Tasmania 7250, Australia ABSTRACT: Bacillary necrosis associated with Vibrio species is the common cause of larval and spat mortality during commercial production of Australian blue mussel Mytilus galloprovincialis. A total of 87 randomly selected Vibrio isolates from various stages of rearing in a commercial mus- sel hatchery were characterised using partial sequences of the ATP synthase alpha subunit gene (atpA). The sequenced isolates represented 40 unique atpA genotypes, overwhelmingly domi- nated (98%) by V. splendidus group genotypes, with 1 V. harveyi group genotype also detected. The V. splendidus group sequences formed 5 moderately supported clusters allied with V. splen- didus/V. lentus, V. atlanticus, V. tasmaniensis, V. cyclitrophicus and V. toranzoniae. All water sources showed considerable atpA gene diversity among Vibrio isolates, with 30 to 60% of unique isolates recovered from each source. Over half (53%) of Vibrio atpA genotypes were detected only once, and only 7 genotypes were recovered from multiple sources. Comparisons of phylogenetic diversity using UniFrac analysis showed that the culturable Vibrio community from intake, header, broodstock and larval tanks were phylogenetically similar, while spat tank communities were different. Culturable Vibrio associated with spat tank seawater differed in being dominated by V. toranzoniae-affiliated genotypes. The high diversity of V. splendidus group genotypes detected in this study reinforces the dynamic nature of microbial communities associated with hatchery culture and complicates our efforts to elucidate the role of V.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals?
    Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals? Amy Apprill1*, Jooke Robbins2, A. Murat Eren3, Adam A. Pack4,5, Julie Reveillaud3, David Mattila6, Michael Moore1, Misty Niemeyer7, Kathleen M. T. Moore7, Tracy J. Mincer1* 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America, 2 Center for Coastal Studies, Provincetown, Massachusetts, United States of America, 3 Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America, 4 University of Hawaii at Hilo, Hilo, Hawaii, United States of America, 5 The Dolphin Institute, Honolulu, Hawaii, United States of America, 6 Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Hawaii, United States of America, 7 International Fund for Animal Welfare, Yarmouth Port, Massachusetts, United States of America Abstract Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations.
    [Show full text]
  • Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
    Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method.
    [Show full text]
  • Toxicity of Photobacterium Damselae Subsp. Damselae Strains Isolated from New Cultured Marine Fish
    Vol. 92: 31–40, 2010 DISEASES OF AQUATIC ORGANISMS Published October 25 doi: 10.3354/dao02275 Dis Aquat Org Toxicity of Photobacterium damselae subsp. damselae strains isolated from new cultured marine fish Alejandro Labella1, Nuria Sanchez-Montes1, Concepcion Berbel2, Manuel Aparicio2, Dolores Castro1, Manuel Manchado2, Juan J. Borrego1,* 1Department of Microbiology, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain 2IFAPA Centro El Toruño, Junta de Andalucia, Puerto de Santa Maria, 11500 Cadiz, Spain ABSTRACT: The in vivo and in vitro toxicity of bacterial cells and their extracellular products (ECPs) from 16 strains of Photobacterium damselae subsp. damselae isolated from 7 epizootic outbreaks × 5 were evaluated. On the basis of their 50% lethal dose (LD50) values (about 1 10 CFU), these strains may be considered as moderately virulent. However, their ECPs were strongly lethal for redbanded seabream Pagrus auriga causing fish death within 2 h post-inoculation (protein concentration ranged between 2.1 and 6.41 µg g–1 fish). The bacterial ECPs tested exhibited several enzymatic activities, such as amylase, lipase, phospholipase, alkaline phosphatase, esterase-lipase, acid phosphatase, and β-glucosaminidase. These ECPs displayed a strong cytotoxic effect on 4 fish and 2 mammalian cell lines, although this activity disappeared when ECPs were heated at 100°C. The virulence of the strains tested could not be related to the hemolytic activity or to the production of the toxin damselysin. Therefore, another unknown type of toxin could play an important role in the virulence mechanisms of this bacterial pathogen. KEY WORDS: Toxicity · ECP · Photobacterium damselae subsp. damselae · Cultured marine fish Resale or republication not permitted without written consent of the publisher INTRODUCTION tion, growth, and immune system of species such as redbanded seabream Pagrus auriga, white seabream Photobacterium damselae subsp.
    [Show full text]
  • Screening of Vibrio Isolates to Develop an Experimental Infection Model in the Pacific Oyster Crassostrea Gigas
    DISEASES OF AQUATIC ORGANISMS Vol. 59: 49–56, 2004 Published April 21 Dis Aquat Org Screening of Vibrio isolates to develop an experimental infection model in the Pacific oyster Crassostrea gigas Mélanie Gay, Franck C. J. Berthe, Frédérique Le Roux* Laboratoire de Génétique et Pathologie, Institut français de recherche pour l’exploitation de la mer (IFREMER), 17390 La Tremblade, France ABSTRACT: In an attempt to develop a reproducible experimental model of bacterial infection in Crassostrea gigas, oysters taken from very localised sub-populations suffering natural mortality out- breaks were used in cohabitation trials under laboratory conditions. From these trials, a collection of Vibrio strains was isolated from moribund and healthy oysters. In a second step, strains were experi- mentally tested for virulence by means of injection into healthy oysters. This screening revealed a span of virulence among isolated strains from none to medium. When pooling injected strains, results suggest increased virulence. Vibrio strains may have additive/synergistic action leading to higher C. gigas mortality rates in experimental challenges. Although the study initially aimed to develop a sim- ple experimental model, a complex of interactions emerged between several bacterial strains during the pathogenic process in their molluscan host. Selected strains provide a suitable model of experi- mental disease for further studies and better understanding of bacterial interaction and pathogenesis in C. gigas. KEY WORDS: Vibrio splendidus · Virulence · Agonism · Antagonism Resale or republication not permitted without written consent of the publisher INTRODUCTION riosis has also been reported in juvenile and adult mol- luscs. For example, Vibrio tapetis is the aetiological While experimental transmission of mollusc diseases agent of brown ring disease in the Japanese clam under laboratory conditions has sometimes been Ruditapes philippinarum (Paillard & Maes 1990, Bor- achieved (Bachère et al.
    [Show full text]
  • Vibrio Tasmaniensis Sp. Nov., Isolated from Atlantic Salmon (Salmo Salar L.)
    System. Appl. Microbiol. 26, 65–69 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/sam Vibrio tasmaniensis sp. nov., isolated from Atlantic Salmon (Salmo salar L.) F. L. Thompson1,2, C. C. Thompson1,2, and J. Swings1,2 1Laboratory for Microbiology, 2 BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ghent, Belgium Received: November 14, 2002 Summary We describe the polyphasic characterization of four Vibrio isolates which formed a tight AFLP group in a former study. The group was closely related to V. cyclitrophicus, V. lentus and V. splendidus (98.2–98.9% similarity) on the basis of the 16S rDNA sequence analysis, but by DNA-DNA hybridisation experiments it had at maximum 61% DNA similarity towards V. splendidus. Thus, we propose that the isolates represent a new Vibrio species i.e. V. tasmaniensis (LMG 20012T; EMBL under the accession numbers AJ316192; mol% G+C of DNA of the type strain is 44.7). Useful phenotypical features for discrimination of V. tasmaniensis from other Vibrio species include gelatinase and β- galactosidase activity, fatty acid composition (particularly 14:0), utilisation and fermentation of different compounds (e.g. sucrose, melibiose and D-galactose) as sole carbon source. Keywords: γ-Proteobacteria – Vibrionaceae – V. tasmaniensis – Atlantic Salmon (Salmo salar) Introduction The description of bacterial diversity has attracted been examined in several studies, but mainly with the aim much attention in the last years, and an increasing number of identifying known bacterial species which have of new species has been proposed [20]. Recent estimations presumptive probiotic properties for fish [18, 19]. of the bacterial diversity in marine ecosystems by means of In this study we report on the taxonomic characteri- 16S rDNA similarity have revealed the existence of about sation of the AFLP cluster A45 consisting of four isolates 1200 bacterial species [7].
    [Show full text]
  • Phylogenetic Study and Identification of Vibrio Splendidus-Related Strains Based on Gyrb Gene Sequences
    DISEASES OF AQUATIC ORGANISMS Vol. 58: 143–150, 2004 Published March 10 Dis Aquat Org Phylogenetic study and identification of Vibrio splendidus-related strains based on gyrB gene sequences Frédérique Le Roux1,*, Mélanie Gay1, Christophe Lambert2, Jean Louis Nicolas3, Manolo Gouy4, Franck Berthe1 1Laboratoire de Génétique et Pathologie, Institut français de recherche pour l’exploitation de la mer (IFREMER), 17390 La Tremblade, France 2Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Bretagne Occidentale (UBO), Place Copernic, technopole Brest-Iroise, 29280 Plouzané, France 3Laboratoire de Physiologie des Invertébrés Marins, IFREMER, 29280 Plouzané, France 4Laboratoire de Biométrie et Biologie Evolutive, Unité Mixte de Recherche 5558, Centre National de Recherche Scientifique (CNRS), Université Claude Bernard, Lyon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France ABSTRACT: Different strains related to Vibrio splendidus have been associated with infection of aquatic animals. An epidemiological study of V. splendidus strains associated with Crassostrea gigas mortalities demonstrated genetic diversity within this group and suggested its polyphyletic nature. Recently 4 species, V. lentus, V. chagasii, V. pomeroyi and V. kanaloae, phenotypically related to V. splendidus, have been described, although biochemical methods do not clearly discriminate species within this group. Here, we propose a polyphasic approach to investigate their taxonomic relation- ships. Phylogenetic analysis of V. splendidus-related strains was carried out using the nucleotide sequences of 16S ribosomal DNA (16S rDNA) and gyrase B subunit (gyrB) genes. Species delineation based on 16S rDNA-sequencing is limited because of divergence between cistrons, roughly equiva- lent to divergence between strains. Despite a high level of sequence similarity, strains were sepa- rated into 2 clades.
    [Show full text]
  • First Evidence for a Vibrio Strain Pathogenic to Mytilus Edulis Altering Hemocyte Immune Capacities
    1 Developmental & Comparative Immunology Achimer April 2016, Volume 57, Pages 107-119 http://dx.doi.org/10.1016/j.dci.2015.12.014 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00302/41336/ © 2015 Elsevier Ltd. All rights reserved First evidence for a Vibrio strain pathogenic to Mytilus edulis altering hemocyte immune capacities Ben Cheikh Yosra 1, Travers Marie-Agnes 2, Morga Benjamin 2, Godfrin Yoann 2, Rioult Damien 3, Le Foll Frank 1, * 1 Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Le Havre, F- 76063, Le Havre Cedex, France 2 Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France 3 Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Reims Champagne Ardenne, Campus Moulin de la House, F-51100, Reims, France * Corresponding author : Frank Le Foll, email address : [email protected] Abstract : Bacterial isolates were obtained from mortality events affecting Mytilus edulis and reported by professionals in 2010–2013 or from mussel microflora. Experimental infections allowed the selection of two isolates affiliated to Vibrio splendidus/Vibrio hemicentroti type strains: a virulent 10/068 1T1 (76.6% and 90% mortalities in 24 h and 96 h) and an innocuous 12/056 M24T1 (0% and 23.3% in 24 h and 96 h). These two strains were GFP-tagged and validated for their growth characteristics and virulence as genuine models for exposure. Then, host cellular immune responses to the microbial invaders were assessed. In the presence of the virulent strain, hemocyte motility was instantaneously enhanced but markedly slowed down after 2 h exposure.
    [Show full text]
  • Aquatic Microbial Ecology 80:15
    The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.
    [Show full text]
  • The Diversity and Biotechnological Application of Marine Microbes Producing Omega-3 Fatty Acids
    THE DIVERSITY AND BIOTECHNOLOGICAL APPLICATION OF MARINE MICROBES PRODUCING OMEGA-3 FATTY ACIDS BY JINWEI ZHANG A thesis presented for the degree of DOCTOR OF PHILOSOPHY March 2011 SCHOOL OF MARINE SCIENCE AND TECHNOLOGY NEWCASTLE UNIVERSITY NEWCASTLE Copyright statement This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognize that its copyright rests with its author and no quotation from the thesis and no information derived from it may be published without the author’s prior written consent. Acknowledgements Acknowledgements I would like to acknowledge my sincere thanks to my supervisors, without whom this thesis would never have been completed. Professor Grant Burgess, Professor Keith Scott and Dr. Gary Caldwell gave me their valuable scientific guidance, advice, suggestions and discussion throughout this work. My sincere thanks also go to Professor Alan Ward, Professor Michael Goodfellow, Dr Ben Wigham, Dr Jarka Glassey and Dr Michael Hall (Newcastle University), to Dr Keith Layden, Dr Surinder Chahal and Dr Robin Mitra (Croda Enterprises Ltd, England), and Dr Craig Hurst (Croda Europe Ltd - Leek) for their helpful discussions. In particular, I would like to thank Mr John Knowles, Mr Tristano Bacchetti De Gregoris, Mr William Reid and Miss Nithyalakshmy Rajarajan, who are my good colleagues in the laboratory and have given me great help during my working period at Newcastle University. I would also like to express my great thanks to Dr Enren Zhang for his inspiration and help on the microbial fuel cell project. Particularly, I am grateful for the encouragement from my friends and family.
    [Show full text]