The Atmospheric Science of John Tyndall FRS (1820-1893)

Total Page:16

File Type:pdf, Size:1020Kb

The Atmospheric Science of John Tyndall FRS (1820-1893) 1 Second best as a researcher, second to none as a populariser? The atmospheric science of John Tyndall FRS (1820-1893) By Irena Maria McCabe A dissertation submitted in fulfilment of the requirements for the degree of doctor of philosophy Department of Science and Technology Studies University College London 2012 2 I, Irena Maria McCabe confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 ABSTRACT John Tyndall, FRS (1820-1893), the eminent scientist and mountaineer, the discoverer of the greenhouse gases, has been frequently presented as chiefly a populariser of science rather than a researcher. Although he regarded this education as an important function to fulfil, his researches and discoveries reported in the publications of the Royal Society, the Royal Institution and the British Association for the Advancement of Science, constitute a testimony to his standing as a scientist, hitherto neglected by his commentators. This thesis studies his contributions to the physics of the atmosphere and their subsequent impact on meteorology, research that is relevant to today’s concerns about climate change. Tyndall, did however, also make discoveries in other branches of physics, chemistry and bacteriology. Like many aspiring British scientists of the nineteenth century, Tyndall went to Germany as a mature student. He chose the University of Marburg to study chemistry, physics and mathematics under the renowned chemist, Robert Bunsen, the physicist Gerling and the mathematician Stegmann respectively, graduating with a PhD in applied mathematics.1 At this time Faraday’s extraordinary discovery of diamagnetism in 1846 were causing a sensation in Germany, France and Britain. Scientists eagerly studied Faraday’s research, replicating his experiments and interpreting his findings. Faraday’s work apparently confirmed concomitant researches by Plücker on the magnetic properties of crystals. Tyndall’s pioneering contributions to the study of diamagnetism2 constituted his formative experiences as an experimentalist. He effectively challenged the opinions of the distinguished scientists, Faraday and Plücker.3 The deportment of magnetism with respect to matter provided Tyndall with a comprehensive alternative to Faraday’s views on the interaction of point forces with 1 Tyndall (1870). 2 Tyndall (1851), 2, (9), 165-188 3 Plücker (1849), 5, 353-375; 376-382. 4 matter. Tyndall’s analogous investigation of radiant heat and its transmission by the atmosphere enabled him to study matter in its gaseous phase, hitherto inaccessible to the experimental process, and to participate in the all-important shaping of meteorology as a scientific discipline. The analogous interactions of matter with the forces of light and heat prompted Tyndall’s speculations on the role of the molecular structure in the modification and transmission of forces. The Tyndall Centre for the Study of Climate Change, thus named in his honour in the year 2000 by the Director of the Royal Institution, Professor Peter Day, testifies to the importance of Tyndall’s contributions to the all pervading problems which today face mankind. This thesis also addresses his role as a leading publicist for scientific naturalism and campaigner for science education, throwing a new light on his motives. On the death of his mentor and friend, Faraday, Tyndall succeeded him as Resident Professor in charge of the Royal Institution. In this historic laboratory Tyndall devised and perfected experimental methodology for the study of matter in its gaseous phase, thought, until then to not be amenable to scientific investigation. The importance of this contribution to science, underestimated over the years, is highlighted in the thesis. The thesis also looks at his pioneering researches on gases through their interaction with radiant heat and light. It examines how he used the forces of nature as tools to probe the nature of matter. It presents one consequence of Tyndall’s work that led to the discovery of calorescence, from a new perspective. The author of over 100 scientific papers, Tyndall is revealed as an inspiring research scientist, honoured by the Royal Society and numerous foreign academies. He was however castigated for an inadequate knowledge of mathematics, because he concentrated on imaginative physical interpretations of theoretical notions. At times, therefore, he was seriously underestimated as a scientist, despite admiration by some for the excellence of his work. This theme is also analysed in the thesis. Emerging from this study is an image of Tyndall’s serious engagement with science, and his role as an eminent practitioner and spokesman, who viewed science as beneficial to mankind, and physics as a means of education. 5 ACKNOWLEDGEMENTS I wish to thank my principal tutor Professor Hasok Chang and my subsidiary tutor Professor Steve Miller for an amazing academic experience due to their patient and inspiring guidance. My fellow students provided an essential friendly and supportive atmosphere – it is a privilege and a real pleasure to be a part of this vibrant academic community in the Department of the Science and Technology Studies. I wish to record my thanks to Professor Frank James of the Royal Institution of Great Britain for his encouragement and stimulating discussions. I am also grateful to Jane Harrison on his staff for her very efficient and cheerful assistance at all times. I would like to record my grateful thanks to Dr Catherine Jackson for her support and interest in the thesis. I would like to put on record my thanks to the staff of the libraries of the UCL, Imperial College, the Science Museum, the University of London, the Royal Society, London Library and the British Library for their invaluable help at all times. Geoffrey Eastwood, Jim McGeever, Derek Randall, Margaret and Roger Woodall’s reading of first drafts provided support for which I am grateful. Brian and Marion Edwards and Margaret and Roger Woodall’s friendly encouragement is much appreciated. My family’s interest has meant a great deal to me: I thank Gavin, Fiona and Ian for their forbearance. My thanks are also due to my examiners. 6 TABLE OF CONTENTS ABSTRACT .............................................................................................................................. 3 ACKNOWLEDGEMENTS..................................................................................................... 5 TABLE OF CONTENTS......................................................................................................... 6 INTRODUCTION .................................................................................................................. 11 CHAPTER 1............................................................................................................................ 13 JOHN TYNDALL FRS THE RESEARCHER AND POPULARISER (1820-1893) ............................ 13 1A. A Brief Introduction to Tyndall’s Life................................................................................ 16 1B. Tyndall the Researcher ...................................................................................................... 20 1B.1 Professional Dimension, especially his Fellowship of the Royal Society and his Decline of the Royal Medal.................................................................................................................... 20 1B.2 The Royal Society Referees.............................................................................................. 22 1B.3. Other Contemporary British Appraisals .......................................................................... 29 1B.4 The Foreign Opinions....................................................................................................... 35 1B.5. The Retrospect from the 20th Century Onwards.............................................................. 39 1C. Tyndall the Populariser ..................................................................................................... 43 1D. Conclusion......................................................................................................................... 53 CHAPTER 2............................................................................................................................ 55 TYNDALL AS AN EXPERIMENTALIST..................................................................................... 55 2A. Introduction........................................................................................................................ 55 2B. Early Influences: Ireland and England.............................................................................. 55 2C. Germany............................................................................................................................. 60 2D. Researches in Diamagnetism............................................................................................. 65 2E. Tyndall and Faraday at work............................................................................................. 76 2F. Rayleigh’s v. Tyndall’s and Faraday’s Mathematics ........................................................ 85 2F.1. Mathematisation of physics ............................................................................................. 85 2F.2. Rayleigh’s mathematics ................................................................................................... 87 2F.3.
Recommended publications
  • The Royal Society Medals and Awards
    The Royal Society Medals and Awards Table of contents Overview and timeline – Page 1 Eligibility – Page 2 Medals open for nominations – Page 8 Nomination process – Page 9 Guidance notes for submitting nominations – Page 10 Enquiries – Page 20 Overview The Royal Society has a broad range of medals including the Premier Awards, subject specific awards and medals celebrating the communication and promotion of science. All of these are awarded to recognise and celebrate excellence in science. The following document provides guidance on the timeline and eligibility criteria for the awards, the nomination process and our online nomination system Flexi-Grant. Timeline • Call for nominations opens 30 November 2020 • Call for nominations closes on 15 February 2021 • Royal Society contacts suggested referees from February to March if required. • Premier Awards, Physical and Biological Committees shortlist and seek independent referees from March to May • All other Committees score and recommend winners to the Premier Awards Committee by April • Premier Awards, Physical and Biological Committees score shortlisted nominations, review recommended winners from other Committees and recommend final winners of all awards by June • Council reviews and approves winners from Committees in July • Winners announced by August Eligibility Full details of eligibility can be found in the table. Nominees cannot be members of the Royal Society Council, Premier Awards Committee, or selection Committees overseeing the medal in question. More information about the selection committees for individual medals can be found in the table below. If the award is externally funded, nominees cannot be employed by the organisation funding the medal. Self-nominations are not accepted.
    [Show full text]
  • Alkali Metals- Group 1 (IA)
    Alkali Metals- Group 1 (IA) The alkali metals make up Group 1 of the periodic table. This family consists of the elements lithium, sodium, potassium, rubidium, cesium, and francium (Li, Na, K, Rb, Cs, and Fr, respectively). Group one elements share common characteristics. They are all soft, silver metals. Due to their low ionization energy, these metals have low melting points and are highly reactive. The reactivity of this family increases as you move down the table. Alkali metals are noted for how vigorously they react with water. Due to this, they are often stored in mineral oil and are not found in their elemental forms in nature. These characteristics can be explained by examining the electronic structure of each element in this group. Alkali metals have one valence electron. They readily give up this electron to assume the noble gas configuration as a cation. This makes the elements in this group highly reactive. History Explore the discoverer's biography, including general facts about his life and anecdotes regarding how he made this particular discovery. Also see other significant scientific discoveries built largely on this concept and other real-world applications in history that may not still be relevant. Discoverer/Developer See each tab for individual information about the discoverer of each element. Lithium Lithium was discovered in 1817 by Johan August Arfwedson. Arfwedson was born in 1792 to a wealthy family in Sweden. At a young age he attended the University of Uppsala and earned degrees in law and mineralogy. His interest in minerals is what led to his discovery of lithium.
    [Show full text]
  • The Stuff of Youth and Supply Free Ca2+ at the Inner Membrane Surface
    NEWS & VIEWS throughout the hydrophobic interior of the bilayer. Release of Ca2+ inside the vesicle occurs when the MATERIAL WITNESS shuttle complex meets the carotinoid radical cation, which oxidizes the complex to form the stable quinone The stuff of youth and supply free Ca2+ at the inner membrane surface. The Ca2+ pumping circuit is completed by recycling of here’s scarcely any scientist, the quinone to the semiquinone form at the outer with the possible exception of membrane surface.This reduction reaction is driven by geneticists and cosmologists, the naphthoquinone radical anion,formed in the who feels that his or her initial electron transfer process. T discipline gets its fair share of There remain several limitations to this approach. the limelight. But materials scientists have The observed photochemical efficiency of Ca2+ the added disadvantage that their science pumping,estimated to be ~0.01,is low. The low value runs perilously close to engineering—and may be a consequence of relying on quinone shuttle when was the last time you saw a popular diffusion within the bilayer to move ions and cycle TV programme on engineering? redox species; if diffusion of these species is slow relative So it is good news that this year’s Christmas Lectures for to competing,non-productive secondary reactions,the children at the UK’s Royal Institution in London, entitled Smart efficiency of the system will suffer. Long-term stability Stuff, will have a heavy focus on materials. Not only that, but of the Ca2+-binding shuttle quinones may also be an they will show something of the grand sweep and diversity of issue under conditions in which many catalytic cycles today’s materials science, ranging from photonics to are required.In addition,Ca2+ transport kinetics in the biomedical materials to food science.
    [Show full text]
  • Robert Wilhelm Bunsen Und Sein Heidelberger Laboratorium Heidelberg, 12
    Historische Stätten der Chemie Robert Wilhelm Bunsen und sein Heidelberger Laboratorium Heidelberg, 12. Oktober 2011 Gesellschaft Deutscher Chemiker 1 Mit dem Programm „Historische Stätten der Chemie“ würdigt Robert Wilhelm Bunsen – die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Als Orte der Erinnerung eine biographische Skizze werden Wirkungsstätten beteiligter Wissenschaftlerinnen und Wissenschaftler in einem feierlichen Akt ausgezeichnet. Eine Broschüre bringt einer breiten Öffentlichkeit deren wissenschaft- Bunsen war einer der Wegbereiter der Physikalischen Chemie liches Werk näher und stellt die Tragweite ihrer Arbeiten im und ein bedeutender Vertreter der anorganisch-analytischen aktuellen Kontext dar. Ziel dieses Programms ist es, die Erinne- Richtung. Seine wissenschaftliche Bedeutung liegt in der Ent- rung an das kulturelle Erbe der Chemie wach zu halten und die wicklung und Perfektionierung von Methoden und Instrumen- Chemie mit ihren historischen Wurzeln stärker in das Blickfeld ten. Diese Arbeitsschwerpunkte hat Bunsen von Beginn seiner der Öffentlichkeit zu rücken. Karriere an verfolgt und systematisch ausgebaut. Am 12. Oktober 2011 gedenken die GDCh, die Deutsche 1811 als jüngster von vier Söhnen einer bürgerlichen protestan- Bunsen-Gesellschaft für Physikalische Chemie (DBG), die Che- tischen Familie in Göttingen geboren, begann Bunsen dort 1828 mische Gesellschaft zu Heidelberg (ChGzH) und die Ruprecht- das Studium der Naturwissenschaften. Seine wichtigsten Lehrer Karls-Universität
    [Show full text]
  • Joule's Thermoscope and the Second Law of Thermodynamics
    JOULE’S THERMOSCOPE AND THE SECOND LAW OF THERMODYNAMICS Summary This paper describes an instrument devised by Joule in 1863 to detect the energy of moonlight. It is extraordinarily sensitive to heat and must convert heat into mechanical energy with high efficiency. But since the temperature rise caused by moonlight is only 10-4F, the Carnot theorem would give a maximum efficiency of 10-6. JOULE’S THERMOSCOPE SHOWS THAT THE CARNOT EFFICIENCY LIMIT, THE MOST COMMON EXPRESSION OF THE SECOND LAW OF THERMODYNAMICS, IS WRONG The thermoscope uses convection currents and involves an energy cycle at constant volume. These features form the basis of proposals I have made for the efficient conversion of solar energy into electricity that were placed on my website in March 2002, September 2002 and March 2003. Indeed Joule‟s thermoscope is identical to Figure 3 in the latter Simple Solar Engine. It is my view that heat from fossil fuels or from solar energy can be converted into mechanical energy or electricity with an efficiency of up to 100% using energy cycles at constant volume. I would be very grateful for any comments. [E-mail address: williams.a(AT)globalwarmingsolutions.co.uk] Joule’s Thermoscope and the Second Law of Thermodynamics In 1863 James Joule devised an instrument to detect the energy of moonlight1, 2. It was to settle an argument with an adversary John Tyndall over whether the moon was hot or cold. He described the thermoscope as “a sort of wind thermometer”3. I am grateful to the Museum of Science and Industry in Manchester for their efforts to track down the instrument but it does not survive nor is there any detailed drawing.
    [Show full text]
  • Sturm Und Dung: Justus Von Liebig and the Chemistry of Agriculture
    Sturm und Dung: Justus von Liebig and the Chemistry of Agriculture Pat Munday, Montana Tech, Butte, Montana 59701-8997, USA In August of 1990, I completed a PhD dissertadon titled "Sturm und Dung: Justus von Liebig and the Chemistry of Agriculture"1 as a graduate Student with the Program in the History and Philosophy of Science and Technology at Comell University. In this work, I tried to utilize the historical tools I had lear- ned from the members my doctoral committee, Chaired by Professor Dr. L. Pearce Williams; the other two members of my committee were Professor Dr. Isabel V. Hüll and Professor Dr. Margaret W. Rossiter. Briefly, these tools included: a thorough mastery of the secondary literature; utilizadon of primary and manuscript sources, especially manuscript sources neglected by previous historians; and "a radical cridque of central institudons and sacred cows" achieved, in part, through "focussing on eccentricity and contradiction. "2 As mentors for my life and models3 for my work, I thank Professors Williams, Hüll, and Rossiter, and apologize for my shortcomings as their Student. I have published a few articles cannibalized from my dissertadon.4 Since I now am fortunate enough to work with an insdtudon that emphasizes teaching over the publication of obscure books, I have never been pressured to publish my dissertadon as such. Based on my correspondence and rare attendance at Pro- fessional meetings, I thought my work on Liebig had been received lukewannly at best. It therefore came as a great surprise when, because of my dissertadon, I received one of the two 1994 Liebig-Wöhler-Freundschafts Preise sponsored by Wilhelm Lewicki and awarded by the Göttinger Chemische Gesellschaft.
    [Show full text]
  • Meeting Reports
    AUGUST 2014 MEETING Speaker: Andrew Conacher Topic: Sir Humphry Davy – The Davy Lamp Andrew’s talk on Sir Humphry Davy was most engaging and enjoyable. He firstly spoke on Sir Humphry’s background and life and then focused on the Davy Lamp, its context and importance. Andrew indicated that he has an ancestral family connection to Sir Humphry. The following is a brief extract from Andrew’s paper. Sir Humphry was born on 17 December 1778 in Penzance, Cornwall, England and died 29 May 1829 in Geneva, Switzerland aged 50 years. A statue stands in Penzance with him holding his safety lamp. Andrew Conacher holds up miner’s safety lamps. He was both a chemist and inventor Picture: KIRK GILMOUR, Wollongong Advertiser 6 August 2014 and was also a poet and painter. He enthusiastically turned to science and later became a professor at the Royal Institution and flame (acting as a flame arrestor) presented a series of lectures which were later published. thus preventing the methane gas burning inside the lamp to pass out He worked with a number of scientists of the day (for into the atmosphere. The lamp also example, Sir Joseph Banks, who interviewed Davy for his provided a test for the presence of role at the Royal Institution and Michael Faraday who was gases. If flammable gases were a co-worker with him) and was a popular public figure. present the flame of the lamp He made a number of scientific discoveries (for example, burnt higher and with a blue tinge. electrolysis, sodium, potassium, barium) and was knighted The lamp saved lives and helped in1812 and awarded a baronetcy in 1819.
    [Show full text]
  • Biography: Justus Von Liebig
    Biography: Justus von Liebig Justus von Liebig (1803 – 1873) was a German chemist. He taught chemistry at the University of Giessen and the University of Munich. The University of Giessen currently bears his name. Liebig is called the father of fertilizers. He confirmed the hypothesis concerning the mineral nutrition of plants, which became the basis for the development of modern agricultural chemistry. Liebig’s research is considered a precursor to the study of the impact of environmental factors on organisms. He formulated the law of the minimum, which states that the scarcest resource is what limits a given organism. He also developed a process for producing meat extract and founded the company Liebig Extract of Meat Company whose trademark was the beef bouillon cube, which he invented. Justus von Liebig was born into a middle class In 1824, at the age of 21, Liebig became a family from Darmstadt on May 12, 1803. As a professor at the University of Giessen. While in child, he was already fascinated by chemistry. Germany, he founded and edited the magazine When he was 13 years old, most of the crops in the Annalen der Chemie, which became the leading Northern Hemisphere were destroyed by a journal of chemistry in Germany. volcanic winter. Germans were among the most In 1837, he was elected a member of the Royal affected. It is said that this experience influenced Swedish Academy of Sciences, and in 1845, started the subsequent work of Liebig and the working at the University of Munich, where he establishment of his company. remained until his death.
    [Show full text]
  • Century Measurements of the Mechanical Equivalent of Heat
    Digital Kenyon: Research, Scholarship, and Creative Exchange Faculty Publications Physics 2002 Nineteenth‐Century Measurements of the Mechanical Equivalent of Heat Tom Greenslade Kenyon College, [email protected] Follow this and additional works at: https://digital.kenyon.edu/physics_publications Part of the Physics Commons Recommended Citation ”Nineteenth-Century Measurements of the Mechanical Equivalent of Heat”, The Physics Teacher, 40, 243-248 (2002) This Article is brought to you for free and open access by the Physics at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact [email protected]. Nineteenth‐Century Measurements of the Mechanical Equivalent of Heat Thomas B. Greenslade Jr. Citation: The Physics Teacher 40, 243 (2002); doi: 10.1119/1.1474151 View online: http://dx.doi.org/10.1119/1.1474151 View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/40/4?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Nanoscale specific heat capacity measurements using optoelectronic bilayer microcantilevers Appl. Phys. Lett. 101, 243112 (2012); 10.1063/1.4772477 Nineteenth-Century Textbook Illustrations: A Frontispiece Puzzle Phys. Teach. 47, 226 (2009); 10.1119/1.3098208 Construction of an innovative heating apparatus for ultrahigh vacuum platens used in high pressure reaction cells Rev. Sci. Instrum. 75, 983 (2004); 10.1063/1.1666993 Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties J. Chem. Phys. 109, 7379 (1998); 10.1063/1.477344 The Gibbs–Thomson effect and intergranular melting in ice emulsions: Interpreting the anomalous heat capacity and volume of supercooled water J.
    [Show full text]
  • The Royal Society Medals and Awards Overview
    The Royal Society medals and awards Overview The Royal Society has a broad range of medals including premier awards, subject specific awards and medals celebrating the communication and promotion of science. All of these work to recognise and celebrate excellence in science. The following document provides guidance in the eligibility criteria for the awards, the nomination process and online nomination system. Eligibility Awards are open to citizens of a Commonwealth country or of the Irish Republic or those who have been ordinarily resident and working in a Commonwealth country or in the Irish Republic for a minimum of three years immediately prior to being proposed. Three of our premier awards are open internationally and the Milner Award is open to European citizens and residents of 12 months or more. Full details of eligibility can be found in Appendix one. Nominees cannot be members of the Royal Society Council, Premier Awards Committee, or selection Committees. If the award is externally funded, nominees cannot be employed by the organisation funding the medal. Self-nominations are not accepted and members of the selection Committee cannot nominate for their own awards. Nominations are valid for three cycles of the award unless otherwise stated. Nominators are given the opportunity to update nominations in December each year. The full list of medals that will be open in November 2017 are: Copley Medal Royal Medals (biological, physical and interdisciplinary) Croonian Medal and Lecture Bakerian Medal and Lecture Buchanan Medal
    [Show full text]
  • Chemistry Is All Around Us
    Chemistry is all around us. Everyone can and should understand basic chemistry. The Story Apart from those wanting to become chemists, students Central wanting to become doctors, nurses, physicists, Science Cover nutritionists, geologists, and pharmacists all need to study chemistry. It is important to remember that the Chemistry importance of chemistry would not be diminished BIMAN BASU over time; rather it will continue to remain a That is not all. There would be no drugs a science. It was primarily directed at efforts promising career prospect. – painkillers, antacids, or antibiotics – no to turn all kinds of substances into the polyester fibre or nylon stockings, no precious metal gold by early chemists, who stainless steel, no sugar-free soft drinks, were known as alchemists. We have heard IGHT from the moment we get up in even no Diwali illumination and fireworks about the “philosopher’s stone” using which the morning till we go to bed at without chemistry. Without chemistry, we the alchemists sought to turn any metal night, we come intimately close to R would not have such items as computers, into gold. Of course it was a silly thought, chemistry and things related to it. The CDs, DVDs, iPods, fuel for vehicles, oil to because no one can really turn one toothpaste we use to clean our teeth, the cook, refrigeration units, radios, televisions, element into another by mere touch! Still, toilet soap, shampoo, and plastic buckets batteries, and so much more. So, then, the alchemists made important we use to take bath, the plastic comb
    [Show full text]
  • MS 288 Morris Papers
    MS 288 Morris Papers Title: Morris Papers Scope: Papers and correspondence of Brian Robert Morris, 4th Dec 1930-30 April 2001: academic, broadcaster, chairman/member of public and private Arts and Heritage related organizations and Life Peer, with some papers relating to his father Dates: 1912-2002 Level: Fonds Extent: 45 boxes Name of creator: Brian Robert Morris, Lord Morris of Castle Morris Administrative / biographical history: The collection comprises the surviving personal and working papers, manuscripts and associated correspondence relating to the life and work of Brian Robert Morris, university teacher and professor of English Literature, University Principal, writer, broadcaster and public figure through his membership/chairmanship of many public and private cultural bodies and his appointment to the House of Lords. He was born in 1930 in Cardiff, his father being a Pilot in the Bristol Channel, who represented the Pilots on the Cardiff Pilotage Authority, was a senior Mason and was active in the Baptist Church. Brian attended Marlborough Road School, where one of his masters was George Thomas, later Speaker of the House of Commons, and then Cardiff High School. He was brought up monolingual in English and though he learnt Welsh in later life, especially while at Lampeter, no writings in Welsh survive in the archive. He served his National Service with the Welch Regiment, based in Brecon and it was in Brecon Cathedral that his conversion to Anglicanism from his Baptist upbringing, begun as he accompanied his future wife to Church in Wales services, was completed. Anglicanism remained a constant part of his life: he became a Lay Reader when in Reading, was a passionate advocate of the Book of Common Prayer and a fierce critic of Series Three and the New English Bible, as epitomised in the book he edited in 1990, Ritual Murder .
    [Show full text]