Manifolds and Differential Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Manifolds and Differential Geometry Manifolds and Differential Geometry *EFFREY-,EE 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/107 Manifolds and Differential Geometry Manifolds and Differential Geometry Jeffrey M. Lee Graduate Studies in Mathematics Volume 107 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 58A05, 58A10, 53C05, 22E15, 53C20, 53B30, 55R10, 53Z05. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-107 Library of Congress Cataloging-in-Publication Data Lee, Jeffrey M., 1956– Manifolds and differential geometry / Jeffrey M. Lee. p. cm. — (Graduate studies in mathematics ; v. 107) Includes bibliographical references and index. ISBN 978-0-8218-4815-9 (alk. paper) 1. Geometry, Differential. 2. Topological manifolds. 3. Riemannian manifolds. I. Title. QA641.L38 2009 516.36—dc22 2009012421 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 141312111009 Contents Preface xi Chapter 1. Differentiable Manifolds 1 §1.1. Preliminaries 2 §1.2. Topological Manifolds 6 §1.3. Charts, Atlases and Smooth Structures 11 §1.4. Smooth Maps and Diffeomorphisms 22 §1.5. Cut-off Functions and Partitions of Unity 28 §1.6. Coverings and Discrete Groups 31 §1.7. Regular Submanifolds 46 §1.8. Manifolds with Boundary 48 Problems 51 Chapter 2. The Tangent Structure 55 §2.1. The Tangent Space 55 §2.2. Interpretations 65 §2.3. The Tangent Map 66 §2.4. Tangents of Products 72 §2.5. Critical Points and Values 74 §2.6. Rank and Level Set 78 §2.7. The Tangent and Cotangent Bundles 81 §2.8. Vector Fields 87 §2.9. 1-Forms 110 §2.10. Line Integrals and Conservative Fields 116 v vi Contents §2.11. Moving Frames 120 Problems 122 Chapter 3. Immersion and Submersion 127 §3.1. Immersions 127 §3.2. Immersed and Weakly Embedded Submanifolds 130 §3.3. Submersions 138 Problems 140 Chapter 4. Curves and Hypersurfaces in Euclidean Space 143 §4.1. Curves 145 §4.2. Hypersurfaces 152 §4.3. The Levi-Civita Covariant Derivative 165 §4.4. Area and Mean Curvature 178 §4.5. More on Gauss Curvature 180 §4.6. Gauss Curvature Heuristics 184 Problems 187 Chapter 5. Lie Groups 189 §5.1. Definitions and Examples 189 §5.2. Linear Lie Groups 192 §5.3. Lie Group Homomorphisms 201 §5.4. Lie Algebras and Exponential Maps 204 §5.5. The Adjoint Representation of a Lie Group 220 §5.6. The Maurer-Cartan Form 224 §5.7. Lie Group Actions 228 §5.8. Homogeneous Spaces 240 §5.9. Combining Representations 249 Problems 253 Chapter 6. Fiber Bundles 257 §6.1. General Fiber Bundles 257 §6.2. Vector Bundles 270 §6.3. Tensor Products of Vector Bundles 282 §6.4. Smooth Functors 283 §6.5. Hom 285 §6.6. Algebra Bundles 287 §6.7. Sheaves 288 Contents vii §6.8. Principal and Associated Bundles 291 Problems 303 Chapter 7. Tensors 307 §7.1. Some Multilinear Algebra 308 §7.2. Bottom-Up Approach to Tensor Fields 318 §7.3. Top-Down Approach to Tensor Fields 323 §7.4. Matching the Two Approaches to Tensor Fields 324 §7.5. Tensor Derivations 327 §7.6. Metric Tensors 331 Problems 342 Chapter 8. Differential Forms 345 §8.1. More Multilinear Algebra 345 §8.2. Differential Forms 358 §8.3. Exterior Derivative 363 §8.4. Vector-Valued and Algebra-Valued Forms 367 §8.5. Bundle-Valued Forms 370 §8.6. Operator Interactions 373 §8.7. Orientation 375 §8.8. Invariant Forms 384 Problems 388 Chapter 9. Integration and Stokes’ Theorem 391 §9.1. Stokes’ Theorem 394 §9.2. Differentiating Integral Expressions; Divergence 397 §9.3. Stokes’ Theorem for Chains 400 §9.4. Differential Forms and Metrics 404 §9.5. Integral Formulas 414 §9.6. The Hodge Decomposition 418 §9.7. Vector Analysis on R3 425 §9.8. Electromagnetism 429 §9.9. Surface Theory Redux 434 Problems 437 Chapter 10. De Rham Cohomology 441 §10.1. The Mayer-Vietoris Sequence 447 §10.2. Homotopy Invariance 449 viii Contents §10.3. Compactly Supported Cohomology 456 §10.4. Poincar´e Duality 460 Problems 465 Chapter 11. Distributions and Frobenius’ Theorem 467 §11.1. Definitions 468 §11.2. The Local Frobenius Theorem 471 §11.3. Differential Forms and Integrability 473 §11.4. Global Frobenius Theorem 478 §11.5. Applications to Lie Groups 484 §11.6. Fundamental Theorem of Surface Theory 486 §11.7. Local Fundamental Theorem of Calculus 494 Problems 498 Chapter 12. Connections and Covariant Derivatives 501 §12.1. Definitions 501 §12.2. Connection Forms 506 §12.3. Differentiation Along a Map 507 §12.4. Ehresmann Connections 509 §12.5. Curvature 525 §12.6. Connections on Tangent Bundles 530 §12.7. Comparing the Differential Operators 532 §12.8. Higher Covariant Derivatives 534 §12.9. Exterior Covariant Derivative 536 §12.10. Curvature Again 540 §12.11. The Bianchi Identity 541 §12.12. G-Connections 542 Problems 544 Chapter 13. Riemannian and Semi-Riemannian Geometry 547 §13.1. Levi-Civita Connection 550 §13.2. Riemann Curvature Tensor 553 §13.3. Semi-Riemannian Submanifolds 560 §13.4. Geodesics 567 §13.5. Riemannian Manifolds and Distance 585 §13.6. Lorentz Geometry 588 §13.7. Jacobi Fields 594 Contents ix §13.8. First and Second Variation of Arc Length 599 §13.9. More Riemannian Geometry 612 §13.10. Cut Locus 617 §13.11. Rauch’s Comparison Theorem 619 §13.12. Weitzenb¨ock Formulas 623 §13.13. Structure of General Relativity 627 Problems 634 Appendix A. The Language of Category Theory 637 Appendix B. Topology 643 §B.1. The Shrinking Lemma 643 §B.2. Locally Euclidean Spaces 645 Appendix C. Some Calculus Theorems 647 Appendix D. Modules and Multilinearity 649 §D.1. R-Algebras 660 Bibliography 663 Index 667 Preface Classical differential geometry is the approach to geometry that takes full advantage of the introduction of numerical coordinates into a geometric space. This use of coordinates in geometry was the essential insight of Ren´e Descartes that allowed the invention of analytic geometry and paved the way for modern differential geometry. The basic object in differential geometry (and differential topology) is the smooth manifold. This is a topological space on which a sufficiently nice family of coordinate systems or “charts” is defined. The charts consist of locally defined n-tuples of functions. These functions should be sufficiently independent of each other so as to allow each point in their common domain to be specified by the values of these functions. One may start with a topological space and add charts which are compatible with the topology or the charts themselves can generate the topology. We take the latter approach. The charts must also be compatible with each other so that changes of coordinates are always smooth maps. Depending on what type of geometry is to be studied, extra structure is assumed such as a distinguished group of symmetries, a distinguished “ten- sor” such as a metric tensor or symplectic form or the very basic geometric object known as a connection. Often we find an interplay among many such elements of structure. Modern differential geometers have learned to present much of the sub- ject without constant direct reference to locally defined objects that depend on a choice of coordinates. This is called the “invariant” or “coordinate free” approach to differential geometry. The only way to really see exactly what this all means is by diving in and learning the subject. The relationship between geometry and the physical world is fundamen- tal on many levels. Geometry (especially differential geometry) clarifies, xi xii Preface codifies and then generalizes ideas arising from our intuitions about certain aspects of our world. Some of these aspects are those that we think of as forming the spatiotemporal background of our activities, while other aspects derive from our experience with objects that have “smooth” surfaces. The Earth is both a surface and a “lived-in space”, and so the prefix “geo” in the word geometry is doubly appropriate. Differential geometry is also an appro- priate mathematical setting for the study of what we classically conceive of as continuous physical phenomena such as fluids and electromagnetic fields. Manifolds have dimension. The surface of the Earth is two-dimensional, while the configuration space of a mechanical system is a manifold which may easily have a very high dimension. Stretching the imagination further we can conceive of each possible field configuration for some classical field as being an abstract point in an infinite-dimensional manifold. The physicists are interested in geometry because they want to under- stand the way the physical world is in “actuality”. But there is also a discovered “logical world” of pure geometry that is in some sense a part of reality too.
Recommended publications
  • The Grassmann Manifold
    The Grassmann Manifold 1. For vector spaces V and W denote by L(V; W ) the vector space of linear maps from V to W . Thus L(Rk; Rn) may be identified with the space Rk£n of k £ n matrices. An injective linear map u : Rk ! V is called a k-frame in V . The set k n GFk;n = fu 2 L(R ; R ): rank(u) = kg of k-frames in Rn is called the Stiefel manifold. Note that the special case k = n is the general linear group: k k GLk = fa 2 L(R ; R ) : det(a) 6= 0g: The set of all k-dimensional (vector) subspaces ¸ ½ Rn is called the Grassmann n manifold of k-planes in R and denoted by GRk;n or sometimes GRk;n(R) or n GRk(R ). Let k ¼ : GFk;n ! GRk;n; ¼(u) = u(R ) denote the map which assigns to each k-frame u the subspace u(Rk) it spans. ¡1 For ¸ 2 GRk;n the fiber (preimage) ¼ (¸) consists of those k-frames which form a basis for the subspace ¸, i.e. for any u 2 ¼¡1(¸) we have ¡1 ¼ (¸) = fu ± a : a 2 GLkg: Hence we can (and will) view GRk;n as the orbit space of the group action GFk;n £ GLk ! GFk;n :(u; a) 7! u ± a: The exercises below will prove the following n£k Theorem 2. The Stiefel manifold GFk;n is an open subset of the set R of all n £ k matrices. There is a unique differentiable structure on the Grassmann manifold GRk;n such that the map ¼ is a submersion.
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • Connections Between Differential Geometry And
    VOL. 21, 1935 MA THEMA TICS: S. B. MYERS 225 having no point of C on their interiors or boundaries, the second composed of the remaining cells of 2,,. The cells of the first class will form a sub-com- plex 2* of M,. The cells of the second class will not form a complex, since they may have cells of the first class on their boundaries; nevertheless, their duals will form a complex A. Moreover, the cells of the second class will determine a region Rn containing C. Now, there is no difficulty in extending Pontrjagin's relation of duality to the Betti Groups of 2* and A. Moreover, every cycle of S - C is homologous to a cycle of 2, for sufficiently large values of n and bounds in S - C if and only if the corresponding cycle of 2* bounds for sufficiently large values of n. On the other hand, the regions R. close down on the point set C as n increases indefinitely, in the sense that the intersection of all the RI's is precisely C. Thus, the proof of the relation of duality be- tween the Betti groups of C and S - C may be carried through as if the space S were of finite dimensionality. 1 L. Pontrjagin, "The General Topological Theorem of Duality for Closed Sets," Ann. Math., 35, 904-914 (1934). 2 Cf. the reference in Lefschetz's Topology, Amer. Math. Soc. Publications, vol. XII, end of p. 315 (1930). 3Lefschetz, loc. cit., pp. 341 et seq. CONNECTIONS BETWEEN DIFFERENTIAL GEOMETRY AND TOPOLOG Y BY SumNR BYRON MYERS* PRINCJETON UNIVERSITY AND THE INSTITUTE FOR ADVANCED STUDY Communicated March 6, 1935 In this note are stated the definitions and results of a study of new connections between differential geometry and topology.
    [Show full text]
  • On Manifolds of Tensors of Fixed Tt-Rank
    ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest.
    [Show full text]
  • History of Mathematics
    Georgia Department of Education History of Mathematics K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety of representations, working independently and cooperatively to solve problems, estimating and computing efficiently, and conducting investigations and recording findings. There is a shift towards applying mathematical concepts and skills in the context of authentic problems and for the student to understand concepts rather than merely follow a sequence of procedures. In mathematics classrooms, students will learn to think critically in a mathematical way with an understanding that there are many different ways to a solution and sometimes more than one right answer in applied mathematics. Mathematics is the economy of information. The central idea of all mathematics is to discover how knowing some things well, via reasoning, permit students to know much else—without having to commit the information to memory as a separate fact. It is the reasoned, logical connections that make mathematics coherent. The implementation of the Georgia Standards of Excellence in Mathematics places a greater emphasis on sense making, problem solving, reasoning, representation, connections, and communication. History of Mathematics History of Mathematics is a one-semester elective course option for students who have completed AP Calculus or are taking AP Calculus concurrently. It traces the development of major branches of mathematics throughout history, specifically algebra, geometry, number theory, and methods of proofs, how that development was influenced by the needs of various cultures, and how the mathematics in turn influenced culture. The course extends the numbers and counting, algebra, geometry, and data analysis and probability strands from previous courses, and includes a new history strand.
    [Show full text]
  • A Comparison of Differential Calculus and Differential Geometry in Two
    1 A Two-Dimensional Comparison of Differential Calculus and Differential Geometry Andrew Grossfield, Ph.D Vaughn College of Aeronautics and Technology Abstract and Introduction: Plane geometry is mainly the study of the properties of polygons and circles. Differential geometry is the study of curves that can be locally approximated by straight line segments. Differential calculus is the study of functions. These functions of calculus can be viewed as single-valued branches of curves in a coordinate system where the horizontal variable controls the vertical variable. In both studies the derivative multiplies incremental changes in the horizontal variable to yield incremental changes in the vertical variable and both studies possess the same rules of differentiation and integration. It seems that the two studies should be identical, that is, isomorphic. And, yet, students should be aware of important differences. In differential geometry, the horizontal and vertical units have the same dimensional units. In differential calculus the horizontal and vertical units are usually different, e.g., height vs. time. There are differences in the two studies with respect to the distance between points. In differential geometry, the Pythagorean slant distance formula prevails, while in the 2- dimensional plane of differential calculus there is no concept of slant distance. The derivative has a different meaning in each of the two subjects. In differential geometry, the slope of the tangent line determines the direction of the tangent line; that is, the angle with the horizontal axis. In differential calculus, there is no concept of direction; instead, the derivative describes a rate of change. In differential geometry the line described by the equation y = x subtends an angle, α, of 45° with the horizontal, but in calculus the linear relation, h = t, bears no concept of direction.
    [Show full text]
  • On the Topology of Ending Lamination Space
    1 ON THE TOPOLOGY OF ENDING LAMINATION SPACE DAVID GABAI Abstract. We show that if S is a finite type orientable surface of genus g and p punctures where 3g + p ≥ 5, then EL(S) is (n − 1)-connected and (n − 1)- locally connected, where dim(PML(S)) = 2n + 1 = 6g + 2p − 7. Furthermore, if g = 0, then EL(S) is homeomorphic to the p−4 dimensional Nobeling space. 0. Introduction This paper is about the topology of the space EL(S) of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination L in S that is minimal and filling, i.e. every leaf of L is dense in L and any simple closed geodesic in S nontrivally intersects L transversely. Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hy- perbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting lam- inations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM]. The Hausdorff metric on closed sets induces a metric topology on EL(S). Here, two elements L1, L2 in EL(S) are close if each point in L1 is close to a point of L2 and vice versa.
    [Show full text]
  • 20. Geometry of the Circle (SC)
    20. GEOMETRY OF THE CIRCLE PARTS OF THE CIRCLE Segments When we speak of a circle we may be referring to the plane figure itself or the boundary of the shape, called the circumference. In solving problems involving the circle, we must be familiar with several theorems. In order to understand these theorems, we review the names given to parts of a circle. Diameter and chord The region that is encompassed between an arc and a chord is called a segment. The region between the chord and the minor arc is called the minor segment. The region between the chord and the major arc is called the major segment. If the chord is a diameter, then both segments are equal and are called semi-circles. The straight line joining any two points on the circle is called a chord. Sectors A diameter is a chord that passes through the center of the circle. It is, therefore, the longest possible chord of a circle. In the diagram, O is the center of the circle, AB is a diameter and PQ is also a chord. Arcs The region that is enclosed by any two radii and an arc is called a sector. If the region is bounded by the two radii and a minor arc, then it is called the minor sector. www.faspassmaths.comIf the region is bounded by two radii and the major arc, it is called the major sector. An arc of a circle is the part of the circumference of the circle that is cut off by a chord.
    [Show full text]
  • William P. Thurston the Geometry and Topology of Three-Manifolds
    William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in TEX by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Genevieve Walsh compiled the index. Numbers on the right margin correspond to the original edition’s page numbers. Thurston’s Three-Dimensional Geometry and Topology, Vol. 1 (Princeton University Press, 1997) is a considerable expansion of the first few chapters of these notes. Later chapters have not yet appeared in book form. Please send corrections to Silvio Levy at [email protected]. CHAPTER 5 Flexibility and rigidity of geometric structures In this chapter we will consider deformations of hyperbolic structures and of geometric structures in general. By a geometric structure on M, we mean, as usual, a local modelling of M on a space X acted on by a Lie group G. Suppose M is compact, possibly with boundary. In the case where the boundary is non-empty we do not make special restrictions on the boundary behavior. If M is modelled on (X, G) then the developing map M˜ −→D X defines the holonomy representation H : π1M −→ G. In general, H does not determine the structure on M. For example, the two immersions of an annulus shown below define Euclidean structures on the annulus which both have trivial holonomy but are not equivalent in any reasonable sense.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • Riemann's Contribution to Differential Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques.
    [Show full text]