New Stereoselective Reactions to Form Amido Alkyl C-N and Vinyl Triflate C-O

Total Page:16

File Type:pdf, Size:1020Kb

New Stereoselective Reactions to Form Amido Alkyl C-N and Vinyl Triflate C-O NEW STEREOSELECTIVE REACTIONS TO FORM AMIDO ALKYL C-N AND VINYL TRIFLATE C-O BONDS VIA CARBOCATION INTERMEDIATES & ULTRAFAST SILICON FLUORINATION METHODOLOGIES FOR APPLICATIONS IN PET IMAGING by Mohammed Alhuniti A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, Florida December 2014 ACKNOWLEDGEMENTS I would like to thank my advisor, Prof. Salvatore D. Lepore, for his excellent guidance throughout my doctoral studies. Prof. Lepore is truly an outstanding mentor who devotes his time to teach more than organic chemistry. I want to thank my committee members Professors William Roush, Stéphane Roche, and Lyndon West for their time and insightful advice on my research. I thank Susan Lepore for her efforts to facilitate my research in the Lepore group. I also thank all former and current members of the group. Finally, I wish to express my gratitude to my family who have continually supported me. I sincerely appreciate the endless encouragement of my mother, my brothers, and my lovely wife and daughters. iv ABSTRACT Author: Mohammed Alhuniti Title: New Stereoselective Reactions to Form Amido Alkyl C-N and Vinyl Triflate C-O Bonds via Carbocation Intermediates & Ultrafast Silicon Fluorination Methodologies for Applications in PET Imaging. Institution: Florida Atlantic University Thesis Advisor: Dr. Salvatore D. Lepore Degree: Doctor of Philosophy Year: 2014 We report here the development of a Lewis acid catalyzed method for the dehydrative coupling of cyclic alcohols and nitriles to form amides with retention of configuration. By contrast, the formation of amides by nitrile trapping of carbocations (Ritter reaction) usually affords racemic product. The present reaction was accomplished by first converting alcohol starting materials to their corresponding chlorosulfites in situ. Even after an extensive search, only copper (II) salts were able to produce the desired conversion of these chlorosulfites to amides though with low catalytic turnover. Improving the turnover without deteriorating the stereochemical outcome was eventually accomplished by a careful selection of the reagent addition sequence and through the removal of gaseous byproducts. This Ritter-like coupling reaction proceeds in good yields with secondary cyclic alcohols under mild conditions. The stereochemical outcome v is likely due to fast nucleophilic capture of a non-planar carbocations (hyperconjomers) stabilized by ring hyperconjugation. In a second project, we demonstrate that TMSOTf in the presence of several metal catalysts converts alkynes to vinyl triflates under mild conditions. Current methods for the formation of vinyl triflates directly from alkynes generally involve harsh conditions and are exclusively selective for the E-isomer. Further study and optimization revealed that internal alkynes are converted to the Z-vinyl triflate product though with modest selectivity. The reaction efficiently converts aliphatic and aromatic terminal alkynes as well as internal alkynes to their corresponding vinyl triflate products. A mechanism is put forward to explain the unique role of silicon in this system. In this mechanism, we propose a silyl vinyl triflate intermediate that undergoes protodesilylation to afford the vinyl triflate product. Importantly, we believe that silicon may play a similar role in other recently reported reactions In a final project pursued in collaboration with NIH researchers, we describe our development of ultrafast silicon fluorination techniques for eventual applications in PET. The demand for physiologically stable organosilicon 18F-fluorides required compounds with a high degree of steric hindrance at the silicon center. This in turn greatly slows the rate of fluorination using current methods which often entail high temperatures and very polar solvents. Our initial solution to this problem centered on the use of metal chelating units attached to silicon substrates to serve as leaving groups. We reasoned that such leaving groups would stabilize negative charge developed on the silicon center in the TS and thus lead to a faster fluorination. Using these leaving groups, we observed fast radiofluorination of bulky silicon substrates at room temperature in 15 minutes without vi the need for the commonly used phase transfer reagents. Similar rate enhancements were 18 also observed with cyclotron-produced F-fluoride (t1/2 = 109.7 min, β+ = 97%). Based on our proposed mechanism for fluorination rate enhancement with chelating leaving groups, we reasoned that similar results could be achieved even without first attaching a chelating leaving group to a silicon center. As a result, we developed the concept of a Crown Ether Nucleophilic Catalyst (CENC). The use of these new phase transfer agents allows for efficient sequestration and recovery of cyclotron-derived K18F. Using these CENC/K18F complexes, we observed rapid radiofluorination of silicon substrates (5 min) which is significantly faster than currently reported methods. vii NEW STEREOSELECTIVE REACTIONS TO FORM AMIDO ALKYL C-N AND VINYL TRIFLATE C-O BONDS VIA CARBOCATION INTERMEDIATES & ULTRAFAST SILICON FLUORINATION METHODOLOGIES FOR APPLICATIONS IN PET IMAGING List of Figures……....................................................................................................... viii List of Tables…............................................................................................................ ix List of Scheme……...................................................................................................... x CHAPTER ONE STEREORETENTIVE COPPER (II) CATALYZED RITTER REACTION OF SECONDARY CYCLOALKANOLS…..…. 1 1.1 Introduction …................................................................................................... 1 1.2 Ritter reaction…………………………............................................................. 3 1.3 Development of stereoretentive copper (II) catalyzed Ritter reactions of secondary cycloalkanols....................................................... 14 1.4 Proposed catalytic cycle ….…........................................................................... 25 1.5 Experimental section........................................................................................... 26 CHAPTER TWO ZINC (II) CATALYZED CONVERSION OF ALKYNES TO VINYL TRIFLATE IN THE PRESENCE OF SILYL TRIFLATE......................................................... 32 2.1 Introduction………………………………........................................................ 32 2.2 Synthesis of vinyl triflate …………………....................................................... 36 2.3 Development of zinc (II) catalyzed conversion of alkynes to vinyl triflates in the presence of silyl triflates...................................................................................... 40 viii 2.4 Mechanistic study ………………………..……............................................... 45 2.5 Experimental section………………….............................................................. 51 CHAPTER THREE SILICON-NUCLEOPHILIC ASSISTED LEAVING GROUP (S-NALG)………………….………..................... 57 3.1 Introduction………………………………….................................................... 57 3.2 18F-Organosilicon radiotracers…………........................................................... 63 3.3 Enhanced nucleophilic fluorination and radiofluorination of organosilanes appended with potassium-chelating leaving groups.......................................... 67 3.4 Mechanistic considerations................................................................................ 76 3.5 Enhanced radiofluorination of organosilanes using Nucleophilic crown ether phase transfer agents.................................................................................. 76 3.6 Experimental section.......................................................................................... 81 Appendix……………………………………………….…………………………… 86 References……………………………………………….………………………….. 134 ix LIST OF FIGURES Figure 1 Major NOE correlations observed Bach and coworkers in carbocation 22................ 6 Figure 2 Plot of LUMO orbital of three cyclohexyl carbocations......................................... 11 Figure 3 Stabilization modes for the hyperconjomers of cyclohexyl cation.......................... 12 Figure 4 Mechanistic rational for the formation of stereoretentive amide................................ 14 Figure 5 Selected correlations from 2D-NOESY spectrum for 58 and 59............................. 22 Figure 6 Proposed catalytic cycle for stereoretentive amidation…….……….............. 26 Figure 7 Catalytic cycle for Heck coupling………..……............................................. 34 Figure 8 Structure of (+)-vernolepin.............................................................................. 36 Figure 9 Comins reagent................................................................................................ 38 Figure 10 Triflic acid addition to 113 in the presence and the absence of Lewis acid..........…..……….…………..….... 49 Figure 11 Common electrophilic fluorinating reagents................................................. 60 Figure 12 Structure of kryptofix 2.2.2 (K 2.2.2)............................................................ 62 Figure 13 Structures of common SiFA building blocks................................................ 66 Figure 14 Radiofluorination of substrates 173−178.....................................................
Recommended publications
  • Optimizing the Least Nucleophilic Anion. a New, Strong Methyl+ Reagent Daniel Stasko and Christopher A
    Published on Web 01/25/2002 Optimizing the Least Nucleophilic Anion. A New, Strong Methyl+ Reagent Daniel Stasko and Christopher A. Reed* Department of Chemistry, UniVersity of California, RiVerside, California 92521-0304 Received August 3, 2001 The ideal weakly coordinating counterion for reactive cations would be the least nucleophilic, least basic, most inert anion available. It should also be inexpensive, have useful spectroscopic handles, and confer good solubility and crystallizing properties on - its salts. Triflate anion, CF3SO3 , has served chemistry well in this regard but larger size, absence of lone pairs, and extreme chemical inertness have recently made carboranes1 or fluorinated tetraphe- nylborates the preferred choice for many applications.2 These anions have led to the solution of the silylium ion problem,3 enhanced Lewis acid catalysis by Li+ ion,4-6 new “strong-but-gentle” superacids,7 commercially viable olefin polymerization catalysts,8 new possibilities for electrolytes9,10 and ionic liquids,11 and the •+ 7 + 12 isolation of new reactive cations such as C60 , Bu3Sn , Cu- + 13 (CO)4 , etc. Figure 1. The 1-H-2,3,4,5,6-pentamethyl-7,8,9,10,11,12-hexahalo-CB11 - ) The perfluorinated tetraphenylborate anion is the preferred choice carborane anions, 1-H-CB11Me5X6 (X Cl, Br, I), used in this work. for price and solubility reasons but its salts frequently form liquid 29 Table 1. Selected Si Chemical Shifts (ppm) for i-Pr3SiY clathrates and fail to crystallize. The boron-phenyl bond is rather 29 easily cleaved by strong Brønsted14 or Lewis15 acids. Halogenated compd Si conditions carborane anions are much more inert than tetraphenylborates, their i-Pr3Si(1-H-CB11H5Br6) 100 C6D6 salts crystallize well, but they are more expensive and their salts i-Pr3Si(1-H-CB11H5Cl6) 103 C6D6 i-Pr Si(F -BPh )a 108 solid state less soluble.
    [Show full text]
  • Lecture 10 Carbon-Nitrogen Bonds Formation I
    NPTEL – Chemistry – Principles of Organic Synthesis Lecture 10 Carbon-Nitrogen Bonds Formation I 4.1 Principles The methods for the formation of bonds between nitrogen and aliphatic carbon can be broadly divided into two categories: (i) reaction of nucleophilic nitrogen with electrophilic carbon, and (ii) reaction of electrophilic nitrogen with nucleophilic carbon. In this section, we will try to cover some of the important reactions. 4.2 Substitution of Nitrogen Nucleophiles at Saturated Carbon 4.2.1 Ritter Reaction Treatment of a tertiary alcohol or the corresponding alkene with concentrated sulphuric acid and a nitrile affords an amide that in acidic conditions undergoes hydrolysis to give amine. First, a R H, RCN H3O + RCO H OH N O NH 2 H2O H 2 Mechanism OH2 H -H2O :NC-R H2O OH OH N N R N R 2 C R OH O H2O proton H3O + RCO2H N R N R NH2 -H3O transfer H Scheme 1 tertiary carbocation is formed which is attacked by the nitrile to give a quaternary ion. The latter is decomposed by water to provide an amide which, in acidic conditions, is hydrolyzed to give an amine (Scheme 1). Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 35 NPTEL – Chemistry – Principles of Organic Synthesis Examples: Me H N H2SO4 + N Chlorobenzene O 91% S. J. Chang, Organic Process Research and Development 1999, 3, 232. Me Me Me Me Me Me Me Me SnCl4 MeCN CH2 CH2 Cl N N T.-L. Ho, R.-J. Chein, J. Org. Chem. 2004, 69, 591. Me Me O Ph HNCHO Ph OH Ph HN H2SO4 Me H2SO4 N TMSCN N MeCN N Bn Bn Bn H.
    [Show full text]
  • Hydroxylamine-O -Sulfonic Acid — a Versatile Synthetic Reagent
    Hydroxylamine-O -sulfonic acid — a versatile synthetic reagent Raymond G. Wallacef School of Chemistry Brunei University Uxbridge, Middlesex UBS 3PH Great Britain imidazoli nones and related derivatives are time to these various modes of reaction. discussed in the review. Many of these The uses of HOSA as a reagent are organiz­ preparations can be carried out in high ed below according to the different syn­ yield, thetic transformations that it can bring about. Hydroxylamine-Osulfonic acid, NHj-OSOjH (abbreviated to HOSA in Probably by far the most well known this article) has become in recent years and explored reactions of HOSA are commercially available. Although much animation reactions, illustrating elec­ fruitful chemistry has been carried out us­ trophilic attack by HOSA, with amination ing HOSA, to this author's knowledge, on nitrogen being the most important, there has been no systematic review in although a significant number of English* of its use as a synthetic reagent. It animations on both carbon and sulfur have is a chemically interesting compound been reported, Amination on phosphorus because of the ability of the nitrogen center also occurs. to act in the role of both nucleophile and AMINATION electrophile, dependent on circumstances, Synopsis (a) At a nitrogen atom and thus it has proved to be a reagent of Hydroxylamine-0-sulfonic acid (0 Preparation of mono- and di- great synthetic versatility. (HOSA) has only recently become widely substituted hydrazines and trisubstituied commercially available despite the fact that H,N-Nu hydrazinium salts it has proved to be a valuable synthetic reagent in preparative organic chemistry.
    [Show full text]
  • Aldol Reactions: E-Enolates and Anti-Selectivity
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2005 Aldol Reactions: E-Enolates and Anti-Selectivity Matthew Grant Anderson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Organic Chemistry Commons Recommended Citation Anderson, Matthew Grant, "Aldol Reactions: E-Enolates and Anti-Selectivity" (2005). All Graduate Plan B and other Reports. 1312. https://digitalcommons.usu.edu/gradreports/1312 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ALDOL REACTIONS: E-ENOLATES AND ANTI-SELECTIVITY Prepared By: MATTHEW GRANT ANDERSON A non-thesis paper submitted in partial fulfillment of the requirement for a Plan B Degree of Masters of Science in Organic Chemistry UTAH STATE UNIVERSITY Logan, Utah 2005 Contents Page CONTENTS ...................................................................................... .i LIST OF TABLES, FIGURES AND SCHEMES ....................................... ii,iii ABSTRACT .................................................................................... iv CHAPTER I. ALDOL REACTIONS:E-ENOLATES AND ANTI SELECTIVITY ......... 1 CHAPTER II. SECTION 1. MODELS OF E-ENOLATE FORMATION ...... .... ....... ... 12 SECTION 2. PATERSON ENOLATE PAPER ..... .........................
    [Show full text]
  • MDA) Analogs and Homologs
    Terry A. Dal Cason, 1 M.Sc. An Evaluation of the Potential for Clandestine Manufacture of 3,4-Methylenedioxyamphetamine (MDA) Analogs and Homologs REFERENCE: Dal Cason, T. A., "An Evaluation of the Potential for Clandestine Manu- facture of 3,4-Methylenedioxyamphetamine (MDA) Analogs and Homologs," Journal of Forensic Sciences, JFSCA, Vol. 35, No.3, May 1990, pp. 675-697. ABSTRACT: Encountering a novel controlled-substance analog (designer drug) has become a distinct possibility for all forensic drug laboratories. 3,4-Methylenedioxyamphetamine (MDA) in particular is a receptive parent compound for the molecular modifications which produce such homo logs and analogs. The identification of these compounds, however, can prove to be an arduous task. It would be desirable to direct the focus of the identification to those compounds which are the more likely candidates for clandestine-laboratory synthesis. The process of narrowing the range of theoretical possibilities to logical choices may be enhanced by using a suitable predictive scheme. Such a predictive scheme for MDA analogs is presented based on putative Central Nervous System activity, existence or formulation of a reasonable synthesis method, and availability of the required precursors. KEYWORDS: toxicology, 3,4-methylenedioxyamphetamine, drug identification To circumvent statutes enacted to control the use of various dangerous drugs (controlled substances), clandestine laboratory operators will sometimes make minor alterations in the molecular structure of a parent compound. These structural changes are reflected in the chemical nomenclature of the new analog or homolog, and, in the past/ had effectively removed it from the purview of the law. Such modifications, at least in the case of 3,4- methylenedioxyamphetamine (MDA), do not appear to be haphazard.
    [Show full text]
  • Probing Ion Exchange in the Triflic Acid-Guanidinium Triflate System: a Solid- State Nuclear Magnetic Resonance Study
    Probing ion exchange in the triflic acid-guanidinium triflate system: a solid- state nuclear magnetic resonance study Citation: Zhu, Haijin, MacFarlane, Douglas and Forsyth, Maria 2014, Probing ion exchange in the triflic acid-guanidinium triflate system: a solid-state nuclear magnetic resonance study, Journal of Physical Chemistry C, vol. 118, no. 49, pp. 28520-28526. This is the accepted manuscript. ©2014, American Chemical Society This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/jp5101472 Downloaded from DRO: http://hdl.handle.net/10536/DRO/DU:30070195 DRO Deakin Research Online, Deakin University’s Research Repository Deakin University CRICOS Provider Code: 00113B Page 1 of 19 The Journal of Physical Chemistry 1 2 3 4 Probing Ion Exchange in the Triflic Acid - Guanidinium Triflate System: a 5 6 Solid-State NMR Study 7 8 9 Haijin Zhu,*,a Douglas MacFarlaneb and Maria Forsytha 10 11 a Institute for Frontier Materials and the ARC Centre of Excellence for Electromaterials 12 Science, Deakin University, Geelong, VIC 3216, Australia. E-mail: [email protected]; 13 Fax: 61 (03) 92446868; Tel: +61 (03) 52273696 14 15 b Department of Chemistry and the ARC Centre of Excellence for Electromaterials 16 Science, Monash University, Clayton, VIC 3800, Australia 17 18 19 * Corresponding author, Tel: 61 (03) 52273696; Fax: 61 (03) 92446868; Email: 20 [email protected] (H.
    [Show full text]
  • And TMS Ethers to Sulfonate Esters Using Fecl3-Montmorillonite K-10 Clay Barahman Movassagha and Salman Shokri Department of Chemistry, K
    An Efficient One-Pot Conversion of THP- and TMS Ethers to Sulfonate Esters Using FeCl3-Montmorillonite K-10 Clay Barahman Movassagha and Salman Shokri Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran a Kermanshah Oil Refining Company, Kermanshah, Iran Reprint requests to Dr. B. Movassagh. E-mail: [email protected] Z. Naturforsch. 60b, 763 – 765 (2005); received March 29, 2005 Various tetrahydropyranyl and trimethylsilyl ethers are efficiently transformed into the correspond- ing sulfonate esters with sulfonyl chlorides in the presence of FeCl3-Montmorillonite K-10 clay. Key words: Sulfonate Esters, FeCl3-Montmorillonite K-10, Trimethylsilyl Ethers, Tetrahydropyranyl Ethers, Clay Catalyst Sulfonate esters are especially useful substrates in sions of THP and TMS ethers into the correspond- nucleophilic substitution reactions used in synthesis. ing carboxylic esters in the presence of Montmoril- Their preparation from alcohols is an effective way lonite K-10 clay [7, 8]. In continuation of our ongo- of installing a reactive leaving group, e.g. on an alkyl ing program to develop environmentally benign meth- chain. p-Toluenesulfonate- and methanesulfonate es- ods using supported reagents, this article describes ters are the most frequently used groups for preparative a new, simple, and efficient one-pot protocol for the work. The usual method for preparation of sulfonates deprotection-sulfonylation of THP and TMS ethers relies on the use of the corresponding sulfonyl chlo- with sulfonyl chlorides in refluxing acetonitrile using ride or anhydride in the presence of triethylamine [1], FeCl3 impregnated Montmorillonite K-10 as a mild pyridine [2], 1,4-diazabicyclo[2.2.2]octane (DABCO) and non-corrosive solid catalyst (Scheme 1).
    [Show full text]
  • Studies Toward the Synthesis of Photolabile HNO Donors–An
    STUDIES TOWARD THE SYNTHESIS OF PHOTOLABILE HNO DONORS – AN EXPLORATION OF SELECTIVITY FOR HNO GENERATION A thesis submitted to the Kent State University Honors College in partial fulfillment of the requirements for Departmental Honors by Zachary Alan Fejedelem August, 2015 Thesis written by Zachary Alan Fejedelem Approved by ________________________________________________________________, Advisor ________________________________________________________________, Advisor ________________________________________________________________, Chair, Department of Chemistry & Biochemistry Accepted by _____________________________________________________, Dean, Honors College ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………...…………….…vi LIST OF TABLES………………………………………………………………………..ix ACKNOWLEDGMENTS………………………………………………….......................x CHAPTER 1. INTRODUCTION……………………………………………………..….1 1.1 Introduction to HNO……………………………………………....1 1.1.1 The unique qualities of HNO……………………………………...1 1.1.2 Drawbacks and issues of HNO…………………………………....5 1.1.3 Importance of HNO donors……………………………….………6 1.2 Examples of HNO donors………………………………………...7 1.2.1 Angeli’s Salt (AS)………………………………………………...7 1.2.2 Piloty’s Acid (PA)………………………………………………...8 1.2.3 HNO-generating diazeniumdiolates…………………………..…12 1.2.4 Cyanamide…………………………………………………….…12 1.2.5 Nitrosocarbonyls…………………………………………………14 1.2.6 Hydroxylamine…………………………………………………..16 1.2.7 α-Acyloxy-C-nitroso compounds………………………………..16 1.2.8 Photolabile HNO and NO donors………………………………..17 1.3 Our research group’s family of current HNO donors…………....20 iii 1.3.1 Previous work on first family of photoactivatable HNO donors..20 1.3.2 Previous synthesis of target photolabile HNO donors…………..22 1.4 Photolysis results from HNO donors 22………………………....25 1.4.1 Photolysis results of first HNO donor 22a……………………....25 1.4.2 Proposed photolysis mechanism………………………………...27 1.5 Thesis project goal……………………………………………....29 1.5.1 Thesis project……………………………………………………29 1.5.2 Proposed photolysis mechanism………………………………...31 2.
    [Show full text]
  • A Method for the Production of Sulfate Or Sulfonate Esters
    (19) *EP002851362B1* (11) EP 2 851 362 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 303/24 (2006.01) C07C 303/28 (2006.01) (2006.01) (2006.01) 27.11.2019 Bulletin 2019/48 C07C 305/06 C07C 305/08 C07C 305/20 (2006.01) C07C 305/24 (2006.01) (2006.01) (21) Application number: 13185032.3 C07C 309/73 (22) Date of filing: 18.09.2013 (54) A method for the production of sulfate or sulfonate esters Verfahren zur Herstellung von Sulfat oder Sulfonatestern Procédé pour la production d’esters de sulfate ou de sulfonate (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • DENIZ GUNES ET AL: "ALIPHATIC THIOETHERS GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO BY S-ALKYLATION OF THIOLS VIA TRIALKYL PL PT RO RS SE SI SK SM TR BORATES", PHOSPHORUS, SULFUR AND SILICON AND THE RELATED ELEMENTS, (43) Date of publication of application: TAYLOR & FRANCIS INC, US, vol. 185, no. 8, 1 25.03.2015 Bulletin 2015/13 January 2010 (2010-01-01), pages 1685-1690, XP008165903, ISSN: 1042-6507, DOI: (73) Proprietor: Ulusal Bor Arastirma Enstitusu 10.1080/10426500903213563 [retrieved on 06520 Ankara (TR) 2010-08-02] • OKI ET AL: "Solvothermal synthesis of carbon (72) Inventors: nanotube-B2O3 nanocomposite using tributyl • Bicak, Niyazi borate as boron oxide source", INORGANIC 34469 Istanbul (TR) CHEMISTRY COMMUNICATIONS, ELSEVIER, • Gunes, Deniz AMSTERDAM, NL, vol.
    [Show full text]
  • (And In-Betweens) of Solubility Measurements of Solid Electrolytes*
    Pure Appl. Chem., Vol. 85, No. 11, pp. 2077–2087, 2013. http://dx.doi.org/10.1351/PAC-CON-12-11-06 © 2013 IUPAC, Publication date (Web): 20 May 2013 Some highs and lows (and in-betweens) of solubility measurements of solid electrolytes* Glenn Hefter Chemistry Department, Murdoch University, Murdoch, WA 6150, Australia Abstract: Recent solubility measurements of a variety of solid electrolytes in water and aque- ous solutions in the author’s laboratories are reviewed. The experimental challenge of per- forming such measurements with high accuracy is demonstrated using the solubility of solid sodium chloride in water at near-ambient temperatures as a paradigm. The special difficul- ties of measuring low solubilities are demonstrated using Pb(II) sulfate in various aqueous solutions and Pb(II) oxide in sodium hydroxide solutions, and the usefulness of such meas- urements for obtaining reliable information on homogeneous reactions in solution is briefly discussed. It is also shown, using the alkali metal triflate salts as examples, that determina- tion of the solubilities of even highly soluble salts can be problematic. Lastly, data for the sol- ubilities of a series of sodium carboxylate salts of industrial relevance are discussed and are used to illustrate why the theoretical prediction of solid electrolyte solubilities remains such a challenge. Keywords: aqueous solutions; carboxylate; electrolytes; lead(II); salts; sodium chloride; sol- ubility; triflate. INTRODUCTION The solubilities of substances in solvents are among the oldest of physicochemical measurements [1]. While they would not have been recognized as such at the time, these measurements certainly included the solubilities of solid electrolytes (“salts”) in water.
    [Show full text]
  • And Coumarin-1-Ylmehtyl Photoremovable Protecting Groups
    Photochemical & Dynamic Article Links Photobiological Sciences Cite this: Photochem. Photobiol. Sci., 2012, 11, 472 www.rsc.org/pps PERSPECTIVE Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups† Richard S. Givens,*a Marina Rubinab and Jakob Wirzc Received 7th December 2011, Accepted 20th January 2012 DOI: 10.1039/c2pp05399c Most applications of photoremovable protecting groups have used o-nitrobenzyl compounds and their (often commercially available) derivatives that, however, have several disadvantages. The focus of this review is on applications of the more recently developed title compounds, which are especially well suited for time-resolved biochemical and physiological investigations, because they release the caged substrates in high yield within a few nanoseconds or less. Together, these two chromophores cover the action spectrum for photorelease from >700 nm to 250 nm. Introduction irradiation wavelengths and which may interfere with the effect of the released bioactive material under study, because of their o-Nitrobenzyl derivatives are by far the most commonly used toxic effect on biological tissues.3 With the need for higher time 1 photoremovable protecting groups (PPGs), despite their known resolution in studies of the leading events in biological pro- disadvantages: following electronic excitation, the caged com- cesses, there is a demand for clean, rapidly released triggers or 2 pounds are released on a time scale of microseconds at best, initiators of these processes. and o-nitroso aromatic ketones are produced as side products, The technology to monitor events on the nanosecond to which usually absorb more strongly than the parent PPG at the femtosecond time scales has become available and to exploit these methods the initiating processes must match or exceed the a rates of detection.
    [Show full text]
  • Fundamental Studies on 2,4,6- Trichlorophenyl Sulfonate Esters
    University College London Fundamental Studies on 2,4,6- Trichlorophenyl Sulfonate Esters By Lynsey J. Geldeard Doctor of Philosophy Faculty of Mathematical and Physical Sciences Department of Chemistry Declaration The work described in this thesis is the work of the author and has not previously been submitted to this or any other university for any other degree. Lynsey Geldeard February 2009 Abstract This thesis describes the application of 2,4,6-trichlorophenylsulfonate esters in the synthesis of sulfonamides. The sulfonamide unit is an important structural motif due to its frequent occurrence in a range of pharmaceuticals, particularly antibiotics. Sulfonamides can be readily synthesised from pentafluorophenyl (PFP) sulfonate esters and as an expansion to this 2,4,6 trichlorophenyl (TCP) sulfonates have been developed. These have the added advantage of lower toxicity and reduced cost of trichlorophenol. TCP sulfonates can be synthesised directly from sulfonic acids via activation by triphenylphosphine ditriflate in moderate to excellent yields. These compounds can then be utilised in the synthesis of sulfonamides and suitable conditions for reactions with both simple aliphatic amines and more challenging anilines have been found. The differing reactivity’s of the TCP and PFP sulfonate esters have been exploited in selective sulfonamide formation. The greater stability of TCP sulfonate in comparison to PFP sulfonate also means that a broader range of transformations can be achieved in its presence. This has been shown particularly in the application of palladium chemistry to synthesise more elaborate TCP sulfonates. Also, the synthesis of novel amino acids have been targeted inorder to further demonstrate the stability of the group when performing more diverse reactions on remote sites in the molecule.
    [Show full text]