Suborden Eupnoi Suborden Laniatores
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Short-Legged Andean Cosmetids Revisited: the Genus Libitia Simon
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2020 Band/Volume: 0634 Autor(en)/Author(s): Medrano Miguel, Azara Ludson Neves de, Kury Adriano Brilhante Artikel/Article: The short-legged Andean cosmetids revisited: the genus Libitia Simon, 1879 with description of two new species (Opiliones, Cosmetidae) 1-25 European Journal of Taxonomy 634: 1–25 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.634 www.europeanjournaloftaxonomy.eu 2020 · Medrano M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:66AEE1D7-51BF-4583-9A19-947F61ECC7DE The short-legged Andean cosmetids revisited: the genus Libitia Simon, 1879 with description of two new species (Opiliones, Cosmetidae) Miguel MEDRANO 1,*, Ludson Neves de ÁZARA 2 & Adriano Brilhante KURY 3 1,2,3 Laboratório de Aracnologia, Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro – RJ, Brazil. 1 Corresponding author: [email protected] 2 [email protected] 3 [email protected] 1 urn:lsid:zoobank.org:author:C7F7D4CF-F9B2-44AF-9F03-86278ADBD4F2 2 urn:lsid:zoobank.org:author:4ECF193A-694C-43CE-8EE6-F197EDDA4414 3 urn:lsid:zoobank.org:author:60FAE1F8-87F7-4A5F-BE78-BEB25BC4F898 Abstract. The old genus Libitia Simon, 1879 of small Andean harvestmen is revisited. The monotypic genus Libitiella Roewer, 1947 is herein considered a junior subjective synonym of Libitia. Accordingly, Libitiella bipunctata (Sørensen, 1932) is restored to the combination Libitia bipunctata. The species Libitia cordata and Libitia bipunctata comb. -
Comparative Functional Morphology of Attachment Devices in Arachnida
Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas. -
Opiliones, Palpatores, Caddoidea)
Shear, W. A. 1975 . The opilionid family Caddidae in North America, with notes on species from othe r regions (Opiliones, Palpatores, Caddoidea) . J. Arachnol . 2:65-88 . THE OPILIONID FAMILY CADDIDAE IN NORTH AMERICA, WITH NOTES ON SPECIES FROM OTHER REGION S (OPILIONES, PALPATORES, CADDOIDEA ) William A . Shear Biology Departmen t Hampden-Sydney, College Hampden-Sydney, Virginia 23943 ABSTRACT Species belonging to the opilionid genera Caddo, Acropsopilio, Austropsopilio and Cadella are herein considered to constitute the family Caddidae . The subfamily Caddinae contains the genu s Caddo ; the other genera are placed in the subfamily Acropsopilioninae. It is suggested that the palpatorid Opiliones be grouped in three superfamilies : Caddoidea (including the family Caddidae) , Phalangioidea (including the families Phalangiidae, Liobunidae, Neopilionidae and Sclerosomatidae ) and Troguloidea (including the families Trogulidae, Nemostomatidae, Ischyropsalidae an d Sabaconidae). North American members of the Caddidae are discussed in detail, and a new species , Caddo pepperella, is described . The North American caddids appear to be mostly parthenogenetic, an d C. pepperella is very likely a neotenic isolate of C. agilis. Illustrations and taxonomic notes ar e provided for the majority of the exotic species of the family . INTRODUCTION Considerable confusion has surrounded the taxonomy of the order Opiliones in North America, since the early work of the prolific Nathan Banks, who described many of ou r species in the last decade of the 1800's and the first few years of this century. For many species, no additional descriptive material has been published following the original de- scriptions, most of which were brief and concentrated on such characters as color and body proportions . -
The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France)
diversity Article The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France) Arnaud Faille 1,* and Louis Deharveng 2 1 Department of Entomology, State Museum of Natural History, 70191 Stuttgart, Germany 2 Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, EPHE, 75005 Paris, France; [email protected] * Correspondence: [email protected] Abstract: Located in Northern Pyrenees, in the Arbas massif, France, the system of the Coume Ouarnède, also known as Réseau Félix Trombe—Henne Morte, is the longest and the most complex cave system of France. The system, developed in massive Mesozoic limestone, has two distinct resur- gences. Despite relatively limited sampling, its subterranean fauna is rich, composed of a number of local endemics, terrestrial as well as aquatic, including two remarkable relictual species, Arbasus cae- cus (Simon, 1911) and Tritomurus falcifer Cassagnau, 1958. With 38 stygobiotic and troglobiotic species recorded so far, the Coume Ouarnède system is the second richest subterranean hotspot in France and the first one in Pyrenees. This species richness is, however, expected to increase because several taxonomic groups, like Ostracoda, as well as important subterranean habitats, like MSS (“Milieu Souterrain Superficiel”), have not been considered so far in inventories. Similar levels of subterranean biodiversity are expected to occur in less-sampled karsts of central and western Pyrenees. Keywords: troglobionts; stygobionts; cave fauna Citation: Faille, A.; Deharveng, L. The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France). Diversity 2021, 1. Introduction 13 , 419. https://doi.org/10.3390/ Stretching at the border between France and Spain, the Pyrenees are known as one d13090419 of the subterranean hotspots of the world [1]. -
Arachnida: Opiliones) Release Contact Pheromones During Mating?
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 184–191, 2016 http://www.eje.cz doi: 10.14411/eje.2016.022 ORIGINAL ARTICLE Do sexually dimorphic glands in the harvestman Gryne perlata (Arachnida: Opiliones) release contact pheromones during mating? JÉSSICA M. DIAS 1, 2 and RODRIGO H. WILLEMART 1, 2, 3, * 1 Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo – SP, 03828-000 Brazil; e-mails: [email protected], [email protected] 2 Programa de Pós Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo – SP, 05508-090 Brazil 3 Programa de Pós Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel, 275, Jardim Eldorado, Diadema – SP, 09972-270 Brazil Key words. Arachnida, Opiliones, Laniatores, Cosmetidae, Gryne perlata, Gonyleptidae, Discocyrtus pectinifemur, chemical communication, copulation, sexually dimorphic glands Abstract. There are records of glands that produce sexual pheromones that are released into the environment or applied directly on sexual partners. Within Opiliones (Arachnida), several harvestmen in the suborder Laniatores have sexually dimorphic glands on legs I and IV, the mode of use of which is recorded only in two species but their function is unknown: while walking, males rub the glands against the substrate or against their body. Here we test an alternative and non-exclusive hypothesis that the glands present on the legs of male Gryne perlata (Cosmetidae) produce contact pheromones used in mating. -
Behavioral Roles of the Sexually Dimorphic Structures in the Male Harvestman, Phalangium Opilio (Opiliones, Phalangiidae)
1763 Behavioral roles of the sexually dimorphic structures in the male harvestman, Phalangium opilio (Opiliones, Phalangiidae) Rodrigo H. Willemart, Jean-Pierre Farine, Alfredo V. Peretti, and Pedro Gnaspini Abstract: In various animal species, male sexual dimorphic characters may be used during intrasexual contests as orna- ments to attract females, or to hold them before, during, or after copulation. In the well-known harvestman, Phalangium opilio L., 1758, the behavioral functions of these male sexually dimorphic structures have never been studied in detail. Therefore, in addition to a morphometric study, 21 male contests and 43 sexual interactions were analyzed. Our observa- tions revealed that during contests, the male cheliceral horns form a surface by which the contestants use to push each other face-to-face while rapidly tapping their long pedipalps against the pedipalps of the opponent, occasionally twisting the opponent’s pedipalp. Scanning electron micrographs revealed contact mechanoreceptors on the pedipalp that would de- tect the intensity–frequency of contact with the contender’s pedipalp. Larger males won almost all contests, whereas the loser rapidly fled. During sexual interactions, the longer pedipalps of the male held legs IV of the female, whereas males with shorter pedipalps held the female by legs III. No contact with the male pedipalps and chelicerae by the females was visible before, during, or after copulation. Soon after copulating, males typically bent over the female, positioning their cheliceral horns against the females’s dorsum. Consequently, our data show that the cheliceral horns and the longer pedi- palps of the male seem to play an important role, during both intersexual and intrasexual encountering. -
The Phylogeny of Fossil Whip Spiders Russell J
Garwood et al. BMC Evolutionary Biology (2017) 17:105 DOI 10.1186/s12862-017-0931-1 RESEARCH ARTICLE Open Access The phylogeny of fossil whip spiders Russell J. Garwood1,2*, Jason A. Dunlop3, Brian J. Knecht4 and Thomas A. Hegna4 Abstract Background: Arachnids are a highly successful group of land-dwelling arthropods. They are major contributors to modern terrestrial ecosystems, and have a deep evolutionary history. Whip spiders (Arachnida, Amblypygi), are one of the smaller arachnid orders with ca. 190 living species. Here we restudy one of the oldest fossil representatives of the group, Graeophonus anglicus Pocock, 1911 from the Late Carboniferous (Duckmantian, ca. 315 Ma) British Middle Coal Measures of the West Midlands, UK. Using X-ray microtomography, our principal aim was to resolve details of the limbs and mouthparts which would allow us to test whether this fossil belongs in the extant, relict family Paracharontidae; represented today by a single, blind species Paracharon caecus Hansen, 1921. Results: Tomography reveals several novel and significant character states for G. anglicus; most notably in the chelicerae, pedipalps and walking legs. These allowed it to be scored into a phylogenetic analysis together with the recently described Paracharonopsis cambayensis Engel & Grimaldi, 2014 from the Eocene (ca. 52 Ma) Cambay amber, and Kronocharon prendinii Engel & Grimaldi, 2014 from Cretaceous (ca. 99 Ma) Burmese amber. We recovered relationships of the form ((Graeophonus (Paracharonopsis + Paracharon)) + (Charinus (Stygophrynus (Kronocharon (Charon (Musicodamon + Paraphrynus)))))). This tree largely reflects Peter Weygoldt’s 1996 classification with its basic split into Paleoamblypygi and Euamblypygi lineages; we were able to score several of his characters for the first time in fossils. -
A Stable Phylogenomic Classification of Travunioidea (Arachnida, Opiliones, Laniatores) Based on Sequence Capture of Ultraconserved Elements
A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Derkarabetian, Shahan, James Starrett, Nobuo Tsurusaki, Darrell Ubick, Stephanie Castillo, and Marshal Hedin. 2018. “A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.” ZooKeys (760): 1-36. doi:10.3897/zookeys.760.24937. http://dx.doi.org/10.3897/zookeys.760.24937. Published Version doi:10.3897/zookeys.760.24937 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298544 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A peer-reviewed open-access journal ZooKeys 760: 1–36 (2018) A stable phylogenomic classification of Travunioidea... 1 doi: 10.3897/zookeys.760.24937 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements Shahan Derkarabetian1,2,7 , James Starrett3, Nobuo Tsurusaki4, Darrell Ubick5, Stephanie Castillo6, Marshal Hedin1 1 Department of Biology, San Diego State University, San -
Opiliones: Sclerosomatidae: Gagrellinae) from Argentina Revista De La Sociedad Entomológica Argentina, Vol
Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina Rodríguez Gil, Sergio G.; Mola, Liliana M. Chromosome complement and meiosis of Holmbergiana weyenberghii (Opiliones: Sclerosomatidae: Gagrellinae) from Argentina Revista de la Sociedad Entomológica Argentina, vol. 69, núm. 3-4, 2010, pp. 167-170 Sociedad Entomológica Argentina Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=322028487009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Rev. Soc. Entomol. Argent. 69 (3-4): 167-170, 2010 167 Chromosome complement and meiosis of Holmbergiana weyenberghii (Opiliones: Sclerosomatidae: Gagrellinae) from Argentina RODRÍGUEZ GIL, Sergio G. and Liliana M. MOLA Laboratorio de Citogenética y Evolución, Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes y Costanera Norte, 1428 Ciudad Universitaria. Ciudad Autónoma de Buenos Aires, Argentina; e-mail: [email protected], [email protected] Complemento cromosómico y meiosis de Holmbergiana weyenberghii (Opiliones: Sclerosomatidae: Gagrellinae) de Argentina RESUMEN. Se analiza citogenéticamente, por primera vez, una especie de opilión proveniente de Argentina: Holmbergiana weyenberghii (Holmberg) (Eupnoi, Sclerosomatidae, Gagrellinae). Los machos tienen un complemento cromosómico compuesto por 18 cromosomas. En meiosis, hay nueve bivalentes homomórficos: uno mayor, cinco medianos y tres menores. El número cromosómico de H. weyenberghii se encuentra dentro del rango de números diploides de los Gagrellinae Thorell; esta subfamilia presenta los números cromosómicos más bajos de Sclerosomatidae. -
Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones
ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]). -
Biodiversity of the Huautla Cave System, Oaxaca, Mexico
diversity Communication Biodiversity of the Huautla Cave System, Oaxaca, Mexico Oscar F. Francke, Rodrigo Monjaraz-Ruedas † and Jesús A. Cruz-López *,‡ Colección Nacional De Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico; [email protected] (O.F.F.); [email protected] (R.M.-R.) * Correspondence: [email protected] † Current address: San Diego State University, San Diego, CA 92182, USA. ‡ Current address: Instituto Nacional de Investigaciones Agrícolas y Pecuarias del Valle de Oaxaca, Santo Domingo Barrio Bajo, Etla C. P. 68200, Mexico. Abstract: Sistema Huautla is the deepest cave system in the Americas at 1560 m and the fifth longest in Mexico at 89,000 m, and it is a mostly vertical network of interconnected passages. The surface landscape is rugged, ranging from 3500 to 2500 masl, intersected by streams and deep gorges. There are numerous dolinas, from hundreds to tens of meters in width and depth. The weather is basically temperate subhumid with summer rains. The average yearly rainfall is approximately 2500 mm, with a monthly average of 35 mm for the driest times of the year and up to 500 mm for the wettest month. All these conditions play an important role for achieving the highest terrestrial troglobite diversity in Mexico, containing a total of 35 species, of which 27 are possible troglobites (16 described), including numerous arachnids, millipedes, springtails, silverfish, and a single described species of beetles. With those numbers, Sistema Huautla is one of the richest cave systems in the world. Keywords: troglobitics; arachnids; insects; millipedes Citation: Francke, O.F.; Monjaraz-Ruedas, R.; Cruz-López, J.A. -
Segmentation and Tagmosis in Chelicerata
Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.